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Abstract

The aim of computational semantics is to capture the meaning of natural language expressions in
representations suitable for performing inferences, in the service of understanding human language
in written or spoken form. First-order logic is a good starting point, both from the representation
and inference point of view. But even if one makes the choice of first-order logic as representa-
tion language, this is not enough: the computational semanticist needs to make further decisions
on how to model events, tense, modal contexts, anaphora and plural entities. Semantic representa-
tions are usually built on top of a syntactic analysis, using unification, techniques from the
lambda-calculus or linear logic, to do the book-keeping of variable naming. Inference has many
potential applications in computational semantics. One way to implement inference is using algo-
rithms from automated deduction dedicated to first-order logic, such as theorem proving and
model building. Theorem proving can help in finding contradictions or checking for new infor-
mation. Finite model building can be seen as a complementary inference task to theorem proving,
and it often makes sense to use both procedures in parallel. The models produced by model
generators for texts not only show that the text is contradiction-free; they also can be used
for disambiguation tasks and linking interpretation with the real world. To make interesting
inferences, often additional background knowledge is required (not expressed in the analysed
text or speech parts). This can be derived (and turned into first-order logic) from raw text, semi-
structured databases or large-scale lexical databases such as WordNet. Promising future research
directions of computational semantics are investigating alternative representation and inference
methods (using weaker variants of first-order logic, reasoning with defaults), and developing evalu-
ation methods measuring the semantic adequacy of systems and formalisms.

1. Introduction

Computational semantics is an interdisciplinary area combining insights from formal
semantics, computational linguistics, knowledge representation and automated reasoning.
The main goal of computational semantics is to find techniques for automatically con-
structing semantic representations from expressions of human language (and vice versa), in
particular representations that can be used to perform inferences in the service of natural
language understanding and generation (Blackburn and Bos 2005). In this article, we
review computational semantics from a particular angle, focussing on wide-coverage
semantic interpretation of texts.

As a matter of fact, computational semantics is viewed here from a logic-oriented per-
spective, focusing on representational aspects and reasoning with background knowledge.
The resulting article is, admittedly, slightly biased towards the use of classical logic in
computational semantics. Nevertheless, I have tried to present a neutral view by pointing
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out weaknesses of this approach as well as proposing alternatives. Parts of Sections 2 and
4 are strongly influenced by and at some points overlap with Blackburn and Bos (2003),
but in general, go beyond it by giving a wider and more up-to-date perspective on the
matter.

Computational semantics has seen a couple of interesting developments recently. First
of all, the coverage and accuracy of implemented systems is now reaching levels of
sophistication and robustness that make formal methods potentially useful in real-world
applications such as information retrieval, information extraction, spoken dialogue sys-
tems and open-domain question answering (Bos 2008a). Secondly, initial steps have
been taken into evaluating systems claiming to have semantic competence. A case in
point are the benchmarking campaigns for textual inference capabilities (Dagan et al.
2006), or the recently revived machine-reading competitions (Rodrigo et al. 2010).
Thirdly, the use of statistical techniques have entered the field, and are often comple-
mentary in functionality to purely symbolic approaches. But it remains an open question
on how best to combine, say, distributional semantics with compositionality (Bos and
Pulman 2011).

These developments demonstrate how computational semantics has matured in the
panorama formed by computational linguistics and natural language processing (NLP),
in the nearly 40 years since the ground-breaking work on formal semantics of Richard
Montague (1973). Besides introducing elementary issues such as meaning representa-
tion, inference methods and the role of background knowledge, this article is written
with the aforementioned developments in mind, because I believe this is the right time
to combine the insights of traditional methods with those currently emerging in the
field.

First, we introduce computational semantics by discussing (in Section 2) what kinds
of semantic representation are suitable for capturing the meaning of human language.
As we will see, there is no simple answer to this question. It depends to a large extent
what linguistic phenomena you wish to analyse (which might be dependent on a par-
ticular application) and on the level of detail you wish to analyse these phenomena.
We shall take first-order logic as a starting point for illustrating how to analyse the
meaning of natural language with the help of semantic representations. However, we
will also outline the shortcomings of first-order logic and point to various alternatives.
After the discussion of suitable semantic representations, we turn (in Section 3) to the
issue of constructing them from expressions of natural language. We review various
compositional approaches and give an overview of the various types of natural language
ambiguities that one has to take into account. Then, in Section 4, we address the ques-
tion of how can we use the semantic representations of our choice to automate the
process of drawing inferences. We introduce techniques from automated reasoning
(theorem proving and finite model generation) to implement consistency and informa-
tiveness checks. We also briefly present several alternative inference methods:
non-monotonic reasoning, abductive reasoning and reasoning with natural logic. None-
theless, many of the reasoning tasks require additional background knowledge to make
any sensible inferences. In Section 5, we discuss how to incorporate and construct this
background knowledge from raw text, semi-structured data or large-scale lexical
resources. Building semantic interpretation systems without evaluating them doesn’t
make much sense, and in Section 6, we present and discuss recent developments in
evaluating approaches in computational semantics. Finally, in Section 7, we discuss what
we think would be the next big problems that need to be solved in computational
semantics.
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2. Representation Issues

2.1. FIRST-ORDER LANGUAGES

Traditionally, formal semantic analyses of human language typically presuppose formalisms
offering much expressive power. A case in point is higher-order logic augmented with
modalities, as in Montague Grammar (Dowty et al. 1981; Montague 1973). However, in
computational semantics some variant of first-order logic is generally preferred as target
semantic representation capturing the meaning of a sentence or text.

This choice is sensible for several reasons. First, as we shall discuss in Section 4, infer-
ence engines for first-order logic (such as theorem provers and model builders) now offer
levels of performance which make them potentially useful for practical reasoning tasks.
Second, as we will see in this section, first-order logic is able to deal (at least to a good
approximation) with a wide range of linguistic phenomena.

Put differently, first-order logic offers an attractive compromise between the conflicting
demands of expressiveness and inferential effectiveness. It also serves as a good starting
point for moving towards formalisms equipped with default reasoning mechanisms, which
are popular in artificial intelligence, in particular in the area of knowledge representation
and reasoning (Brachman and Levesque 2004). Hence, to make this article self-contained,
we briefly review the ingredients of first-order logic.

2.1.1. Ingredients of First-Order Logic
Every first-order language has a vocabulary, telling us which symbols are used and how
they are used. Suppose we have the following vocabulary:

Constants One-place relations Two-place relations
BARBAZOO EGG FIND

LOLITA SPOONBILL SEARCH

BARBAPAPA TURTLE DROP

DUCK CATCH

LAUGH

Such symbols are often called the non-logical symbols of the language. A one-place rela-
tion symbol is called a symbol of arity 1, a two-place relation symbol has arity 2, and so
on. Sometimes a constant is referred to as a symbol with arity 0.

The remaining ingredients of a first-order language are a collection of variables (x, y, z,
and so on), the boolean connectives (^, �, �, fi ), the quantifiers ($ and "), and punctua-
tion devices to group together symbols (the round brackets plus the comma). The
variables and constants are the terms of the language. Given all this terminology, we
can define the formulas of the language of first-order logic as follows:

1. If R is a symbol of arity n, and s1,…,sn are terms, then R(s1,…,sn) is a formula.
2. If s1 and s2 are terms, then s1¼s2 is a formula.
3. If / and w are formulas, then so are �/, ð/ ^ wÞ, (/ � w) and (/ fi w).
4. If / is a formula, and x is a variable, then both $x/ and "x/ are formulas.
5. Nothing else is a formula.

This is the classic formula syntax for first-order logic1 as we shall use it throughout this
article. But there are many other ways to define first-order languages, and we will see
some examples below.

338 Johan Bos

ª 2011 The Author Language and Linguistics Compass 5/6 (2011): 336–366, 10.1111/j.1749-818x.2011.00284.x
Language and Linguistics Compass ª 2011 Blackwell Publishing Ltd



Consider two examples of English statements and their translations into the first-order
language defined in the previous section, aiming to express the meaning conveyed by
each statement:

Barbazoo found an egg.
9xðx ¼ BARBAZOO ^ 9y(EGG(y) ^ FINDðx,yÞÞÞ

All spoonbills laughed.
"x(SPOONBILL(x) fi LAUGH(x))

The first translation can be paraphrased in English as follows: there exists an entity named
Barbazoo,2 and there exists an entity which is an egg, and the first and second entity are
in the two-place ‘find’ relation. Correspondingly, the second translation can be expressed
in natural language as ‘if something is a spoonbill, then it laughs’.

When paraphrasing these formulas in English, they seem to capture the intended
meaning of the sentences. This is an important step towards our goal of representing
meaning, but what we are really after is a method for formally interpreting these formu-
las. Put differently, given a certain context or situation, when can we say when these
formulas express true or false statements? The truth definition method proposed by
the famous logician Alfred Tarski does exactly this. This approach is known as model-
theoretical interpretation (Tarski 1956).

2.1.2. Semantic Interpretation
The term ‘model’ is used for many different purposes in computational linguistics. What
we mean by model here is an abstract realisation of a context or situation. In set-theoretic
terms, a model M for a first-order language is an ordered pair ÆD,F æ consisting of a
domain D and an interpretation function F. The domain is just a (non-empty) set of enti-
ties. In theory, the domain could contain infinitely many entities, but in practice we usu-
ally work with finite models. The interpretation function maps non-logical symbols to
members of D: a constant is mapped to an entity, a one-place relation symbol is mapped
to a set of entities, a two-place relation symbol is mapped to a set of pairs of entities, and
so on.

