

Language and Inference

Day 5: Inference in the Real World

Johan Bos johan.bos@rug.nl

Semantic Analysis Pipeline

Low-level formatting issues

- Document headers, tables, diagrams
- Filter required to remove junk
- Errors caused by OCR (optical character recognition)

Capitalisation

- Should we treat tokens that are identical disregarding lower- and uppercase as the same?
- Simple heuristics do not exist
 - Change an uppercase word at beginning of sentence into lowercase
 - Assume that all other uppercase words are names

EXAMPLE

the, The, THE Meg White, a white swan

Segmentation

- Divide an input text into units called tokens
- Distinguish sentence tokens and word tokens
- Usually first step in a NLP pipeline
- Two boundary detection tasks
 - detect boundaries of word tokens (separating punctuation symbols from words)
 - detect boundaries of sentence tokens (syntactic analysis wants sentences as input)

Punctuation symbols

- Punctuation symbols can be important
- Don't throw them away!

EXAMPLE

The camel, who crossed Australia, was thirsty. The camel who crossed Australia was thirsty.

What is a word?

- Even linguists don't have a clear answer!
- An attempt:

A sequence of alphanumeric characters with space on either side, including hyphens and apostrophes

EXAMPLES

\$14,00

Micro\$oft

-) John's

s'pose

Full stops

- It looks simple to remove punctuation symbols from word tokens
- But it is problematic for full stops (period)
 - Most full stops indicate the end of a sentence
 - But some full stops mark an <u>abbreviation</u>
- Arguably, the full stop of an abbreviation should be part of the word

EXAMPLE

Jack White lives in San Francisco, Calif., where he...

Haplography

- An abbreviation ends with a full stop
- A sentence ends with a full stop
- Therefore, a sentence ending with an abbreviation ends with two full stops (hmm, usually not!)

EXAMPLE

David Beckham played soccer in the U.S. Did he make an impact on soccer in the U.S.?

Contractions

- Are English contractions such as "I'd" and "aren't" one or two word tokens?
- Not splitting them puts pressure on the grammar
- Splitting them produces funny words: n't, 's, 'd, ...
- Note: possible difference in meaning
 - I mustn't grumble. (negation outscopes modal)
 - I must not grumble. (modal outscopes negation)

Clitics

- The dog's walking away.
- The dog's tail was wagging too much.
- The scary dog's tail was wagging too much.
- The dog's owner shouted.
- The dogs' owner shouted.

Hyphenation

- Do sequence of letters with a hyphen count as one word or two?
- Line-breaks further complicate things

EXAMPLES

e-mail so-called non-commercial co-operate

the 16-year-old boy—who surprised his friends

the San Francisco-based company

Ancient Greek was written without spaces

Hottentottententententoonstelling (Dutch)
 An exhibition ("tentoonstelling") of tents of the Khoikhoi

What is a sentence?

- Something ending with a ?, !, or .
- Full stops might also indicate abbreviations
- 90% of full stops are sentence boundaries!

EXAMPLE 1

"We are not getting any gas supplies from the gas field. The pipe is blown up," said Imran Khan.

EXAMPLE 2

"Do you mean to say," said Hermione in a hushed voice, "that that little girl dropped the toad-span?"

Semantic Analysis Pipeline

- Assigning a label to each word (token) in a sentence (text)
- The label indicates to what class the token belongs
- Examples: part of speech, named entities, chunks

Tagging

- How can we feed a machine some new, unseen linguistic data (a text) and expect it to come back with certain predictions?
- Basic idea: learn from examples

Machine Learning

POS tagging

- POS tagging is the task of labelling each token with a part of speech
- Most current approaches use statistical techniques
- There are two main issues
 - Dealing with ambiguity
 - Choice of tagset

