EV university of
4)&@5 groningen

Language .. Inference

Day 3: Building Meaning Representations

Johan Bos
johan.bos@rug.nl

* Introduce a method to build meaning
representations from English text

* Use the grammar formalism introduced
yesterday

« Specify the syntax-semantics interface

Today

\' Bluebird
[Starling

Thrush

Raymond Smullyan

XY Y Y X\Y
> <
X X
XY Y/Z Y\Z X\Y
>B <B
X/Z X\Z
XY Y\Z Y/Z X\Y
>Bx <Bx
X\Z X/Z

Rule schemata (1)

X X
>T <T

Y/(Y\X) X\(Y/X)

X CONJ X
<>
X
XYz YIZ Y/Z (X\Y)/Z

>S

X/Z X/Z

Rule schemata (2)

* How do we construct DRSs from sentences
(or texts) in a systematic way?

* We will let us guide by syntactic structure!

 What we will do is show how we can combine
CCG with DRT

Compositional Semantics

» Use techniques from the lambda calculus to
combine CCG with DRT

« Every word gets assigned a “partial” DRS

« Each combinatorial rule in CCG has a semantic
Interpretation consistent with lambda calculus

Combining CCG with DRT

We will add a couple of new ingredients:

AN @ ;
* The lambda operator A signals missing information

* Function application is indicated by @
 The ; operator denotes a merge between two DRSs

Partial DRSs

Category Partial DRS Example
N M spokesman(x) SpOkesman
NP/N | * 2}~ e@x)@@x) 3

e

S\NP An.(N@Ay. | lie(e)) lied

agent(e,y)

CCG+DRT: lexical semantics

Type theory

* We will use two basic types:

e (entity, i.e. discourse referents), and
t (truth value, i.e. DRSs)

* The set of all types is recursively defined in the
usual way:

If a and 3 are types, then so is <q,(3>

Syntax of partial DRSs

<EXP> = | <VAR>* || (KEXP>;<EXP>) | (REXP »>@<EXP>)
<CON>*

<CON> ::= <BASIC> | <COMPLEX>
<BASIC> ::= <SYM,>(<VAR_>) | <SYM,>(<VAR_><VAR_>) | ...
<COMPLEX> ::= 7<EXP> | <EXP> => <EXP> | <VAR_>: <DRS> | ...

<EXP. 445> 5= VAR 5.> | ASVAR,>.<EXP,> | (SEXP., ; 5-->@<EXP,>)

Y X\Y

Application (> and <)

XY @ Y.y

X (0@Q)

Y.y X\Y: @

X (0@Q)

Application (> and <)

XY Y/Z

XIZ

Y\Z X\Y
<B

X\Z

Composition (>B and <B)

YIZ: .
XY @

XIZ: MX.(0@(y@x))

X\Y: @
Y\Z: g

<B

X\Z: AX.(0@ (W @x))

d <B)
Composition (>B an

« Consider the application: AX.p@u
* Here the functoris: Ax.¢
* And the argumentis: Y

* The process of replacing every free
occurrence of x in ¢ by y is called
B-conversion
(or B-reduction, or A-conversion)

B-conversion

NP/N:a N: spokesman S\NP: lied

S: a spokesman lied

CCG derivation

NP/N: a N: spokesman S\NP: lied

‘| spokesman(z)

NP: a spokesman 7
}\’ . [’ X - ‘
(AP MﬂHE spokesman(x) i@ poxe)

S: a spokesman lied

CCG+DRT derivation

NP/N: a N: spokesman

'| spokesman(z)

NP: a spokesman

X

spokesman(x) |’

S: a spokesman lied

AX.(x@y] lie(e))

S\NP: lied

e

agent(e,y)

1

e

X

AX.(X@AY| lie(e) R T

spokesman(x)

agent(e,y)

agent(e,x)

| I N

ie @X
hgen (eyy)

CCG+DRT derivation

What are the semantic types?