A simple example illustrating this machinery is shown in Figure 1. This model
describes a situation with seven entities in its domain. One of these entities is a spoonbill
(d7), another is named Barbazoo (d1), the others are all eggs. Three eggs were found by
Barbazoo in this model. None of the entities in the domain is laughing. It should be clear
that this model describes a situation in which the first of the formulas given above is true,

Fig 1. A simple example model M with a domain of seven entities.
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and the second is false. We say that this model satisfies the first formula, and it doesn’t
satisfy the second.

The definition of satisfaction can be made more precise, and as a matter of fact, is a
crucial link between descriptions (first-order formulas) and situations (models). Formally,
the satisfaction definition specifies a three-place relation between a model M ¼ ÆD,F æ, a
formula /, and a variable assignment g. The variable assignment functions can be seen as
supplying extra contextual information, because it is a function which maps variables
to elements of the domain D. The satisfaction relation, symbolised by ", is defined in
Figure 2 (where iff is short for if and only if ).

There are two notions in the definition in Figure 2 that we haven’t introduced yet:
the function I, and the idea of variants of assignments. So let’s make these more precise.
In the first clause, I

g
FðsÞ is F(c) if the term s is a constant c, and g(x) if s is a variable x.

In the last two clauses, by an x-variant g¢ of an assignment g we simply mean an assign-
ment g¢ such that g¢(y) ¼ g(y) for all variables y „ x. Intuitively, variant assignments allow
us to pick new values for the variable bound by the quantifier (here x).

Now that we have a clear definition for satisfaction, we are able to define some funda-
mental inferential concepts such as consistency, contradiction, informativeness and tautology.

• A set of first-order formulas U is said to be consistent if and only if all of them can be
satisfied together in some model with respect to the same variable assignment. That is,
U is consistent if it describes a ‘realisable’ situation, in other words, a situation free of
contradictions.

• A set of first-order formulas U is said to be inconsistent if and only if all of them
cannot be satisfied together in a model with respect to the same variable assignment.
That is, it is impossible for U to describe a ‘realisable’ situation.

• A set of first-order formulas U is informative if and only if it is not satisfied in all
models. That is, U is informative if what it describes rules out some situations.

• A set of first-order formulas U is tautological if and only if it is satisfied in all models.
That is, U describes a statement that is necessarily true. Using linguistic terminology,
U is analytic, as it cannot but describe a true situation.

Note that these inferential notions aren’t mutually exclusive. For instance, a consistent
formula (or set of formulas) can be a tautology or be informative, and any inconsistent
formula (set of formulas) is also informative. Figure 3 visualises the relationships between
these characterisations of inference notions, and also includes the linguistic terminology
(Matthews 1997) for propositions being contradictory, analytic (a proposition that cannot
but be true) or synthetic (a proposition whose truth depends on a specific state of affairs).

Fig 2. The satisfaction definition for First-Order Logic.
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These are theoretical characterisations of inference, and we postpone the discussion
of practical inference till Section 4. We must first consider whether first-order logic
offers us the kind of expressiveness needed to capture the meaning of natural language
expressions. As we shall see, the amount of expressive power and flexibility first-order
logic offers opens the way to fine-grained analyses of many semantic phenomena.
Nonetheless, we shall also see that there are various limitations that first-order
languages face.

2.1.3. First-Order Modelling
In the previous section, we have shown some translations from natural language state-
ments to first-order logic, but arguably we haven’t touched upon complex linguistic phe-
nomena, such as events, tense, modalities, plurals or anaphora. Is first-order logic capable
of describing such semantically rich concepts? The answer is, perhaps surprisingly, to a
great extent, in the affirmative. Let’s have a look at various possibilities, without pretend-
ing to develop a uniform theory of natural language semantics, starting by considering
events.

The philosopher Donald Davidson made an influential proposal with respect to events.
He argued that many verb phrases in natural language give rise to events. But what are
events? According to Davidson, despite events being abstract entities, they can be viewed
simply as ordinary first-order entities (Dowty 1989). As a consequence, finite verbs intro-
duce existentially quantified variables. Following this idea, we could adapt our vocabulary
of non-logical symbols (and, of course, the corresponding models, as they are defined
over the vocabulary), and produce the following translation:

Barbazoo found an egg.
9xðx ¼ BARBAZOO ^ 9y(EGGðyÞ ^ 9eFINDðe,x,yÞÞÞ

Note that we adapted our vocabulary: FIND is now a three-place predicate. This simple
extension opens a wide number of possibilities. It is now straightforward to deal with
sentential and verb phrase modifiers:

On the beach, Barbazoo found an egg.
9zðBEACH (z) ^ 9xðx ¼ BARBAZOO ^ 9y(EGGðyÞ ^ 9eðFINDðe,x,yÞ ^ ONðe,zÞÞÞÞÞ

Moreover, this extension also enables us to introduce some simple temporal elements.
There are various proposals for dealing with tense and aspect – for a good introduction
to modelling tense, see Kamp and Reyle (1993). One way to do this is by introducing
first-order entities ranging over time intervals, and adding a two-place relation to the
vocabulary linking events to time-intervals, an ordering relation on time-intervals, and a
constant NOW denoting the utterance time:

Fig 3. Inferential concepts and linguistic terminology (in italics) explained.

Representation, Inference and Knowledge 341

ª 2011 The Author Language and Linguistics Compass 5/6 (2011): 336–366, 10.1111/j.1749-818x.2011.00284.x
Language and Linguistics Compass ª 2011 Blackwell Publishing Ltd



On the beach, Barbazoo found an egg.
$z(BEACH(z) ^ $x(x¼BARBAZOO ^ $y(EGG(y) ^ $e(FIND(e,x,y) ^ ON(e,z) ^ $t(TIME(t) ^

AT(e,t) ^ BEFORE(t,NOW))))))

Again, one might rethink the ontological aspects of modelling events. A popular approach
is to take the so-called neo-Davidsonian view on events (Parsons 1990), and introduce
thematic roles such as AGENT, PATIENT and THEME. Once more, we can turn this into first-
order logic, by modifying the underlying vocabulary:

On the beach, Barbazoo found an egg.
$z(BEACH(z) ^ $x(x¼BARBAZOO ^ $y(EGG(y) ^ $e(FIND(e) ^ AGENT(e,x) ^ THEME(e,y) ^

ON(e,z) ^ $t(TIME(t) ^ AT(e,t) ^ BEFORE(t,NOW))))))

A different direction of modelling could take modalities (for instance, possibilities and
necessities, or going even further, concepts such as believes, desires and intentions) into
account. Again we illustrate this with an example without diving too deeply into
the matter. Consider the following example (ignoring tense and events for the sake of
simplicity):

Perhaps the egg belongs to a turtle.
$a(WORLD(a) ^ $x(EGG(a,x) ^ $w(WORLD(w) ^ ACCESSIBLE(a,w) ^ $y(TURTLE(w,y) ^

BELONGS-TO(w,x,y)))))

Here we extended our vocabulary with entities called possible worlds, introduced a two-
place accessibility relation between possible worlds, and increased the number of argu-
ments of all relations by one. So TURTLE(w,x) could be paraphrased to mean ‘x being a
turtle in world w’. This idea goes, of course, back to the fundamental notions of modal
logic. It is crucial to see that the extensions of modal logic can be modelled by a first-
order logic.

Yet another direction to take is to model numeric phrases by extending the vocabu-
lary. This requires a treatment of plural noun phrases, which usually are said to denote
sets (Bartsch 1973; Hoeksema 1983; Scha 1984). But one could, for instance, introduce
first-order entities standing for groups (as opposed to singletons), and a two-place
membership relation 2 . This would permit translations like the following:

A spoonbill dropped three eggs.
$x(SPOONBILL(x) ^ 9g(THREE(g) ^
8y(y2g fi EGG(y)) ^ 8y(y2g fi DROP(x,y))))

This way of modelling collections would also require further meaning postulates defining
the concepts of THREE, and stipulating that spoonbills and eggs are singletons, and that
singletons are distinct from groups. This can be done with the following first-order
formulas:

"x(THREE(x) fi GROUP(x)) "x(SPOONBILL(x) fi SINGLETON(x))
"x(EGG(x) fi SINGLETON(x)) "x(SINGLETON(x) fi �GROUP(x))
"g(THREE(g) fi $x(x2g ^

$y(�y¼x ^ y2g ^
$z(�z¼x ^ �z¼y ^ z2g))))

The idea of representing groups as first-order objects goes back to work of Link (1983)
and can also be found in description logics (Franconi 1993). One should of course con-
sider the repercussions resulting from extending the ontological structure of the first-order
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models associated with large groups – associating a sentence such as ‘The Irish band U2
made it a night to remember for 60,000 fans’ with a first-order model comprising thou-
sands of different entities, one for each U2 fan, is not only impractical, but probably also
far from psychological reality. As a matter of fact, efficient reasoning with plural entities
is still an open issue in computational semantics (Chaves 2007).

Finally, we draw our attention to modelling anaphoric expressions, and briefly intro-
duce Discourse Representation Theory, DRT (van Eijck and Kamp 1997; Kamp and
Reyle 1993). In DRT, the meaning of natural language sentences and short texts are
modelled in a Discourse Representation Structure (DRS in short). A DRS can play both
the role of semantic content and the role of discourse context. The content gives us the
precise model-theoretic meaning of the text, and the context it sets up serves for estab-
lishing anaphoric links between pronouns and their antecedents.

