When logical inference helps determining textual entailment
(and when it doesn’t)

Johan Bos
Dipartimento di Informatica
Universita di Roma “La Sapienza”
via Salaria 113
00198 Roma
bos@li . uni romal. it

Abstract

We compare and combine two methods
to approach the second textual entailment
challenge (RTE-2): a shallow method
based mainly on word-overlap and a
method based on logical inference, us-
ing first-order theorem proving and model
building techniques. We use a machine
learning technique to combine features of
both methods. We submitted two runs,
one using only the shallow features, yield-
ing an accuracy of 61.6%, and one using
features of both methods, performing with
an accuracy score of 60.6%. These figures
suggest that logical inference didn’t help
much. Closer inspection of the results re-
vealed that only for some of the subtasks
logical inference played a significant role
in performance. We try to explain the rea-
son for these results.

1 Introduction

In this paper we summarise the results of our ef-
forts in the 2005/2006 Recognising Textual Entail-
ment (RTE-2) challenge (the task of deciding, given
two text fragments, whether the meaning of one text
is entailed/inferred from another text). We exper-
imented with shallow and deep semantic analysis
methods. The shallow techniques were used to es-
tablish a baseline performance, but also to comple-
ment the deep semantic analysis. Both methods ex-
tract features from the training data, which are then

Katja Markert
School of Computing
University of Leeds
Woodhouse Lane
Leeds, LS2 9JT
mar kert @onp. | eeds. ac. uk

combined using an off-the-shelf machine learning
classifier. We will introduce the shallow semantic
analysis (Section 2) and the deep semantic analysis
(Section 3), present the results of our two runs (Sec-
tion 4), and discuss them (Section 5).

Our work for RTE-2 is essentially a further devel-
opment of our approach to RTE-1 (Bos and Mark-
ert, 2005). Changes in the deep analysis (see Sec-
tion 3) constitute a refinement of semantic analysis,
the computation of background knowledge, and the
use of more advanced model builders. In addition,
we also refined the method for ranking the output,
which is used for calculating average precision.

2 Shallow Semantic Analysis

As observed by several researchers, including our-
selves, the RTE-1 dataset (Ido Dagan and Magnini,
2005) showed a remarkably frequent dependency
between surface string similarity of text and hypoth-
esis and the existence of entailment. Therefore, high
word overlap is likely to be an important feature
for determining textual entailment (see, for exam-
ple, T/H pair 217 in RTE-2) whereas the occurrence
of words in the hypothesis that are unrelated to any
words in the text make entailment unlikely.

We use a bag-of-words model to measure word
overlap wnover | ap, where the weights of lemmas
in the hypothesis that are related to lemmas in the
text are added to the overlap measure and other, un-
related lemmas are ignored. Weights correspond to
inverse document frequency with the Web as cor-
pus and relatedness includes equality as well as syn-
onymy and morphological derivations in WordNet.
For a more detailed description we refer the reader

to (Bos and Markert, 2005). In addition, we use
four other shallow features: t ext | engt h measur-
ing the length of 7" in words, hypl engt h measur-
ing the length of the hypothesis and pr opl engt h
measuring the difference between t ext| engt h
and hypl engt has %. The last shallow fea-
ture t ask simply uses the t ask variable (one of
SUM QA | E, IR)asourresultsin RTE-1(Bos
and Markert, 2005) showed that the different tasks

can need different inference methods.

3 Deep Semantic Analysis
3.1 Semantic Representation

We use a robust wide-coverage CCG-parser (Bos,
2005) to generate fine-grained semantic representa-
tions for each T/H-pair. The semantic representa-
tion language is a first-order fragment of the DRS-
language used in Discourse Representation The-
ory (Kamp and Reyle, 1993), conveying argument
structure with a neo-Davidsonian analysis and in-
cluding the recursive DRS structure to cover nega-
tion, disjunction, and implication. Third-person per-
sonal pronouns are resolved to named entities, and
proper names and definite descriptions are treated as
anaphoric too. They are bound to previously intro-
duced discourse referents if possible, otherwise ac-
commodated.

For more details of our approach the reader is
kindly referred to (Bos and Markert, 2005). The ap-
pendix at the end of this paper contains some exam-
ple representations.

3.2 Inference

To check whether an entailment holds or not, we
used two kinds of automated reasoning tools: first-
order theorem proving, and finite model building.
We used the standard translation from DRS to first-
order logic (Kamp and Reyle, 1993) to map the
semantic representations onto the format required
by the inference tools. We employed the theorem
prover Vampire 7 (Riazanov and Voronkov, 2002)
and two model builders, Paradox 1.3 (Claessen and
Sorensson, 2003) and Mace 2.0 (McCune, 1998).