Tag	Description	Tag	Description	
CC	coordinating conjunction	PRP	personal pronoun	
CD	cardinal number	PRP\$	possessive pronoun	
DT	determiner	RB	adverb	
EX	existential there	RBR	adverb, comparative	
FW	foreign word	RBS	adverb, superlative	
IN	preposition/subordinating conjunction	RP	particle	
JJ	adjective	TO	to	
JJR	adjective, comparative	UH	interjection	
JJS	adjective, superlative	VB	verb, base form	
LS	list marker	VBD	verb, past tense	
MD	modal	VBG	verb, gerund/present participle	
NN	noun, singular or mass	VBN	verb, past participle	
NNS	noun plural	VBP	verb, sing. present, non-3d	
NNP	proper noun, singular	VBZ	verb, 3rd person sing. present	
NNPS	proper noun, plural	WDT	wh-determiner	
PDT	predeterminer	WP	wh-pronoun	
POS	possessive ending	WP\$	possessive wh-pronoun	
		WRB	wh-abverb	

POS tagset (Penn)

Named Entity Recognition

- The task of finding domain-relevant names in texts
- Most common types of named entity are:
 - Person
 - Organisation
 - Location
- Two phases
 - Detect proper names (or entities)
 - Classify detected phrases

Tag	Description
B-PER	Person (first word)
I-PER	Person (subsequent words)
B-LOC	Location (first word)
I-LOC	Location (subsequent words)
B-ORG	Organisation (first word)
I-ORG	Organisation (subsequent words)
B-NAM	Miscellaneous (first word)
I-NAM	Miscellaneous (subsequent words)
0	not a named entity

NE tagset (IOB-2 format)

Data selection

- Select data (a corpus)
- Enrich it with the information you want a machine to predict for you

EXAMPLE

I will use the back door.

He promised to back my proposal.

Annotation (POS)

- Select data (a corpus)
- Label each word correctly

Annotation (NE)

- Select data (a corpus)
- Label each word correctly

B-LOC

EXAMPLE

Discover what's on and things to do in Paris.

The footwear collection from celebrity Paris Hilton will be launched next month.

B-PER

I-PER

Preparation

- Enrich it with the information you want a machine to predict for you
- Put in the correct format

EXAMPLE

Michael NNP J. NNP Fox NNP replaced VBD Bruce NNP Willis NNP in IN third JJ place NN

EXAMPLE

I will use the <lex pos="NN">back</lex> door. He promised to <lex pos="VB">back<lex> my proposal.

Feature selection (POS)

- Prefixes of current word (up to 4 characters)
- Suffixes of current word (up to 4 characters)
- Word contains a number (yes/no)
- Word contains uppercase character (yes/no)
- Word contains hyphen (yes/no)
- Values of previous words and tags

Feature selection (NE)

- Word contains period
- Word contains punctuation
- Word is only digits
- Word is a number
- Word is upper/lower/title/mixed case
- Word is alphanumeric
- Length of word
- Word has only Roman numerals
- Word is an initial
- Word is an acronym
- Word is in a gazetteer (geographical dictionary)
- POS tag
- NE memory tag (most recently assigned tag to Word)
- is Word seen more frequently with uppercase or lowercase?

Feature extraction

EXAMPLE

The stories about well-heeled communities and developers DT NNS IN JJ NNS CC NNS

Feature	Value	Feature	Value
current word	well-heeled	contains uppercase	no
previous word	about	contains number	no
next word	communities	prefix-2	we
previous tag	IN	preffix-3	wel
next tag	NNS	suffix-2	ed
contains hyphen	yes	suffix-3	led

FEATURES

well-heeled

Statistical modelling

- Now we are ready to pick a learning algorithm and make a model
- We can use this model on new, unseen data
- The performance on the unseen data will show us how good this model is

The performance of a tagger depends mainly on three factors:

- Amount of training data
- Feature sets
- Machine learning method

Tagging performance

 Most words in natural languages have multiple possible meanings

"pen" (noun)

- The dog is in the pen.
- The ink is in the pen.

- "take" (verb)
 - Take one pill every morning.
 - Take the first right past the stoplight.

Lexical Ambiguity

Lexical Ambiguity

• Sometimes syntax helps distinguish meanings for different parts of speech of an ambiguous word

"conduct" (noun or verb)

- John's **conduct** in class is unacceptable.
- John will **conduct** the orchestra on Thursday.

How many different senses for <u>table</u> are used in these five sentences?

- 1 "See table 4."
- 2 "It was a sturdy table."
- 3 "I reserved a table at my favorite restaurant."
- 4 "She sets a fine table."
- (5) "He entertained the whole <u>table</u> with his witty remarks."