Essentially, a DRS is a first-order representation, but it doesn’t have explicit quantifiers
to bind variables3 nor explicit conjunction operators. Instead, a DRS is a structure con-
taining of two parts: a set of discourse referents and a set of conditions. Let’s have a look at a
concrete example by considering the following small text spanning two sentences, anno-
tated with a DRS after interpreting the first sentence and the modified DRS after inter-
pretation of the entire text:

x y e . . .

x=BARBAZOO

EGG(y)

FIND(e)

AGENT(e,x)

THEME(e,y)

···

x y e z u e′ . . .

x=BARBAZOO

EGG(y)

FIND(e)

AGENT(e,x)

THEME(e,y)

SPOONBILL(z)

DROP(e′)
AGENT(e′,z)
THEME(e′,u)

u=y

···

The spoonbill dropped it.Barbazoo found an egg.

As this example illustrates, a DRS gets updated after each new sentence. Here the
pronoun it introduces a discourse referent u, which is linked by the equality condition to
the discourse referent of the egg, y, introduced in the DRS by the first sentence.

It is important to realise that the core of the DRS language is not more expressive than
ordinary first-order logic, and the two formalisms can be freely inter-translated (van Eijck
and Kamp 1997; Muskens 1996). In the language of DRSs, logical conjunction and the
type of quantification is implicit, and from a practical point of view, this is just a very
convenient way to model anaphoric pronouns. Another case in point where DRSs play
an essential role is van der Sandt’s theory of presupposition projection (van der Sandt
1992). There are, nevertheless, several extensions of the DRS language that go beyond
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the first-order fragment, and the reader is referred to, for instance, Kamp and Reyle
(1993) for generalised quantifiers and Asher (1993) for discourse relations.

2.2. LIMITATIONS OF FIRST-ORDER LANGUAGES

We have seen that first-order logic offers expressive power of a degree high enough to
capture many aspects of the meaning of human language. We have also seen that it helps
to be flexible about the kinds of entities we include in our models. Put differently, first-
order approaches go hand-in-hand with rich ontologies. Fine – but are there limitations
to this style of first-order modelling? Yes. When we introduce new entities we have to
introduce constraints governing how they behave (we called them meaning postulates
above, and in the next section we shall consider them as axioms, i.e. part of the back-
ground knowledge). For example, we might want to constrain the accessibility relation
on possible worlds to be reflexive, or constrain the precedence relation on time intervals
to be transitive, or insist that groups must have at least two different ordinary individuals
as members.

When (as in these examples) the required constraints can be stated in first-order logic,
nothing more needs to be said. However if some postulates can’t be written in this way,
then our first-order modelling is only an approximation. Examples belonging to these
class are generic statements: sentences that make a general claim, but are likely to have
exceptions (Pelletier and Asher 1997). Statements such as ‘cars have four wheels’, ‘a dog
has a tail’ and ‘birds fly’ are called generics. They are usually true, but not always (there
are cars with only three wheels, some breeds of dog are tailless and cassowaries are birds
unable to fly). First-order logic cannot adequately describe such statements, because it
doesn’t support any form of non-monotonic reasoning (see Section 4.3.1).

Other examples that go beyond first-order logic are proportional and branching quan-
tifiers. Consider for instance a proportional quantifier such as most. Its exact meaning isn’t
capturable by the mechanisms of first-order logic (just try to describe the meaning of a
sentence such as most eggs hatched using the quantifiers " or $, and you get the idea), as
has been proven by Barwise and Cooper (1981). In addition, Hintikka (1973) claimed
that certain English sentences with multiple determiners require branching (rather than
linear) quantification. Some of these resulting branching quantifiers can be represented in
first-order logic by duplicating some of the logical structure, but others require the
expressive power of a second-order logic (Hoeksema 1983; Robaldo 2007; Scha 1984;
Sher 1990).

2.3. WORKING WITH FRAGMENTS OF FIRST-ORDER LOGIC

After stating that first-order languages lack descriptive power for dealing with certain lin-
guistic phenomena, it comes perhaps as a surprise that several approaches work with
impoverished fragments of first-order logic for modelling natural language meaning. Such
fragments have less expressive power than fully-fledged first-order logic, but have much
better computational properties (they are usually decidable logics, in contrast to first-order
logic, which isn’t), which explains why they are popular. Pratt-Hartmann (2003) explores
theoretical work on fragments of first-order logic for natural language interfaces, and
Pratt-Hartmann (2004) defines various fragments of English and their logical complexity.

A further example in this tradition are description logics such as ALE, ALC, SHIQ and
OWL, which are now extremely popular in Semantic Web applications (Baader et al.
2002). In description logics, several specialised inference tasks play a role such as instance
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checking (checking whether a particular entity belongs to a certain concept), relation
checking (finding out whether two entities stand in a certain relation), subsumption
checking (proving whether a concept is a subset of another concept) or general consis-
tency checking. For an introduction of description logics applied to NLP, see Franconi
(2002); for an application to dialogue, see Ludwig et al. (2000); for a natural language
interface to an adventure game, see Koller et al. (2004). Most description logics are
decidable fragments of first-order logic – some offer facilities such as counting that first-
order logic doesn’t have built-in.

How high is the price we pay when we trade expressive power for inferential effi-
ciency? As far as we know, very little theoretical work has been carried out to answer this
question in detail, with the exception of Pratt-Hartmann’s. This is surprising, even more
so since description logics such as OWL seem to emerge as standards for the formal tools
applied to the semantic web. All we can say is that these restricted formal languages will
make a proper analysis of various natural language phenomena, including negation, quan-
tifer scope, and anaphora, a difficult task. The niche for decidable logics in the landscape
of computational linguistics seems to be restricted to controlled natural languages.

3. Constructing Semantic Representations

Once we have fixed on a representation formalism (first-order logic, for example, as we
do in this article) and a vocabulary, how do we write programs which take human lan-
guage sentences as input and return semantic representations as output? A common
approach is to view this process as one presupposing a syntactic analysis of a sentence
whose meaning has to be computed, and assumes that each lexical item contributes to
the meaning of the entire sentence. The syntactic analysis, usually producing some kind
of tree structure, tells us what kind of lexical items we have, and how they are combined
into larger expressions.

One of the key challenges in the syntax–semantics interface is to keep track of variable
bindings during the process of meaning composition. This is a technical issue for which
various methods have been proposed. Another major challenge is dealing with ambigui-
ties eminent in natural language. This is an issue that manifests itself through various lin-
guistic phenomena, but in order to make it more comprehensible can be divided into
lexical, structural and contextual ambiguity. We shall have a look at both of these issues
without presenting the problems in detail, but instead provide pointers to good starting
points in the literature.

3.1. SEMANTIC COMPOSITION AND VARIABLE BINDINGS

The common strategy of producing meaning representations for natural language
expressions underlies a so-called compositional analysis. This strategy assumes that the
meaning of a compound expression is computed from the meanings of its parts. The
smallest parts carrying meaning are usually the lexical items (i.e. the words). Given a
first-order target representation, providing a meaning representation for a lexical item
presents a challenge because for a word in isolation it is hard to specify what the vari-
ables of its subcategorised arguments are (if it has any at all). Hence, machinery is
needed to perform variable book-keeping operations. This process is further compli-
cated by linguistic phenomena that require renaming of variables in the process of
composition, of which coordination and ellipsis are notorious examples. By and large,
there are three different approaches tackling this issue: methods based on unification,
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methods based on the k-calculus and methods using linear logic. Let’s briefly review
them.

The unification-based algorithms are often integrated inside the syntactic formalism to
perform the book-keeping of variables, are extremely efficient, but need on the other hand
careful consideration to avoid unwanted variable clashes caused by copying or renaming
variables (Blackburn and Bos 2005; Moore 1986). A good example of the unification-based
approach is found in the minimal recursion semantics (MRS) which is embedded in the
Head-driven Phrase Structure Grammar (HPSG) framework (Copestake et al. 2005).

The approaches based on the k-calculus and type theory (Church 1940) are less effi-
cient than unification-based methods, but come with a built-in approach of renaming
variables whenever necessary, and can also be more easily viewed as independent of the
underlying syntactic structure. Montague Grammar is staged within this method (Dowty
et al. 1981; Gamut 1991). Computational implementations of the k-calculus can be
found, for instance, in Blackburn and Bos (2005) and Bos (2008c).

Another interesting approach is to use linear logic as glue language for assembling
meaning representations. Linear logic is a ‘resource-sensitive’ version of classical logic,
which means that once you’ve used a formula to draw a conclusion, you can’t use it
again. This feature enables it to be used to implement meaning composition in a natural
way. Frameworks following this paradigm exist for Lexical Functional Grammar (LFG;
van Genabith et al. 1999) and HPSG (Asudeh and Crouch 2002). Assembling meanings
with linear logic doesn’t presuppose a tree structure of the synactic analysis while methods
based on the k-calculus do, and is therefore convenient for working with attribute-value
structures found in LFG and HPSG.

3.2. PROCESSING AMBIGUITIES

Human language is full of vague and ambiguous expressions that logical languages, such
as first-order logic, don’t have. As a consequence, computing semantic representations for
fragments of natural language means dealing with these ambiguities in one way or
another. As the focus of this article is on inferential aspects of computational semantics,
we won’t present any of the technologies proposed for ambiguity processing in full depth.
Instead we shall only give a general overview of current directions and provide pointers
to relevant work. First of all, we can distinguish between lexical, structural and contextual
ambiguity.

With lexical ambiguity, we refer to the possible meanings that can be assigned to a
simple word – the word senses. Word sense disambiguation (WSD) is an active field
within NLP. It is a difficult problem, because the existing standard inventories for word
senses employed in WSD tasks, such as WordNet (Fellbaum 1998), are fine-grained,
making it hard to develop algorithms that outperform baseline systems that assign the
most frequent sense to words. Following Navigli (2009), WSD systems are usually classi-
fied as supervised (relying on sense-annotated training corpus) or unsupervised systems
(do not require a sense-tagged corpus, instead using resources like dictionaries or thesauri
to select senses). Approaches that fall in the first class reach higher accuracy, but are less
promising for large-scale use because complete annotation of senses for large corpora do
not exist. WSD is an important task for a natural language understanding system, because
accurate sense identification is a prerequisite for selecting the right kind of background
knowledge.