For each T-H pair we calculated possible relevant
background knowledge (B K) (see Section 3.3 for a
description of the background knowledge used). We
then ran the following inferences:

1. proof T' — H (Vampire)

2. proof (BK AT) — H (Vampire)

3. proof =(BK A T) (Vampire)

4. proof ~(BK AT N H) (Vampire)

5. satisfy BK AT (Paradox, Mace)

6. satisfy BK AT N\ H (Paradox, Mace)

In 1 and 2 we are directly checking for a logical
entailment between T and H; in 1 we try so without,
and in 2 with background knowledge. (Note that if
there is a proof found for 1, there will always be a
proof for 2).

In 3 and 4 we check for consistency of the back-
ground knowledge with T or H. Sometimes the com-
bination of background knowledge with the text or
hypothesis causes a logical inconsistency. This can
be due to errors in the syntax-semantics interface,
or to errors in the generation of relevant background
knowledge. In both cases, if Vampire is able to find
a proof, we know that we are dealing with inconsis-
tent background knowledge. (Note that if there is a
proof for 3, it logically follows that there is a proof
for 4 as well.)

In 5 and 6 we generate first-order models for T
and H with supporting background knowledge. This
is only possible if there are no proofs found for 3
and 4. We perform model building using two dif-
ferent model builders: We use Paradox to find the
size of the domain, and then use Mace to construct a
minimal model giving that domain size. (The reason
for this is efficiency: Paradox is generally faster than
Mace, but doesn’t always produce minimal models.
Mace generally produces minimal models.)

The results of 1-6 give us a set of features that
can be used to determine whether it is likely that T
entails H or not. If Vampire finds a proof for 1, it
is very likely that T entails H. If Vampire finds a
proof for 3 or 4, then we are (unfortunately) dealing
with inconsistent background knowledge and there
is nothing we can say about the relationship between
T and H (however, it could be the case that T + H is
inconsistent, which would mean that T does not en-
tail H). Else, if there is no proof for 3 or 4, but there
is a proof for 2, then again it is very likely that T en-
tails H. Finally, if the model size difference between

the models generated for 5 and 6 is very small then
it is likely that T entails H.

3.3 Background Knowledge

We generate background knowledge (BK) using
two kinds of sources: hyponymy relations from
WordNet, and a set of manually coded inference
rules expressing general knowledge (see Appendix
for examples). Lexical knowledge is created au-
tomatically from WordNet. A hyponymy relation
between two synsets A and B is converted into
Vx(A(x)—B(x)). Two synset sisters A and B are
translated into VxX(A(x)— —B(x)).

Rules for generic knowledge cover the seman-
tics of possessives, active-passive alternation, spa-
tial knowledge, causes of death, winning prizes or
awards, family relations, diseases, producers, em-
ployment, and ownership. Some examples of such
rules are given in the appendix.

There are 115 of these rules, constructed manu-
ally based on the development data. Although this
way of manual construction is not easily scalable the
extracted relations can be used for automatic boot-
strapping of further relations in future work.

3.4 Modd Building

An attractive property of a model builder (such as
Mace or Paradox) is that it outputs a model for its
input formula (only of course if the input is satisfi-
able). A model is here the logical notion of a model,
describing a possible situation in which the input
formula is true. Formally, a model is a pair (D, F')
where D is the set of entities in the domain, and F'
a function mapping predicate symbols to sets of do-
main members.

Model builders like Paradox and Mace generate
finite models by iteration. They attempt to create a
model for domain size 1. If they fail, they increase
the domain size and try again, until either they find
a model or their resources run out. This way the
models they output are generally minimal models; in
other words, the models do not contain entities that
are not mentioned in the input (see also (Blackburn
and Bos, 2005)).

To introduce an element of robustness into our
logical inference approach, we use the models as
produced by the model builders to measure the “dis-
tance” from an entailment. The intuition behind it

is as follows. If H is entailed by T, the model for
T+H is not informative compared to the one for T,
and hence does not introduce new entities. Put dif-
ferently, the domain size for T+H would equal the
domain size of T. In contrast, if T does not entail H,
H normally introduce some new information (except
when it contains negated information), and this will
be reflected in the domain size of T+H, which then
is larger than the domain size of T. It turns out that
this difference between the domain sizes is a use-
ful way of measuring the likelihood of entailment.
Large differences are mostly not entailments, small
differences mostly are. Consider the following ex-
ample:

Example: RTE-2 504 (YES)

T: Never before had ski racing, a sport dominated by mono-
syllabic mountain men, seen the likes of Alberto Tomba,
the flamboyant Bolognese flatlander who at 21 captured two
gold medals at the Calgary Olympics.