* Determine the semantic types of the partial
DRSs of the previous example

 Consider again: AX.o@QU
* The functor is: AX.P
* And the argumentis: Y
 B-conversion can only take place if the set of

free variables in y is disjoint from the set of
bound variables in ¢. Why?

Constraints on 3-conversion

C (hey(x) ; hello(x) AN oops(Y,X)
X K .
(hey(x) 3 hello(x) |’)

00ps(X,X)

~__J

Accidentally capturing free variables

* a-conversion is the process of replacing bound
occurrences of a variable in an expression by a
new (unused) variable

* If we do this with the functor for every
application before we perform [3-conversion, we
won’t capture free variables anymore

a-conversion

hey(x)

z

| hello(z2)

hey(x)

hello(z) ;

(A@z))@My.))

0ops(Y,X)

oops(y,X)

z

(X

| heyx) { hello(z) ; 00ps(z,X))

Avoiding capturing free variables

* Theoretical work
» Associating syntactic categories with a semantic type
* Follow CCG's principle of type transparency

* Practical work

* Produce a lexical DRS for each lexical category,
obeying type restrictions

Lot of work: all lexical categories found in CCGbank

Building the Semantic Lexicon

S Sentence
NP Noun Phrase
N Noun

PP |Prepositional Phrase

Basic Syntactic Categories

e entity (discourse referent)
t truth value (box)

Basic Semantic Types

 Nouns express properties

 Hence it makes sense to associate the
category N with the semantic type <e,t>

* The semantic type <e,t>denotes functions
from entities to truth values (properties)

The category N

squirrel

N: (e,t): Ax.

squirrel(x)

red

N/N: ((e,t), (e, t)): Ap.Ax.(

red(x) |

* Prepositional phrases (PPs) also express
properties

 Hence it makes sense to associate the
category PP with the semantic type <e,>too

The category PP

at a table

PP: (e, t): Axy.

X2

table(x2)
at(x1,x2)

wife

N/PP: ({e,t), (e,t)): Ap.Axy.(|Person(x1)|.

X2

wife(x2)
role(x1,x2)

* Noun phrases denote entities

* Therefore, the category NP is usually associated
with the type e

* But we deviate from this approach
* instead, we give a type-raised analysis to NP

* The type we give to NP is <<g,{>,t>, that is, a
function from properties to truth values

The category NP

someone

X

NP: ((e,t),t): Ap.((p@x))

person(x)

Examples (NP)

 Sentence denote truth values

 Therefore, S would be associated with
the semantic type ¢

« But once again we deviate from this view
 |Instead we pair S with the type <<ge,t>,t>

* Motivation:
compositional neo-Davidsonian semantics

The category S

* Approach: Method of Continuation

 Basic ideas:

 Discourse referents for events get introduced
In the lexicon

« Abstraction over potential modifiers of event
discourse referents

 Each modifier introduce a new abstraction over
potential modifiers (“continuation”)

Compositional neo-Davidsonian

smoke

€4

(S[dcl]\NP): ({(e,t),1), ({e.t),1)): An1.Ap2.(n1@Ax3.(| smoke(eys) |:(p2@ey)))

agent(eys.Xx3)

Example (S\NP)

(e [P @e)@ W[y (p@e))

M, (e)

(P @e))

Continuation at work

Syntactic Semantic
Category Type
S <<e t>t>
NP <<e,p> >
N <g,t>
PP <e,>

Mapping syntax to semantics

* For each category in the lexicon, we need to
provide a fitting partial DRSs

« Manual work, ca. 500 categories
* Some categories are straightforward
» Others categories are far from trivial

Producing lexical DRSs

promise: ((S,\NP)/(S;,\NP))/NP

AN AV,)

Example Partial DRS (lexicon)

* This is all implemented as the Boxer system
A semantic parser based on CCG and DRT

* The Groningen Meaning Bank
Semantically annotated corpus (CCG + DRT)

Implementation