Other areas of research within computational lexical semantics aim to explain and pre-
dict creative usages of words. To these belong metonymy (using an expression to refer to
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an associated concept) and metaphor (conveying an analogy between two concepts). For
example, the standard referent of the term ‘Wall Street’ is a street in New York City;
however, in its metonymical use it refers to the American financial and banking industry,
which is located at Wall Street. This example is an instance of regular polysemy (Markert
and Nissim 2009; Pustejovsky 1995). As a second example, consider the metaphorical use
of the noun ‘eye’ in the expression ‘eye of a needle’, which doesn’t refer to an organ of
sight (the first sense of ‘eye’ in WordNet), but rather to a small hole (incidentally, the
fifth sense of ‘eye’ in WordNet). A recent survey of approaches to metaphors can be
found in Shutova (2010).

Lexical semantics is also concerned with the problem of thematic role labelling (see the
discussion on neo-Davidsonian event semantics in Section 2.1.3), and thematic roles alone
are often seen as a good basis for a shallow semantic representation of texts (Erk and Pado
2006). The existence of large-scale inventories of thematic roles, accompanied with rea-
sonably large annotated texts, of which the most well-known are FrameNet (Baker et al.
1998), VerbNet VerbNet (Kipper et al. 2008) and PropBank (Palmer et al. 2005), has
turned thematic role labelling a popular area of research in computational linguistics.

With structural ambiguity, we refer to the various ways the recursive structure of a
semantic representation can be constructed. A natural language expression that contains
more than one scope-bearing element (quantifying noun phrases, modal adverbs, negation
particles, etc.) can give rise to a scope ambiguity. Thus, in the example below, there are
two possible interpretations: one where a huge flag is hanging in front of all windows, or
one where there are as many flags as windows, one hanging in front of each window.

A flag was hanging in front of every window.
$x(FLAG(x) ^ "y(WINDOW(y) fi HANGING-IN-FRONT-OF(x,y)))
"y(WINDOW(y) fi $x(FLAG(y) ^ HANGING-IN-FRONT-OF(x,y)))

It has been widely recognised that such scope ambiguities are genuine: firstly, the order
in which the scope-bearing operators appear in a sentence doesn’t always reflect the order
in the preferred interpretation; and secondly, there isn’t always one general reading sub-
suming other more specific readings (Blackburn and Bos 2005). Several solutions have
been proposed to deal with scope ambiguities at the level of semantic interpretation, of
which storage methods (Cooper 1983; Keller 1988) and constraint-based methods of
semantic underspecification (Bos 1996; Copestake et al. 2005; Egg et al. 1998; Reyle
1993) are the most popular. Recently, several efforts have been undertaken for devising
ways of efficient computing with underspecified semantic representations (Koller and
Thater 2010; Koller et al. 2000).

Another instance of structural ambiguity is caused by the collective and distributive
interpretation that manifests itself when plural objects are predicated by a verb phrase that
can be understood as ranging over groups of individuals. An example of this phenome-
non is shown below, where the first translation demonstrates the distributive reading
(‘three girls were watching a film each’) and the second shows the collective reading
(‘three girls were watching a film together’).

Three girls were watching a film.
$g(GIRL(g) ^ THREE(g) ^ "x(x2g fi $y(FILM(y) ^ WATCH(x,y))))
$g(GIRL(g) ^ THREE(g) ^ $y(FILM(y) ^ WATCH(g,y))))

The distributive/collective distinction is further complicated by the aforementioned scope
ambiguities: in the above examples, there are also readings in which there is a specific

Representation, Inference and Knowledge 347

ª 2011 The Author Language and Linguistics Compass 5/6 (2011): 336–366, 10.1111/j.1749-818x.2011.00284.x
Language and Linguistics Compass ª 2011 Blackwell Publishing Ltd



film the girls were watching (the wide-scope reading for the noun phrase a film), both
for the distributive and the collective interpretation. And this isn’t the end of the story of
structural ambiguities, as certain sentences with several numeric noun phrases give rise to
cumulative quantification. Scha (1984) presents the example 600 Dutch firms use 5,000
American computers, which can be read as the total number of Dutch firms that use
an American computer is 600, and the total number of American computers used by
a Dutch firm is 5,000. This interpretation requires branching quantification (see
Section 2.2).

Finally, with contextual ambiguity, we mean those ambiguities that aren’t caused
by different internal structure nor by lexical choice, but by the context (linguistic or
non-linguistic) in which they appear. Anaphoric pronouns are a first example of such
ambiguity, as discussed before in Section 2.1.3. The task of anaphora resolution aims to
find the correct antecedents for anaphoric expressions (including anaphoric presupposi-
tions, such as definite descriptions; Bos 2003; van der Sandt 1992), for which both the
traditional rule-based approaches as well as the more recently advocated statistical
approaches offer only approximate solutions (Carter 1987; Mitkov 2002; Soon et al.
2001). It should also be said that hitherto most practical approaches to anaphora resolu-
tion focus on singular pronouns (e.g. he, she, it), rather than plural pronouns and pro-
nouns referring to abstract entities. Nonetheless, current efforts of creating large-scale
annotated resources for anaphora, of which the crowdsourcing method presented in
Chamberlain et al. (2008) is a key example, will certainly boost performance of machine
learning approaches in the near future.

An additional but related problem is that of coreference resolution, which aims at
grouping together noun phrases sharing the same referent, in particular proper names of
persons and organisations. The resolution of deixis is concerned with pronouns denoting
the speaker and addressee (e.g. I, we, you), temporal expressions (e.g. yesterday, last week),
spatial expressions (e.g. here, there) and the task of proper name anchoring, for instance
that of geographical names (Leidner 2008), can also be viewed as an instance of this class
of ambiguities. Finally, elliptical phrases, for instance verb phrase ellipsis in English (Dal-
rymple et al. 1991; Kehler 1993) cause contextual ambiguities, for which so far only few
purely practical approaches exist (Hardt 1997; Nielsen 2005).

3.3. WIDE-COVERAGE APPROACHES

The last years have seen the development of wide-coverage, open-domain systems for
producing semantic representations for texts. Interestingly, some of them are built on top
of various detailed linguistic theories, including:

• HPSG (Copestake and Flickinger 2000);
• LFG (Butt et al. 2002);
• CCG, Combinatory Categorial Grammar (Curran et al. 2007).

There are various implementations based on HPSG. First of all, the LinGO English
Resource Grammar (ERG) is a wide-coverage grammar of English based on HPSG
(Copestake and Flickinger 2000). The ERG produces underspecified semantic representa-
tions, MRS, in which relative scopings of quantifying noun phrases and modifiers remain
unresolved (Copestake et al. 2005). Secondly, Sato et al. (2006) translate output of a
robust HPSG parser into semantic representations of Typed Dynamic Logic, achieving a
reported coverage of approximately 90% for texts of the Penn Treebank corpus. Yet
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another HPSG-based implementations is the ENJU parser, which comes with a compo-
nent that produces formulas of predicate logic (Butler et al. 2010).

The system described in Bos (2008c)) produces completely resolved DRSs on the out-
put of a robust parser for CCG (Curran et al. 2007). Crouch and Holloway King (2006)
present a rewriting system for a broad-coverage LFG grammar, that produces semantic
representations from the functional structures obtained from parsing newswire text.
Finally, Moldovan et al. (2007) construct a flat first-order style semantics, ‘Logic Forms’,
on top of a dependency grammar.

These implementations differ substantially from each other, not just with respect to
the underlying theory of syntax and parsing approach, but also on the semantic for-
malism and the manner in which they are constructed. Some of the systems presented
below are based on hand-crafted grammars, carefully developed, often over many
years (e.g. LFG and HPSG); others are based on robust, statistically driven parsers
developed on the basis of the Penn Treebank (Marcus et al. 1993). Some of them
produce underspecified semantic representations (i.e. representations in which some
ambiguities discussed in the previous section aren’t resolved); others fully resolved
semantic representations that can be directly interpreted. These differences don’t make
it easy to compare the various systems.

4. Inference Issues

4.1. INFERENCE IN COMPUTATIONAL SEMANTICS

Inference can play many roles in computational semantics. It can be used in disambiguation
to filter out contradictory interpretations or to rank the likelihood of different interpreta-
tions. It can be used in generation to test candidate sentences for suitability in a given situa-
tion. It can be used in summarisation to check whether a summary contains no new
information. It can be used in question answering to find out whether a response is a proper
answer to a question. And there are many other applications for which inference is useful.

Many forms of inference are relevant to computational semantics. But, given that we
have been advocating first-order logic as a good basis for semantic representation lan-
guage, we will first discuss inference techniques for first-order logic, by focusing on the
use of theorem provers and model builders (Blackburn and Bos 2005). However, first-
order logic is known to be undecidable – it is impossible to develop an algorithm that
can tell us whether an arbitrary set of first-order formulas is consistent or not, and it is
not capable to make any default inferences. It is therefore good to investigate and explore
alternatives, and we will discuss default reasoning, abductive reasoning, and reasoning
directly on syntactic surface representations.