H: Alberto Tomba won a ski race.

Although this example is judged as a true en-
tailment, Vampire doesn’t find a proof because it
lacks the background knowledge that capturing gold
medals means that you must have won a race. Vam-
pire generated a model with domain size 15 for T,
and a model with domain size 16 for T plus H.
The absolute difference in domain sizes is small,
and therefore likely to indicate an entailment. Apart
from the absolute difference we also compute the
difference relative to the domain size. For the ex-
ample above the relative domain size yields 1/16 =
0.0625.

The domain size only tells us something about the
number of entities used in a model—not about the
number of established relations between the model’s
entities. Therefore, we also introduce the notion of
model size. The model size is defined here by count-
ing the number of all instances of relations in the
model, and multiplying this with the domain size.

3.5 Deep Semantic Features

Given our approach to deep semantic analysis, we
identified eight features relevant for recognising tex-
tual entailment. The theorem prover provides us
with four features: ent ai | ed and ent ai | edBK
determining whether T implies H (without or with
background knowledge), and i nconsistentT
and i nconsi st ent THdetermining whether T or

Table 1: Summary of Results

Exp Run 1 Run 2
Task | prec av. prec. | prec av. prec
IE 0.505 0.462 0.550 0.550
IR 0.660 0.713 0.640 0.723
QA 0.565 0.606 0.530 0.598
SUM | 0.735 0.814 0.705 0.746
all 0.616 0.669 0.606 0.604

T/H are inconsistent with the background knowl-
edge. The model builder gives us four features: the
absolute and relative difference between the sizes
of T and T+H, both for the size of the domains
(domai nsi zeabsdi f, domai nsi zerel di f)
and the size of the models (nbdel si zeabsdi f,
nodel si zerel di f).

4 Experiments and Results

‘We submitted two runs, both ranked. The results on
the test set are summarised in Table 1.

4.1 Run 1. Only shallow features

Our first run used only the shallow features de-
scribed in 2. We used the machine learning tool
WEKA (Witten and Frank, 2000) to derive a deci-
sion tree model from the development data:
wnover | ap <= 0.771437: NO (373.0/130.0)
wnover | ap > 0.771437
task = IR YES (60.0/18.0)
task = IE
| textlength <= 41: YES (125.0/48.0)
| textlength > 41: NO (20.0/3.0)
task = QA
| textlength <= 34
| | wnoverlap <= 0.95583: NO (51.0/22.0)
| | wnoverlap > 0.95583: YES (86.0/24.0)
|
t

textlength > 34: NO (18.0/4.0)
ask = SUM YES (67.0/7.0)

|
|
|
|
|
|
|
|
|

WEKA computes a confidence value per leaf: For
example, on the SUM task the YES value covers 67
examples, of which only 7 are classified wrongly.
WEKA therefore computes an error rate of 7/67 for
this leaf and a confidence value of 1 — 7/67. We
used the confidence value as the primary ranking cri-
terion for our decisions. As the confidence value is
the same within an individual leaf we used features
with numeric values for secondary ranking, priori-
tising features which were used for earlier split-
ting; thus, we used wnover | ap for secondary sort-
ing and t ext | engt h for tertiary sorting. Thus,

the most confident YES decisions are SUM YES-
decision with high overlap and low textlength.

The model achieved 68% precision on the whole
development data, 64% precision on the develop-
ment set using ten-fold cross-validation and 61.6%
precision on the test set. The fall in precision can be
explained by the fact that the average word overlap
in the test set is higher (overlap median in develop-
ment set is 0.79 vs. 0.84 in the test set); rescaling of
the wnover | ap variable via linear functions might
alleviate this problem. The method achieved good
results in average precision (66.9% over the whole
test set), indicating that sorting by decreasing over-
lap is a useful ranking criterion.

4.2 Run 2: Combining shallow and deep

For a combination of deep and shallow features
we took into account that (a) some example pairs
could not be handled by the deep semantic analy-
sis, and (b) that examples for which the theorem
prover found a proof make an entailment highly
likely. (When using more features we found that
the task feature led to overfitting on the develop-
ment data; therefore the task feature was left out of
all Run 2 experiments.) Therefore, we split the test
data into three subsets: T'estgpqi10 CONtains exam-
ples which could not be handled via the deep analy-
sis because the examples either could not be parsed
or because the theorem prover discovered an incon-
sistency of T or T/H with the background knowl-
edge. Testentaileq cONtains consistent and parsed
examples where Vampire found a proof, either with
or without background knowledge and T'est compined
contains all remaining examples. The same subsets
exist for the development data. For decisions on
Testshaiiow, Which contains 112 examples, a deci-
sion tree using the shallow features only was trained
on Devgpaiiow (containing 57 examples). The preci-
sion on this subset alone was only 56.5%, possibly
due to the small training set or to the fact that this
subset contains some of the most complex examples.