How many different senses for <u>see</u> are used in these 14 sentences?

- 1) "Can you see the bird in that tree?"
- 2) "I just can't <u>see</u> your point."
- 3) "You'll see a lot of cheating in this school."
- 4) "I can see what will happen."
- 5) "I don't see the situation quite as negatively as you do."
- 6) "I see that you have been promoted."
- 7) "This program will be <u>seen</u> all over the world."
- 8) "I'll probably see you at the meeting."
- 9) "See whether it works."
- 10) "See that the curtains are closed."
- 11) "You should see a lawyer."
- 12) "We went to see the Eiffel Tower in the morning."
- 13) "The doctor will see you now."
- 14) "Did you know that she is seeing an older man?"

What is a "sense" of a word?

- Homonyms
 (same words, disconnected meanings)
- Polysemes
 (same words, connected meanings)
- Metonyms
 (systematically related meanings)

bank

financial institute

bank

 sloping land next to river

Homonyms: disconnected meanings

fan

 device used to induce an airflow for the purpose of cooling or refreshing oneself

fan

 a person with a liking and enthusiasm for something

Homonyms: disconnected meanings

tree

a woody plant

tree

a data structure

Polysemy: connected meanings

fiat fired 100 employees

the company

I bought a **fiat**

a product

Metonomy: systematically connected meanings

Stephen King is an author.

the author

I am reading a **Stephen King**

the book

Metonomy: systematically connected meanings

Don't get confused...

homonyms

- senses that share pronunciation and orthography
- example: bank vs bank

homophones

- words that share pronunciations but are spelled differently
- example: would/wood, to/two/too

homographs

- words with distinct senses pronounced differently
- example: conduct (noun) vs conduct (verb) bass (animal) vs bass (music)

Relations between senses

 Synonymy / Antonomy (same / different)

 Hyponomy / Hyperonomy (subclass / generalisation)

 Meronomy / Holonomy (part-whole / whole-part)

Synonymy

 When two senses of two different words are (nearly) identical, they are <u>synonyms</u>

```
couch — sofa
vomit — throw up
water — H<sub>2</sub>O
car — automobile
```

- Note:
 - relation between senses, not between words
 - probably no two words are true synonyms

Antonymy

 Words with opposite meanings are called antonyms

```
long — short
cold — hot
in — out
boring — interesting
```

Hyponymy

 A sense is a hyponym of another sense if the first sense is more specific than the other (i.e., forms a subclass)

```
dog — pet
falcon — bird
house — building
company — organisation
```

Note: similar to ISA links in a knowledge base

ISA-hierarchy

Hyperonymy

 A sense is a hyperonym of another sense if the first sense is more general than the other (i.e., forms a superclass)

```
dog — boxer
falcon — kestrel
house — villa
company — agency
```

Note: inverse of hyponomy

Meronomy (part-whole)

 A sense is a meronym of another sense if the first is a part of the second

```
leg — chair
door — house
wheel — car
leaf — tree
```

Holonomy (whole-part)

 A sense is a holonym of another sense if the first contains the second (i.e., the opposite of meronym)

```
table — leg
door — keyhole
wheel — spoke
tree — branch
```

- A detailed database of semantic relationships between English words
- Developed by famous cognitive psychologist George Miller and team at Princeton University.
- Comprises about 155K English words.
- Nouns, adjectives, verbs, and adverbs grouped into about 117K synonym sets called *synsets*.

WordNet

WordNet

DESCRIPTION

Number of words, synsets, and senses

POS	Unique :	Synsets	Total			
	Strings		Word-Sense Pairs			
Noun	117798	82115	146312			
Verb	11529	13767	25047			
Adjective	21479	18156	30002			
Adverb	4481	3621	5580			
Totals	155287	117659	206941			

Polysemy information

POS	Monosemous	Polysemous Polysemous				
	Words and Senses	Words	Senses			
Noun	101863	15935	44449			
Verb	6277	5252	18770			
Adjective	16503	4976	14399			
Adverb	3748	733	1832			
Totals	128391	26896	79450			