4.2. FIRST-ORDER LOGIC AND INFERENCE

A slight practical concern might be the fact that first-order logic is known to be undecid-
able. What does this mean? This means that it is not possible to design a theorem prover
which, when given an arbitrary formula as input, is guaranteed to halt in finitely many
steps and correctly classify the input as consistent or not (or for that matter, as informative
or not). Despite this, current theorem provers (and to a lesser extent, model builders) are
reasonably efficient in practice, reaching levels of performance unheard of a decade ago
(Pelletier et al. 2002; Sutcliffe and Suttner 2006; Voronkov 2003). Moreover, inference
involving equality was difficult to handle efficiently until recently, but current resolution
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provers even cope with formulas containing the equality symbol (Riazanov and
Voronkov 2002). As semantic representations for human language typically make heavy
use of equality (as we have seen in the previous sections), this is an important develop-
ment for computational semantics.

4.2.1. Theorem Proving
Recall that we gave model-theoretic definitions of consistency and informativeness in
Section 2. The branch of logic called proof theory has developed many ways of reformulat-
ing these concepts as symbol manipulation tasks. Proof theory considers the generation of
formulas (theorems) from other formulas (axioms) using a set of inference rules; the best-
known inference rule is probably modus ponens (from {p fi q,p} derive q). Modern
automated theorem provers use vastly more sophisticated strategies than this, but in
essence they are tools that use symbol manipulation techniques to deal with the tasks of
checking for consistency and informativeness.

So how exactly can we use theorem proving for these tasks? Suppose we want to
know whether u is consistent. If we give �u to a theorem prover, and it finds a proof
for this input (i.e. establishes that �u is a validity), then we know that u is not consistent.
(Why? As it proved �u, this must be true in all models, hence u is false in all models,
that is, inconsistent.) On the other hand, if no proof is found (given the resources avail-
able), nothing can be said about whether u is consistent or not. If we want to know
whether u is consistent with respect to some background knowledge axioms, we can
proceed as follows. Let W be the conjunction of a (finite) set of first-order formulas.
Then we ask the theorem prover to test the validity of :ðW ^ uÞ, or equivalently,
W fi �u.

Now suppose we want to know whether u is informative. If we give u to a theorem
prover, and the theorem prover finds a proof for this input, then we know that u is not
informative. (Why? since u is a validity, u is true in all models, hence uninformative.)
And once again, if no proof is found, all bets are off. Analogously, if we want to know
whether u is informative with respect to some background knowledge W, we ask the
theorem prover to test the validity of :ðW ^ :uÞ, or equivalently, W fi u. Phrased dif-
ferently, this is the way to find out whether u is entailed by W. Summing up: theorem
provers offer us a negative handle on the problem of determining consistency, and on the
problem of determining informativeness.

Some examples of state-of-the-art theorem provers are Vampire (Riazanov and
Voronkov 2002), Spass (Weidenbach et al. 1999), E-KRHyper (Baumgartner et al.
2007) and Otter (McCune and Padmanabhan 1996). Examples of computational
semantic applications that include first-order theorem provers are the implementation
of the (negative parts of the) consistency and informativeness checks required by Van
der Sandt’s presupposition resolution algorithm (Blackburn et al. 2001), question inter-
pretation in spoken dialogue systems (Bos and Gabsdil 2000), open-domain question
answering (Furbach et al. 2010) and recognising textual entailment (RTE; Akhmatova
and Mollá 2006; Bos and Markert 2005). Such practical usages of theorem proving
usually have a fall-back strategy in place, particularly in open-domain applications
where finding proofs to a large extent depends on the background knowledge avail-
able. Furbach et al. (2010), in their application to question answering, use an algo-
rithm that invokes relaxation of the query if no proof of the full query is found. In
their system for RTE, Bos and Markert (2005) complement theorem proving with
model building as an alternative way of drawing logical inferences. The latter infer-
ence method is discussed in the next section.
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4.2.2. Finite Model Generation
Theorem provers are not the only inference tool available for first-order logic. Another
inference technique relevant to computational semantics is finite model generation. (The
models that we talk about here are those introduced in Section 2.) Model builders, or
model generators, take a first-order formula as input and attempt to build a (finite) satisfy-
ing model for it. Thus model builders offer positive handles on both the consistency
problem (if one successfully builds a model for u, then u must be consistent) and the
informativeness problem (if one successfully builds a model for �u, then u must be
informative).

Hence, model building is complementary to theorem proving (which offers, as we
have seen, negative handles on both problems), and indeed they are often used in parallel
(Blackburn and Bos 2005; Bos and Markert 2005; McCune 1998). This is a good point
to briefly return to the situation of undecidability of first-order logic. A theorem prover
will say ‘no’ if an input formula is inconsistent (uninformative), at least, in theory – in
practice it might run out of time or memory. A model builder will, however, not always
find a model if the input formula is consistent. For this reason, first-order logic is often
said to be semi-decidable: a theorem prover will prove every theorem, but doesn’t always
give an answer if the input formula isn’t a theorem. Determining whether there is a finite
model (for a certain model size n), however, is decidable. Therefore, to cope with the
undecidability problem in practice, it’s best to use a model builder in an attempt to find a
model up to some pre-specified domain size n, while at the same time using a theorem
prover to try to determine inconsistency of the input.

Compared to theorem proving, finite model building for first-order logic is a relatively
new branch of automated reasoning, and it is fair to say that model builders haven’t
reached the performance levels demonstrated by theorem provers. Nonetheless, the per-
formance of model builders have improved in the last few years, and two good examples
of powerful model builders for first-order logic are Mace (McCune 1998) and Paradox
(Claessen and Sörensson 2003). Such ‘general purpose’ model generators can be useful in
linguistic applications, as long as the domains of the models are reasonably small.4

As said before, the most obvious use for model builders is to use them in tandem with
theorem provers to perform consistency and informativeness checks, but this does not
exhaust their potential usefulness. It is also interesting to use model builders to construct
models of ongoing discourses (linguists may like to view such models as an intermediate
level of representation). Because models are essentially non-recursive, flat structures, they
form a level of representation from which it is relatively easy to extract content. More-
over, if a model builder finds a model for a description it will typically find (one of) the
smallest models possible; that is, it will find a minimal model. This is because the algo-
rithms employed by most model builders work by iteration: they start by attempting to
generate a model for size n, and if that fails, attempt to do it for n + 1, and so on.

Ramsay and Seville (2000) seem to have been one of the first to use model builders for
the task of text understanding. The approach has been further explored for natural language
disambiguation by Gardent and Konrad (2000), Gardent and Webber (2001), and Cimiano
(2003). The most obvious computational semantic applications for model builders is to
carry out positive tests for consistency and informativeness for such applications as Van der
Sandt’s presupposition resolution algorithm (Blackburn et al. 2001), and question answering
(Bos and Gabsdil 2000). The CURT system includes a model builder (Blackburn and Bos
2005), as does the spoken dialogue interface to a mobile robot of Bos and Oka (2007) to
link semantic interpretations to the situations in the real world. Model building is also part
of the Nutcracker system for RTE (Balduccini et al. 2008; Bos and Markert 2005).
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4.3. ALTERNATIVE INFERENCE METHODS

So far, we have only considered the reasoning methods that come with classical logic.
Yet, in many cases, these rigid ways of reasoning (such as modus ponens that we men-
tioned) isn’t always suitable for the purposes of natural language understanding.

4.3.1. Non-Monotonic Reasoning
First-order reasoning, such as consistency and informativeness checking, is not always
suitable for the purposes of natural language understanding, especially when it comes to
interpreting background knowledge rules. Many statements that one would like to have
in its background knowledge are generic statements, that is, statements that are usually
true, but not always. For instance, if we translate the statement every dog has a tail into
first-order logic as

"x(DOG(x) fi $y(TAIL(y)^HAVE(x,y)))

then we did a fine job in translating it to logic, but we are missing the point that this is a
generalisation, for some breeds of dog are tailless.

Default logics form an extension of first-order logic by introducing defeasible inference
rules to overcome the problems introduced by generics (Reiter 1980). In default logics,
the generic statement would be interpreted as ‘typically, a dog has a tail’, and translated
in an inference rule roughly of the form ‘for every dog, if no contradictions arise if we
assume it has a tail, we can conclude it has a tail’.

One of the paradigms in default reasoning applied to knowledge representation and
natural language applications is Answer Set Programming (ASP; Gelfond 2008). ASP is an
extended form of logic programming that combines the default negation with classical
negation to model defaults. Applications of ASP for natural language analysis can be
found in Lierler and Görz (2006) and Baral et al. (2008).

4.3.2. Abductive Reasoning
Some of the mechanisms of default logics have also points of contact with abductive reason-
ing. Abductive reasoning implements a kind of ‘backward modus ponens’ – recall that
modus ponens is a rule of deductive reasoning, as presented in Section 4.2.

In a nutshell, abduction works as follows. Say we have in our background knowledge
the rules that all birds fly, and that all birds are animals. Now assume we see a flying
animal: what kind of animal is it likely to be? Well, we can conclude, via abductive rea-
soning, that it probably is a bird. Thus, abduction is a way of giving explanations. In
many cases, however, there could be more than one explanation for an observed fact. If
our background knowledge also contains axioms for bats, then abductive reading could
also conclude that the flying animal is a bat. Picking out the best explanation is also part
of the abductive reasoning process, for which various criteria exist. Moreover, explana-
tions need to be consistent with the observed facts and background knowledge; if
we see that the flying animal has feathers, ‘bat’ isn’t a good answer for identifying the
animal.

Applications of abductive reasoning in NLP can be found in Hobbs et al. (1990), who
argues that many linguistic phenomena require abduction, such as predicting coherence
relations and bridging references of definite descriptions. Hobbs et al. (1990) weighs the
terms in an abductive proof in order to pick the most likely candidate among all available
alternatives for explaining an observation. An open issue is how to compute these
weights.
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4.3.3. Natural Logic
Natural Logic is a family of inference systems that work directly on the syntactic repre-
sentation of natural language expressions, without resorting to an intermediate translation
to logical formulas. Instead, a Natural Logic system defines an ordering relation on
syntactic trees on the basis of their local entailment properties.