Testentailed contains 29 examples, of which 19
proofs were found without background knowledge
and 10 with background knowledge Proofs were
mostly correct, with 22 out of 29 proofs being cor-
rect (precision of 76%), being therefore the sin-
gle most reliable piece of evidence in our sys-
tem, but having low recall. Phenomena that the

deep semantic approach was able to handle in-
clude monotone inclusion appositions incorporation
of world knowledge, conjunctions, pronoun resolu-
tion, active-passive conversion and relative clauses.
All examples in T'estcniqiieq Were assigned a YES
value, using the accuracy on the development set as
confidence value.

On Testcompineg @ decision tree using shal-
low and non-shallow features was trained on

Deveompined- The resulting tree

domai nsi zerel di f <= 0.285714

| wnoverlap <= 0.771437: NO (260.0/108.0)

| wnoverlap > 0.771437

| | textlength <= 41: YES (316.0/108.0)

| | textlength > 41: NO (24.0/4.0)

domai nsi zerel di f > 0.285714: NO (106. 0/ 22. 0)

emphasises differences in domain-sizes and shallow
overlap and achieves 65.7% on the development set
and 60.2% on the test set.

The overall accuracy of the combined methods on
the whole test set was 60.6%. The overall combined
ranking over the whole test set used the confidence
values of all three subsets as primary sorting con-
straint with differences in domain size as secondary
and word overlap as tertiary sorting criterium.

5 Discussion

The first and the second run perform with almost
the same overall precision, which is disappointing
as one would expect the deep analysis to enhance the
shallow one. We found that there are the following
main reasons for this lack of improvement: firstly,
the recall of the best deep feature (entailment) is
quite low and actually mostly finds proofs for exam-
ples that also have a high word overlap (for example,
most examples of monotone inclusion will also have
a word overlap of 1). Similarly, small domain size
differences correlate with high overlap, although do-
main size differences also handle multi-word entities
and can draw on background knowledge.

Overall, this means that the two systems have a
high degree of overlap in their decisions. The rank-
ing of Run 2 performs worse than the one for Run 1.
This is mainly due to the combination of confidence
values from different decision trees, which might not
be straightforward to compare. However, Run 2 is
more robust across the different subtasks, achieving
results that are better than the 50% baseline on all
subsets, whereas Run 1 does not beat the baseline
for the IE task.

References

Patrick Blackburn and Johan Bos. 2005. Representation
and Inference for Natural Language. A First Course in
Computational Semantics. CSLI.

Johan Bos and Katja Markert. 2005. Recognising tex-
tual entailment with logical inference. In Proc. of
the 2005 Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP), pages 628-635.

Johan Bos. 2005. Towards wide-coverage seman-
tic interpretation. In Proceedings of Sixth Interna-
tional Workshop on Computational Semantics IWCS-
6, pages 42-53.

K. Claessen and N. Sérensson. 2003. New techniques
that improve mace-style model finding. In Model
Computation — Principles, Algorithms, Applications
(Cade-19 Workshop), Miami, Florida, USA.

Oren Glickman Ido Dagan and Bernardo Magnini. 2005.
The pascal recognising textual entailment challenge.
In Proceedings of the PASCAL Challenges Workshop
on Recognising Textual Entailment.

H. Kamp and U. Reyle. 1993. From Discourse to Logic;
An Introduction to Modeltheoretic Semantics of Natu-
ral Language, Formal Logic and DRT. Kluwer, Dor-
drecht.

W. McCune. 1998. Automatic Proofs and Counterex-
amples for Some Ortholattice Identities. Information
Processing Letters, 65(6):285-291.

A. Riazanov and A. Voronkov. 2002. The Design
and Implementation of Vampire. Al Communications,
15(2-3).

Ian H. Witten and Eibe Frank. 2000. Data Mining:
Practical Machine Learning Tools and Techniques
with Java Implementations. Morgan Kaufmann, San
Diego, CA.

Appendix: Example Analysis

Example: RTE-2 98 (YES)

T: Mr. Fitzgerald revealed he was one of several top officials
who told Mr. Libby in June 2003 that Valerie Plame, wife of
the former ambassador Joseph Wilson, worked for the CIA.