- How are word meanings represented in WordNet?
 - By synsets (synonym sets) as basic units
 - A concept (word meaning) is represented by listing the word forms that can be used to express it

WordNet synsets

Example: two senses of board

 Sense 1: a piece of lumber: {board, plank, ...}

 Sense 2: a group of people assembled for some purpose {board, committee, ...}

Example of WordNet synset

Division of the lexicon into four main categories:

- Nouns
- Verbs
- Adjectives
- Adverbs

WordNet: global organisation

Noun

- hyponym
- hypernym
- holonym
- meronym

WordNet: nouns

- S: (n) orchestra (a musical organization consisting of a group of instrumentalists including string players)
 - direct hyponym | full hyponym
 - S: (n) chamber orchestra (small orchestra; usually plays classical music)
 - S: (n) string orchestra (an orchestra playing only stringed instruments)
 - S: (n) symphony orchestra, symphony, philharmonic (a large orchestra; can perform symphonies) "we heard the Vienna symphony"
 - part meronym
 - S: (n) section (a division of an orchestra containing all instruments of the same class)
 - o direct hypernym | inherited hypernym | sister term
 - S: (n) musical organization, musical organisation, musical group (an organization of musicians who perform toaether)
 - S: (n) chorus (a group of people assembled to sing together)
 - S: (n) ensemble (a group of musicians playing or singing together) "a string ensemble"
 - S: (n) section (a division of an orchestra containing all instruments of the same class)
 - S: (n) duet, duette, duo (two performers or singers who perform together)
 - S: (n) trio (three performers or singers who perform together)
 - S: (n) guartet, guartette (four performers or singers who perform together)
 - S: (n) guintet, guintette (five performers or singers who perform together)
 - S: (n) sextet, sextette, sestet (six performers or singers who perform together)
 - S: (n) septet, septette (seven performers or singers who perform together)
 - S: (n) octet, octette (eight performers or singers who perform together)
 - S: (n) orchestra (a musical organization consisting of a group of instrumentalists including string players)
 - S: (n) band (instrumentalists not including string players)
 - S: (n) dance band, band, dance orchestra (a group of musicians playing popular music for dancing)
 - derivationally related form
- S: (n) orchestra (seating on the main floor in a theater)

Textual Entailment

Text:

Mary bought a bottle of red wine.

Hypothesis:

Someone bought a bottle of wine.

YES!

Text:

Mary bought a bottle of red wine.

Hypothesis:

Someone bought a bottle of dry red wine.

NO!

Text:

Mary bought a bottle of red wine.

Hypothesis:

John bought a pack of crisps.

NO!

Recognising Textual Entailment

- Two-way classification:
 - T entails H if H contains no new information
 - T does not entail H if H contains new information.

Recognising Textual Entailment

- Three-way classification:
 - Are the texts (taken together) contradictory?
 - If not, does one text contain information that the other doesn't?

T: Johan has a beautiful black bicycle.

H: Johan has a beautiful bicycle.

Entailment

T. Bologna is the cultural capital of Italy.

H: Bologna is the capital of Italy.

No entailment

RTE Examples

RTE baseline algorithms

 Flipping a coin accuracy: 50%

 Lexical overlap accuracy: ≈58%

- 1 Translate text and hypothesis into logic
- ② Check if text entails hypothesis (not informative)
- If it does, then hypothesis contains no novel information

Method: basic idea

- Entailment Engine
 - Input: an RTE problem
 - Output: prediction (yes, no)
- Includes:
 - The CCG parser and Boxer
 - WordNet
- Interface to external inference engines
 - Theorem provers
 - Model builders

Nutcracker

- Construct with Boxer
 - a DRS for Text (Box 1)
 - a DRS for Text+Hypothesis (Box 2)
- Translate Box 1 and Box 2 into first-order logic with the standard translation function FO(...)
- Generate the following formulas for the theorem prover:
 - 1. \sim [FO(Box 1) & FO(Box 2)] (proof => inconsistent)
 - 2. \sim [FO(Box 1) & \sim FO(Box 2)] (proof => entailed)

Looking under the hood

- Compile WordNet relations into FOL
 - Hyponyms, synonyms
 - "if X is a poodle then X a dog"
- Compile NomLex rules into FOL
 - Nominalisations
 - "destruction of X" implies that "X was destructed"