The basic idea of Natural Logic goes all the way back to Aristotle’s syllogisms, and in
more modern times has attracted interest from scholars from generative semantics (Lakoff
1970) and those from formal and computational semantics (Fyodorov et al. 2000; Purdy
1991; Sánchez Valencia 1991; Zamansky et al. 2003). It has also been used to define con-
trolled natural languages (McAllester and Givan 1992; Sukkarieh 2001). Recently, it has
been revived in the context of automatically determining textual entailment (MacCartney
and Manning 2009), see Section 6.2.

Natural Logic offers an interesting alternative to reasoning with first-order logic,
because the problem of mapping syntactic structures to semantic representations doesn’t
exist, and it can model phenomena that go beyond the power of first-order logic, such as
generalised quantifiers. The drawbacks of Natural Logic systems are dealing with context-
sensitive expressions such as pronouns and ellipsis, and applying inferences to larger text
fragments that go beyond single sentences.

5. Knowledge Issues

5.1. THE QUEST FOR BACKGROUND KNOWLEDGE

Most of the natural language inference tasks that we described before require additional
background knowledge. Without it, situations can occur where required inferences are sim-
ply not concluded, or where the generated models are not accurate. The complexity of
background knowledge can range from extremely simple bits of knowledge to compli-
cated sets of rules. For instance, simple background knowledge might state that a woman
is a female person, and that the pronoun he refers to male entities, and that male and
female entities form disjoint sets. More complicated rules might describe physical
laws, such as if X is contained in Y, and Y is contained in Z, then X is also contained in Z.
The issue of computing and using background knowledge is an important one and covers
the following issues:

• How do we incorporate background knowledge into the inference tasks such as
consistency and informativeness checking?

• To what extent can we rely on manually coded background knowledge and how can
we automatically construct background knowledge in appropriate format from natural
language resources?

• How can we limit the amount of required background knowledge in order to reach
appropriate levels of efficiency in practical applications?

Before looking at these three questions in more detail, it is worth pointing out that back-
ground knowledge can come from different sources. As a guiding principle, it is often
useful to distinguish knowledge into three classes (Blackburn and Bos 2005): lexical
knowledge (the meaning of words), world knowledge (general facts about the world,
such as in the CYC project (Lenat 1995)) and situational knowledge (facts that hold in
the current situation, only relevant for systems embedded in practical applications such as
robots). Here we will be mostly concerned with lexical knowledge.
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In some logical frameworks, notably in description logic (Baader et al. 2002), a clear
distinction is made between the background knowledge and the information on which
the inference is about, called T-Box (short for the box containing the theory) and A-Box
(short for the box containing the assertion), respectively. The questions of how to incor-
porate background knowledge is, when working in first-order logic, easy to answer. We
can formulate knowledge as axioms of first-order logic, and supply them to the inference
engines in addition to the inference problem itself. We have already demonstrated how
to do this in Section 4.2.

5.2. COMPUTING BACKGROUND KNOWLEDGE

In this section, we are concerned with computing background knowledge for open-
domain applications. Formulating appropriate lexical background knowledge is a difficult
business even for restricted domains, and doing so for open domains requires the use of
large-scale lexical resources. A good starting point for obtaining lexical knowledge is to
look at electronic dictionaries such as WordNet (Fellbaum 1998) or Wikipedia for large-
scale taxonomic knowledge (Suchanek et al. 2009), or NomLex (Meyers et al. 1998) for
nominalisation patterns. Here we will consider NomLex and WordNet in more detail,
and see how their lexical relations can be systematically translated as background knowl-
edge formulated in first-order logic. Alternatively, one could consider automatically
inducing semantic relations using large corpora. We will illustrate this idea as well.

5.2.1. Nominalisation Patterns
The linguistic phenomenon called nominalisation is basically the process of turning verbal
phrases into nouns. An example illustrating nominalisation is the following, where the
noun eruption is a nominalisation of the verb to erupt. Clearly, these phrases are semanti-
cally related – an expression with a prepositional phrase like ‘the eruption of X’ or a pre-
nominal genitive expression ‘X’s eruption’ entails that ‘X erupted’. More generally
speaking, there is a syntactic relationship between nominalisations and their verbal origins
that can be exploited semantically (admission – to admit, blocking – to block, classifica-
tion – to classify, destruction – to destroy, and so on). We demonstrate how to do so by
analysing the following pair of sentences in first-order logic, using a neo-Davidsonian
way to model events discussed in Section 2.1.3:

The eruption of Mount Etna in 2008 created lava flows.
$x(ERUPTION(x) ^ OF(x,ETNA) ^ IN(x,2008) ^

$y(LAVA-FLOW(y) ^ $e(CREATE(e) ^ AGENT(e,x) ^ THEME(e,y))))

Mount Etna erupted in 2008.
$e(ERUPT(e) ^ THEME(e,ETNA) ^ IN(e,2008))

The first sentence entails the second one. But if we give the first-order translations to a
theorem prover, and ask whether this is indeed the case, the prover obviously won’t find a
proof. Because what is missing is background knowledge that links the nominalisation with
its verbal root. This piece of knowledge could be formulated in first-order logic as follows:

"x"y(ERUPTION(x) ^ OF(x,y) « ERUPT(x) ^ THEME(x,y))

Given that the syntactic relationship between a verb and its nominalisation appears to be
irregular (there are various types of morphological transformations), it is important to
have access to correct nominalisation patterns. The NomLex database contains such
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patterns for a large number of English nominalisations (Meyers et al. 1998). The patterns
cover various nominalisation types and include verbal subcategorisation information of
both the verb and the corresponding nominal form. The patterns are not formulated in
first-order logic, but as syntactic patterns in feature structure notation. Here is a (slightly
simplified) example of a NomLex entry:

(NOM :ORTH "eruption"
:VERB "erupt"
:NOM-TYPE ((VERB-NOM))
:VERB-SUBJ ((N-N-MOD)

(DET-POSS)
(PP :PVAL ("by" "of")))

This is, of course, the entry for eruption, and it contains the verb associated with the
nominalisation, a list of nominal positions where the verbal subject can be found (DET-
POSS, for instance, says that X in ‘X’s eruption’ would play the role of subject for the
verb ‘erupt’). It is clear that NomLex entries can be systematically translated into first-
order axioms such as the one shown above, even though several issues such as disambigu-
ation and thematic role labelling need to be taken into account. As a matter of fact,
NomLex is a fine example of a lexical resource for formulating background knowledge
rules, and it has been used to serve inference tasks in applications such as question
answering (Bos 2006) and RTE (Bar-Haim et al. 2009).

Nevertheless, at this point one might ask why we would construct these axioms as part
of the background knowledge rather than formulating it directly in the lexicon. A good
question, which doesn’t have a straightforward answer. On the one hand, if a nominalisa-
tion such as eruption is already semantically encoded as an event of the type ‘erupt’, deco-
rated with the appropriate thematic roles, then the background knowledge associating the
meaning of the noun with the meaning verb would be obsolete. This is a view that goes
in the direction of frame semantics, and in fact the earlier mentioned FrameNet (Baker
et al. 1998) would assign the same frame to the two different syntactic realisations in the
examples above. On the other hand, one could leave the work at the lexical level simple,
and only include the relevant axioms in the background knowledge when they are actu-
ally needed. Such a strategy will keep the set of supporting axioms as small as possible,
with less work to be done at the lexical level.

5.2.2. Synonyms and Hyponyms
Given a vocabulary of non-logical symbols, we will also need to have background
knowledge that tells us how these symbols are related to each other. Symbols might refer
to the same concept and therefore have the same meaning (say RAPTOR and BIRD-OF-

PREY), they might be disjoint concepts (for instance BUZZARD and KESTREL), or they might
form subclasses of each other (KESTREL is a subclass of FALCON, and FALCON a subclass of
RAPTOR, and so on). This ontological (or taxonomical) information can be derived from
electronic dictionaries such as WordNet (Fellbaum 1998).

WordNet organises words into sets of synonyms, the synsets in WordNet parlance.
One word can be part of more than one synset: the word dog, for instance, is part of the
synsets:

fdog; domestic dog;Canis familiarisg and

fhotdog; dog;wienerwurstg:
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We would then say that the word dog can be mapped to two senses: dog1 (the animal
sense) and dog2 (the food sense). But the real added value of WordNet is that it interlinks
all its synsets by semantic relations. One interesting relation, for our purpose of formulat-
ing background knowledge, is the hyponymy relation: boxer4 and poodle1 are hyponyms of
the dog1 sense, dog1 is a hyponym of mammal1, mammal1 is a hyponym of vertebrate1, and
so on, and dog2 is a hyponym of sausage1. Why is this of interest to us? The hyponymy
relations almost directly translate into background knowledge:

"x(POODLE1(x) fi DOG1(x))
"x(BOXER4(x) fi DOG1(x))
"x(DOG1(x) fi MAMMAL1(x))
"x(MAMMAL1(x) fi VERTEBRATE1(x))

The hyponym relation can give us also information about disjointness. We could stipulate
that two senses with the same hypernym are disjoint. For instance, as boxer4 and poodle1are
both (direct) hyponyms of dog1, we could formulate this in the following background
axiom:

"x(POODLE1(x) fi �BOXER4(x))

The use of WordNet relations is an attractive option for computing background knowl-
edge but nevertheless, it comes at a cost. Most of the common words appear in more
than one synset. In order to select the right synset, we need to pick the correct sense of
the word, an incredibly hard problem. Recall from Section 3.2 that this process is called
WSD, and it’s one of the classic tasks of NLP (Jurafsky and Martin 2000).