H: Valerie Plame is married to Joseph Wilson.
DRS for H:

| named(x3, pl ane, per) |
| named(x3,valerie,per) |
| marry(x1) |
| patient(x1,x3) |
| named(x2, wilson, per) |
| named(x2, j oseph, per) |
| to(x1,x2) |
| |

DRS for T:

x4 x16 x12 x17 x15 x11 x1 x2

nal e(x4)

naned(x4, fitzgeral d, per)
nanmed(x4, nr, ttl)
naned(x16, | i bby, per)
nanmed(x16, nr,ttl)
naned(x12, pl ane, per)
named(x12, val eri e, per)
naned(x15, j oseph, per)
nn(x17, x15)

anbassador (x17)
nanmed(x15, wi | son, per)
f ormer (x15)

nanmed(x11, ci a, or g)
reveal (x1)

agent (x1, x4)

theme(x1, x2)

| x5 x6 x7 x9 x8 x3

PR e

| x5] >1

t op(x6)

of ficial (x6)

ti mex(x8) =2003- 06- XX
tell (x7)

patient (x7, x16)

agent (x7, x6)

t heme(x7, x9)

| x14 x13 x10

wi f e(x14)
of (x14, x15)

|
wor k(x10)
agent (x10, x12)
for(x10, x11)

L L R

|
|
|
|
| : |
| | x12 = x14 |
I |
|
|

in(x7,x8)
of (x5, x6)

x18 x16 x17 | |

in(x18,x16) | ==>| in(x18,x17)
in(x16, x17) | |l
_____________ |

x13 x15 x14 | |
________________ | [
event (x13) | ==>| in(x15, x14)
|

agent (x13, x15) |
in(x13, x14) |

3 1w
£ wprine_ant 1 (0

Rl

] et 03

| x10 x12 x11

| event(x10)
| patient(x10,x12)

| in(x10,x11)
b |
| X7 x9 x8 | | |
| _________________________
| event(x7) | ==>1] in(x9,x8) |
| theme(x7,x9) | |_______ |
| in(x7,x8) |
e |
| x4 x5 | | x6
[--memeeee [-omemeeneee
| wife(x4) | ==>| marry(x6)
| of (x4,x5) | | patient(x6,x4)
| | | to(x6, x5)
|
| x1 x2 | | x3
[-=renmnnnes [-ereneemenne
| wife(xl) | ==>| narry(x3)
| of (x1,x2) | | patient(x3,x2)
| | | to(x3,x1)
I |
Model for BK & T & H:

D=[d1, d2, d3, d4, d5, d6, d7, d8, d9, d10]
n_6, [di, d7, ds])

f(1, n_abstractio
f(1, n_group_1, [
f(1, n_entity_1,

ds])
[d2, d3])

f(1, n_event_1, [d4, d6, d9, di10])

f(1, n_nuneral _1,
f(1, n_propositio
f(1, v_reveal _1,

f(1, v_tell_1, [d
f(1, v_marry_1, [
f(1, n_unit_of _ti

f(1, n_official _1,

f(1, n_wife_1, [d
f(1, v_work_1, [d
f(1, p_wlson_1,
f(1, p_libby_1, [
f(1, n_organizati
f(1, n_person_1,

[d1])
n_1, [d7])
[d6])

9)

d4])

me_1, [d8])
[d3])
2])

10])

[d3])

d2])

on_1, [d5])
[d2, d3])

f(1, n_anbassador_1, [d3])

f(1, t_200306XX,
f(1, p_valerie_1,

[d8])
[d2])

f(1, p_fitzgerald_1, [d1])
f(1, o_cia_1, [d5])
f(1, c_1_num [d1])

f(1, a_male_1, [d
f(1, p_nmr_1, [d1,

1)
dz])

f(1, p_planme_1, [d2])

f(1, p_joseph_1,
f(1, a_former_1,

[d3])
[d3])

f(1, a_top_1, [d3])

f(2, card, [(di,

anl)

f(2, r_in_1, [(d2, d8), (d3, d8)

f(2, r_agent_1, [
f(2, r_patient_1,
f(2, r_thenme_1, [
f(2, r_of_1, [(d

(d6, d1), (do9,
[(d4, d2), (d4
(d6, d7), (do9,
1, d3), (d2, d3)

f(2, r_to_1, [(d4, d2), (d4, d3)
f(2, r_nn_1, [(d3, d3)])
f(2, r_for_1, [(d10, d5)])

, (d7, ds),

e
S poermantsations

(d9, ds)])

d3), (d10, d2)])
, d3), (d9, d2)])

ani)
1
D