(not part of Nutcracker yet)

Background Knowledge

Theorem Provers

- Vampire
- Spass
- Otter
- Bliksem

Model Builders

- Mace
- Paradox

Inference Engines (FOL)

THF/300	Satallax	LEO-II	<u>LEO-II</u>	<u>Isabelle</u>	TPS								
Solved	2.1	208/300	204/300	2011	3.110228S1a 190/300								
		8.97											
Av. CPU Time			4.95	36.55	18.69								
TNT/100	Nitpick 2011	Refute 2011	Satallax 2.1										
Solved	71/100	69/100	29/100										
Av. CPU Time	6.75	4.75	0.45										
TFA /100	SPASS+T		CVC3		MetiTarsl	SPASS-X							
	2.2.14	2.20	2.4	11.07	1.8	0.8	0.1.2						
Solved	96/100	92/100	77/100	60/100	54/100	48/100							
Av. CPU Time	2.74	2.15	0.26	0.12	19.85	0.31	1.10						
FOF/300	<u>Vampire</u>	Vampire	E-MaLeS	<u>EP</u>	iProver	leanCoP	iProver-E	E-KRHyr	E-Darwin	Metis	LEO-II	Otter	Muscadet
	0.6	1.8	1.0	1.4pre	0.9	2.2	0.7	1.2	1.4	2.3	1.2.8	3.3	4.1
Solved	269/300	263/300	233/300	232/300	192/300	136/300	135/300	109/300	103/300	101/300	97/300	62/300	42/300
Av. CPU Time	12.95	13.62	18.85	22.55	9.22	46.80	8.68	8.93	6.97	24.75	25.18	5.84	8.99
Solutions	269/300	263/300	233/300	232/300	0/300	136/300	0/300	0/300	0/300	101/300	94/300	62/300	40/300
FNT/200	<u>Paradox</u>	<u>FIMO</u>	iProver-S	Nitrox	iProver-E	E-KRHyr		E-Darwin					
	3.0	0.2	0.9	0.2	0.7	1.2	1.4pre	1.4					
Solved	169/200	162/200	159/200	140/200	86/200	85/200		57/200					
Av. CPU Time	3.33	14.43	34.93	17.42	7.52	15.92	2.40	7.23					
Solutions	169/200	162/200	133/200	140/200	0/200	0/200	78/200	57/200					
CNF/200	<u>E</u>	<u>Vampire</u>	Vampire		E-Darwin	iProver-E	E-KRHyr	LEO-II	<u>Metis</u>	Otter			
	1.4pre	0.6	1.8	0.9	1.4	0.7	1.2	1.2.8	2.3	3.3			
Solved	178/200	177/200	173/200	116/200	72/200	64/200		57/200	56/200	55/200			
Av. CPU Time	13.06	14.62	12.95	24.16	14.42	10.93	24.60	26.62	20.41	10.50			
EPR /150	iProver	<u>iProver</u>		iProver-E		Metis	E-Darwin	FIMO	E-KRHyr				
	0.9	0.8	1.8	0.7	1.4pre	2.3	1.4	0.2	1.2				

2011 World Cup Theorem Proving (CASC-23)

78/150

20.85

70/150

12.64

62/150

1.81

60/150

10.02

Solved

Av. CPU Time

145/150

12.70

145/150

14.95

127/150

15.79

121/150

24.78

91/150

7.90

- RTE system for English
- Based on DRT and theorem proving
- Distributed with the C&C tools

Demo of Nutcracker

Inference

- · check:
 - bin/nc
 - make bin/nc
- try the following t/h pairs:
 - T: Bill Gates has a blue cat.
 - H: He has no animal.
 - T: John has a dog.
 - H: John has an animal.
 - T: John likes no animal.
 - H: John likes a dog.
 - T: Mr. Jones likes a dog.
 - H. A dog is liked by Mr. Jones.

Method	Accuracy	Coverage
Flip a coin	50.0%	100%
Token overlap	57.6%	100%
Wordnet overlap	58.6%	98%
Model overlap	61.4%	88%
Proof	81.0%	4%

Performance on RTE-3 (800 pairs)