A further concern with relying on WordNet is its lexical coverage: it contains almost
all ordinary words, but no terms of specialised domains. However, several hand-crafted
ontologies exist for biological and medical domains, which can serve the same purpose as
WordNet does. For an introduction to ontology and population from text, the reader
is referred to Cimiano (2006). Alternatively, a promising way is to compute hyponym
relations directly from raw texts using pattern matching, an approach that we discuss in
the next section.

5.2.3. Extracting Semantic Relations from Text
Instead of relying on manually crafted lexical resources, one could also calculate lexical
knowledge on the basis of large corpora. An active area of research in computational
linguistics is to derive instances of hyponymy (and other) relations from raw texts. The
most straightforward of way of doing this is with the help of regular expressions, a
method pioneered by Hearst (1992). To find hyponyms of dog, queries like

"dogs such as * and"
"such dogs as * and"

where the * is a wildcard for any word, can be successfully fed into information retrieval
engines and applied to search in large corpora, or even on the world wide web using
ordinary search engines such as Google. In fact, using Google on the above pattern gen-
erates the hyponyms Terriers, collies, Rottweilers and Chihuahuas as first hits, beautifully
demonstrating the usefulness of this technique.

Harvesting hyponym relations from corpora with such methods is an interesting
approach, but often additional measures have to be taken into account to separate the
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wheat from the chaff, because almost any pattern can produce false positives. A nice
example illustrating this problem is using the search pattern above on the sentence ‘Sero-
vars that infect dogs such as grippotyphosa and pomona …’, which would wrongly classi-
fying grippotyphosa as a hyponym of dog! Usually, a statistical test (based on frequency) is
employed in these methods to decide whether an instance found in a corpus is reliable or
not (Pantel and Pennacchiotti 2006; Tjong Kim Sang 2007). Alternatively, one could
explore methods that don’t rely on surface patterns, but instead take advantage of syntac-
tic analyses (using a robust parser) or even semantic representations (using a wide-cover-
age semantic processor) to get rid of noise that would be unavoidably generated by using
simple surface patterns (Tjong Kim Sang and Hofmann 2009).

Besides harvesting hyponyms, the pattern-based approach for finding semantic relations
has also been exploited for meronymy (Girju et al. 2006) and various relations between
verbs (Chklovski and Pantel 2004). One difficulty that the pattern-based approach to
finding semantic relations in raw text faces is that it doesn’t say anything about the senses
of words in the extracted patterns. To stay in the spirit of the example above, we could
also find (mistakenly) hyponyms for the sausage sense of dog. The problem of correctly
identifying the appropriate word sense of each new word added to the taxonomy is
approached by Snow et al. (2006).

Promising, alternative approaches are unsupervised methods for detecting inference
rules, such as paraphrases (Lin and Pantel 2001), synonyms of rare words (Curran 2004)
and analogies (Turney 2006). Algorithms in this paradigm of research are based on the
Distributional Hypothesis of Harris (1954), which simply says that words that occur in the
same contexts, are likely to have a similar meaning.

5.3. SELECTING APPROPRIATE BACKGROUND KNOWLEDGE

The third and final problem related to background knowledge that we discuss here is the
selection of background knowledge. Let’s illustrate this problem by using WordNet as
the main source of lexical knowledge. A naive computational semanticist would neatly
translate all the hyponym relations of WordNet into first-order axioms. However, even
the state-of-the-art theorem provers for first-order logic would be unable to work on
such a large amount of information: there are about 115,000 synsets in WordNet! Obvi-
ously, we should only give the lexical information to the theorem prover that is required
for a proof – but how do we know what constitutes this information?

Perhaps, at first sight, this looks like a trivial problem. Aren’t we interested in perform-
ing inferences for certain expressions of natural language, and can’t we just calculate the
lexical knowledge only for those terms appearing in the expression of our interest? For
instance, to find out whether a sentence is informative with respect to a discourse, why
not calculate hyponym relations only for the nouns appearing in the sentence and dis-
course? A sensible idea, yet the problem is that everything in the world seems to relate,
directly or indirectly, to each other. If we talk about dogs, then since dogs are animals,
do we need to incorporate knowledge about animals? If we introduce knowledge about
animals, do we need to state general facts about animals (for instance that they are living
creatures and they eat and sleep). But if we do that, do we need to supply background
knowledge about eating and sleeping habits?

On the one hand, it seems that just supplying background knowledge for primary
terms of the inference problem is not enough. On the other hand, for practical reasons,
we need to stop at some point generating background knowledge, but where? One
way to deal (partially) with this problem is working with subsets of WordNet (or other
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ontologies) that are computed on the fly depending on the non-logical symbols contained
in the inference problem, as is done by Bos (2005), and taken further by Wotzlaw (2010)
by including concepts from Wikipedia. Here the basic idea of using WordNet as the
backbone for producing lexical knowledge is used, but with a twist: only a portion of
WordNet relevant for a certain natural language expression is used, by computing the
smallest closure of hyponym relations spanning a set of terms. This is, however, just one
step towards approaching the real problem, and the field would benefit from further
methods and techniques tackling this issue.

6. Evaluation in Computational Semantics

The development of broad-coverage, open-domain systems for semantic interpretation,
as discussed in Section 3.3 is an interesting one but also gives rise to a new challenge:
that of measuring the accuracy of the meaning representations they produce. Most of
the systems report their success simply by numbers on coverage: the ratio of sentences
(or texts) for which they are able to produce semantic representations. Such figures,
obviously, only say something about quantity, and nothing about the quality of the sys-
tems’ output.

All of these approaches have in common that they claim to represent natural language
meaning, but due to the use of different theoretical frameworks the level and depth of
semantic analysis show how a high variety in representational detail. This is understandable
but unfortunate, because it makes it harder to compare output and evaluate such systems.

Therefore, a crucial question in the future development of computational semantics is
how we shall go about in evaluating the semantic adequacy of meaning representations,
and the correctness of the automatically drawn natural language inferences. The ‘Glass-
Box’ method, comparing system output with a gold standard, would be effective for
assessing semantic adequacy, but has various drawbacks. Alternatively, one could take
‘Black-Box’ approaches to semantic evaluation. Below we will discuss two such methods:
the task of RTE and the task of textual model checking.

6.1. QUALITY OF SEMANTIC REPRESENTATIONS

An obvious way of assessing the quality of a meaning interpretation component is to
compare the semantic representations that a system produces with a gold standard annota-
tion. After all, that’s what researchers in NLP do when evaluating part-of-speech tagging,
chunking, named entity recognition and syntactic parsing. Allen et al. (2008) introduce
an evaluation metric for semantic representations coded in graph formats. This metric,
defined in terms of precision and recall, is computed on the basis of the maximum score
produced by any node/edge alignment from the gold semantic representation to the one
produced by the system.

Unavoidably, several practical questions emerge. What exactly should such a gold stan-
dard for meaning representations look like? What ingredients should be part of an ade-
quate semantic representation? Should it follow a particular (formal) theory of semantics,
or rather take an independent stance – if that indeed is a possibility? What semantic phe-
nomena should it aim to cover, and in what level of detail should they be analysed? Even
if comparing to a gold standard would be an effective methodology for assessing semantic
adequacy, annotating text with semantic representations is an immense task, with many
choices to make (Bos 2008b). To date no large annotated corpus integrating a wide
inventory of semantic phenomena exist.
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6.2. RECOGNISING TEXTUAL ENTAILMENT

The task of automatically recognising entailment relations for pairs of text was first pro-
posed in the FRACAS project (Cooper et al. 1996), comprising a test suite with about
350 examples, grouped into linguistic and semantic phenomena and presented as a list of
textual premises followed by a yes/no-question and the correct answer (yes, no or don’t
know). As a shared task, RTE became popular when it was organised in the context of
the PASCAL challenges (Bar-Haim et al. 2006; Dagan et al. 2006; Sekine et al. 2007),
even though the suggestion had been made earlier by Monz and de Rijke (2001). The
PASCAL RTE data is similar to the FRACAS test suite examples, but based on real data
(rather than artificially constructed examples), and are not grouped or marked for any
specific semantic phenomenon. The PASCAL data set consists of text-hypothesis pairs,
and are marked as either true (the hypothesis follows from the text) or false (hypothesis
doesn’t follow from the text).

At first sight, the RTE task is an attractive method for evaluating semantics because
it is theory neutral and works on open-domain data. Yet, various issues arise. One
problem with the open domain PASCAL RTE examples is the difficulty of isolating
the semantic interpretation task from the task of acquiring the relevant background
knowledge (Zaenen et al. 2005). In contrast, the FRACAS test suite was deliberately
constructed to limit the amount of additional background knowledge to make the
required inferences.

A second problem is that the RTE task doesn’t assess each component in an tex-
tual entailment system separately. This makes it harder to evaluate the semantic aspects
only. For instance, an RTE system could have a splendid inference system (perhaps
based on first-order logic) but still get a low score when ran on the RTE test
suites because it has a bad performing named entity recogniser, parser or WSD
component.

6.3. TEXTUAL MODEL CHECKING

An alternative black-box evaluation method is to perform the evaluation of a semantic
component by model checking. Simply put, an NLP system is given a sentence (or text)
and a model (a model in the sense as used in Section 2) and is asked whether the sen-
tence is true or false (or unknown) in the given model (Bos 2008b).

Like the RTE task, this method has the advantage that it is reasonably independent
of the semantic representation language, even though it presupposes a common
vocabulary of non-logical symbols and is therefore not completely theory neutral.
The model checking method seems perhaps far away from practical applications, but
in fact can be seen as a more general form of testing natural language query
interfaces to relational databases, as Tang and Mooney (2000) show for a geographical
database.

It remains unclear how hard it is to construct large test suites of natural, open domain
examples. However, it seems that, once there is an initial set of examples of texts and
model pairs, the amount of training data can be rather straightforwardly extended by
inducing (small) variants of the existing models. An additional advantage is that it seems
relatively easy to construct both positive and negative examples, facilitating the creation
of balanced test suites.
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7. Outlook

Looking at the current developments in the field, one can only conclude that it is an
exciting time for computational semantics, not least because of the rise of implementations
of robust wide-coverage systems for semantic interpretation, but also because of ongoing
theoretical work concerning alternative representations and inference methods. These are
often stimulated by interdisciplinary interest outside computational semantics, coming
from the areas of knowledge representation, automated deduction, as well as that of for-
mal semantics. Moreover, recently there have been many practical considerations focusing
on the organisation of evaluation campaigns for testing semantic adequacy.

But let’s shift our attention from now to the future, and concentrate on what the next
big problems to be solved in computational semantics really are. We can’t answer this
question without indulging ourselves in some serious speculation. Nevertheless, we think
they can be summarised by three topics: machine learning, knowledge resources and scal-
ing inference.

7.1. MACHINE LEARNING

Statistical approaches have pushed computational syntax forward in the past 10 years, and
they could have a similar impact on computational semantics. It hasn’t happened yet
mainly because large gold standard annotated corpora, integrating various deep semantic
phenomena rather than focusing on one, aren’t yet available. One could try to create
such corpora by merging existing resources for single semantic phenomena (Pustejovsky
et al. 2005). Alternatively, one could build a large resource from scratch, but given the
enormous effort this requires, it is unclear when a corpus large enough to create high-
performance statistical models will be available, or indeed, if its realisation is feasible at all.

7.2. KNOWLEDGE RESOURCES

Lexical knowledge is scattered over various resources and therefore difficult to integrate
in systems. The problem of selecting appropriate background knowledge is further hin-
dered by the large number of senses attributed to single word forms. Developing an infra-
structure for systematically combining lexical knowledge with general world knowledge,
without falling prey in a web of complexity would certainly benefit computational
semantics. There are various ongoing initiatives on the world wide web trying to achieve
this. Large-scale common sense knowledge bases, such as CYC (Lenat 1995), have been,
somewhat surprisingly, only sporadically used in natural language interpretation systems,
but deserve further exploitation.

7.3. SCALING INFERENCE

There are new developments in areas related to computational semantics that could have
a high impact on the field itself. The recent progress in the area of Answer Set Program-
ming (Gelfond 2008) is largely unexplored territory by computational semanticists, but
offers interesting alternatives to first-order inference. Current trends in first-order theo-
rem proving aim to include built-in theories such as transitive relations, ordering rela-
tions, non-standard quantifiers and arithmetic (Voronkov 2003); this is an interesting
direction as it gives opportunities to scale first-order inference tasks to natural language
phenomena comprising plurals, modalities and tense.
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9700 AS Groningen, Netherlands. E-mail: Johan.Bos@rug.nl

1 We are ignoring function symbols in this article. A first-order language with function symbols allows one to use
structured terms. This can be convenient, but is usually not necessary.
2 This analysis of proper names is, of course, an oversimplification. Names can have complex structure, and can
also exhibit anaphoric behaviour.
3 However, in the extended fragment of DRT of Kamp and Reyle, which goes beyond the expressive power of
first-order logic, so-called duplex conditions are introduced to represent explicit quantifiers.
4 But what is reasonably small? To give an example, for the RTE-3 textual entailment test suite of the PASCAL
shared task (see Section 6.2), the Nutcracker system (Bos and Markert 2005) computed as most frequent domain
size 14 for a T–H pair (with a maximum domain size of 38). The model builders used by Nutcracker (Paradox and
Mace) were able to compute such models in a couple of seconds for roughly 90% of the cases. However, bear in
mind that these are simple models, without treating complex phenomena such as plurals and tense.
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Interpretation of Language, ed. by R. Bäuerle, C. Schwarze, and A. von Stechow, 302–23. Berlin: Mouton.
Ludwig, B., G. Görz, and H. Niemann. 2000. An inference-based approach to the interpretation of discourse.

Journal of Language and Computation 1(2). 261–76.
MacCartney, B., and C. D. Manning. 2009. An extended model of natural logic. Proceedings of the Eight Inter-

national Conference on Computational Semantics, ed. by H. Bunt, V. Petukhova, and S. Wubben, 140–56.
Tilburg: University of Tilburg.

Marcus, M., B. Santorini, and M. Marcinkiewicz. 1993. Building a large annotated corpus of English. The Penn
Treebank. Computational Linguistics 19(2). 313–30.

Markert, K., and M. Nissim. 2009. Data and models for metonymy resolution. Language Resources and Evaluation
43. 123–38.

Matthews, P. H. 1997. The concise Oxford dictionary of linguistics. Oxford: Oxford University Press.
McAllester, D., and R. Givan. 1992. Natural language syntax and first order inference. Artificial Intelligence 56.

1–20.
McCune, W. 1998. Automatic proofs and counterexamples for some ortholattice identities. Information Processing

Letters 65(6). 285–91.
——, and R. Padmanabhan. 1996. Automated deduction in equational logic and cubic curves. No. 1095 in Lecture

Notes in Computer Science (AI subseries). Berlin: Springer-Verlag.
Meyers, A., C. Macleod, R. Yangarber, R. Grishman, L. Barrett, and R. Reeves. 1998. Using nomlex to produce

nominalization patterns for information extraction. Coling-ACL98 workshop Proceedings, The Computational
Treatment of Nominals, 25–32. Montreal, Canada: Association for Computational Linguistics.

Mitkov, R. 2002. Anaphora resolution. London: Longman.
Moldovan, D. I., C. Clark, S. M. Harabagiu, and D. Hodges. 2007. Cogex: a semantically and contextually

enriched logic prover for question answering. Journal of Applied Logic 5(1). 49–69.
Montague, R. 1973. The proper treatment of quantification in ordinary English. Approaches to natural language,

ed. by J. Hintikka, J. Moravcsik, and P. Suppes, 221–42. Dordrecht: Reidel.
Monz, C., and M. de Rijke. 2001. Light-weight entailment checking for computational semantics. Workshop

Proceedings ICoS-3, ed. by P. Blackburn, and M. Kohlhase, 59–72. Siena, Italy.

364 Johan Bos

ª 2011 The Author Language and Linguistics Compass 5/6 (2011): 336–366, 10.1111/j.1749-818x.2011.00284.x
Language and Linguistics Compass ª 2011 Blackwell Publishing Ltd



Moore, R. C. 1986. Problems in logical form. Natural language processing, ed. by B. J. Grosz, K. Sparck Jones,
and B. L. Webber, 285–92. Los Altos, CA: Kaufmann.

Muskens, R. 1996. Combining montague semantics and discourse representation. Linguistics and Philosophy 19.
143–86.

Navigli, R. 2009. Word sense disambiguation: a survey. ACM Computing Surveys 41(2). 1–69.
Nielsen, L. A. 2005. A corpus-based study of verb phrase ellipsis identification and resolution. London: King’s

College Ph.D. thesis.
Palmer, M., P. Kingsbury, and D. Gildea. 2005. The proposition bank: an annotated corpus of semantic roles.

Computational Linguistics 31(1). 71–106.
Pantel, P., and M. Pennacchiotti. 2006. Espresso: Leveraging generic patterns for automatically harvesting semantic

relations. Proceedings of the 21st International Conference on Computational Linguistics and the 44th annual
meeting of the Association for Computational Linguistics, ed. by N. Calzolari, C. Cardie and P. Isabelle, 113–20.
Morristown, NJ: Association for Computational Linguistics.

Parsons, T. 1990. Events in the semantics of English: a study in subatomic semantics. Cambridge, MA: The MIT
Press.

Pelletier, F., G. Sutcliffe, and C. Suttner. 2002. The development of CASC. AI Communications 15(2–3). 79–90.
Pelletier, F. J., and N. Asher. 1997. Generics and defaults. Handbook of logic and language, Ch. 20. J. Van

Benthem, and A. Ter Meulen, 1125–77. Amsterdam: Elsevier, MIT.
Pratt-Hartmann, I. 2003. A two-variable fragment of english. Journal of Logic, Language and Information 12(1).

13–45.
——. 2004. Fragments of language. Journal of Logic, Language and Information 13(2). 207–23.
Purdy, W. C. 1991. A logic for natural language. Notre Dame Journal of Formal Logic 32(3). 409–25.
Pustejovsky, J. 1995. The generative Lexicon. Cambridge, MA: The MIT Press.
——, A. Meyers, M. Palmer, and M. Poesio. 2005. Merging PropBank, NomBank, TimeBank, Penn Discourse

Treebank and Coreference. CorpusAnno ’05: Proceedings of the Workshop on Frontiers in Corpus Annotations
II, 5–12. Ann Arbor, MI: Association for Computational Linguistics.

Ramsay, A., and H. Seville. 2000. Models and discourse models. Language and Computation 1(2). 167–81.
Reiter, R. 1980. A logic for default reasoning. Artificial Intelligence 13(1–2). 81–132.
Reyle, U. 1993. Dealing with ambiguities by underspecification: construction, representation and deduction. Jour-

nal of Semantics 10. 123–79.
Riazanov, A., and A. Voronkov. 2002. The design and implementation of vampire. AI Communications 15(2–3).

91–110.
Robaldo, L. 2007. Dependency tree semantics. University of Turin, Ph.D. thesis.
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