
Converting Natural Language Route Instructions into Robot

Executable Procedures

S. Lauria T. Kyriacou G. Bugmann

Robotic Intelligence Laboratory

School of Computing

University of Plymouth

Drake Circus, Plymouth PL4 8AA

United Kingdom

J. Bos E. Klein

ICCS

Division of Informatics

University of Edinburgh

Buccleuch Place, Edinburgh EH8 9LW

Scotland, United Kingdom.

Abstract

Humans explaining a task to a robot use chunks of
actions that are often complex procedures for robots.
An instructable robot needs to be able to map such
chunks to existing pre-programmed primitives. We in-
vestigate an architecture for spoken dialogue systems
able to extract executable robot procedures from user
instructions. A suitable representation of the dialogue
is introduced, then a Procedure Speci�cation Language
(PSL) is described that allows to extract from the se-
mantic representation of the dialogue the robot exe-
cutable procedures and their parameters

1 Introduction

This paper presents an semantically based ap-
proach for human-robot dialogue understanding, as
part of a project than envisages "Instruction-Based
Learning" (IBL) [5], where robots acquire user-speci�c
skills based on verbal instructions given by the user.
In particular, we will focus on mapping the human lan-
guage commands to for the robot executable instruc-
tions, using an intermediate semantic representation.

Our IBL system operates according to the follow-
ing scenario. A user engages in a dialogue with the
robot, where spoken instructions are mapped to se-
mantic representations, natural language ambiguities
are resolved, and the functional parameters are ex-
tracted from that representation [9]. The robot, hav-
ing a database with previously learned tasks at its
disposal, will now either perform the given instruction
(if it knows how to do it), or if the task is unknown,
ask the user to explain how to perform the task. The
user then explains the task step by step. At the end of
this learning process, the robot will have built a new
procedure that becomes part of its knowledge base.

The requirements of natural language understand-
ing induce the internal model of a route as a sequence

of high-level task speci�cations (primitives). Hence
it is necessary to provide the robot with a set of
pre-programmed primitives corresponding to action
chunks referred to by users. For more details about
these aspects see [7].

A typical example in our scenario is the following
(example u8 GC HD extracted from the IBL corpus):

Instructor : Go to the post oÆce!

Robot: How do I get to the post oÆce?

Instructor : Er head to the end of the street.

Turn left. Take the �rst left. Er go right down

the road past the �rst right and it's the next

building on your right.

One of the issues in the project is the mapping from
action chunks used in natural language to actions ex-
ecutable by the robot for both of the possible situa-
tions: either the system already knows how to perform
a request, or it has to learn how to perform it. The
�rst case corresponds to a successful mapping from the
semantic analysis of the request to a sequence of ex-
ecutable robot actions. The second case corresponds
to the creation of a sequence of executable robot ac-
tions for the unknown request through a user-robot
dialogue.

Previous approaches to interpreting natural lan-
guage instructions for mobile robots assume a applica-
tion speci�c semantic representation [4]. However, we
argue that there is a need for a domain-independent
intermediate representation. This representation cap-
tures the meaning of the dialogue between user and
robot and is used to resolve ambiguities inherent in
natural language (for instance the reference of the
pronoun it the example above). In addition, we use
an application speci�c mapping from the intermediate
representation to obtain robot executable scripts. Us-
ing this extra layer results in an overall system that

is much easier to adapt the robot to new scenarios or
tasks.

The paper is structured as follows. First we intro-
duce the intermediate semantic representations known
as Discourse Representation Structures (Section 2). In
Section 3 we presents the Procedure Speci�cation Lan-
guage (PSL) used for the interpretation of the DRS.
Section 4 illustrate the conversion of basic program
components found in verbal instructions into robot-
executable procedures. In Section 5 ongoing work
covering the reuse of previously explained routes is
discussed.

2 Understanding Natural Language

Instructions
We will use Discourse Representation Structures

(DRSs) to represent the meaning of the dialogue be-
tween user and system. There are three reasons that
motivate this choice of formalism. First and foremost,
DRT is a well understood framework and covers a wide
variety of linguistic phenomena [6, 11]. These phenom-
ena include context-sensitive expressions such as pro-
nouns and presuppositions. To our knowledge, there is
no other semantic formalism that comes close to the
empirical coverage of DRT. Second, there now exist
computational implementations that provide means
to extend existing linguistic grammars with DRS-
construction tools, and there are eÆcient algorithms
available that implement Van der Sandt's presupposi-
tion projection algorithm for DRT [2]. Third, there is
a direct link between DRT and �rst-order logic|there
is a translation from DRSs to formulas of �rst-order
logic that behaves linear on the size of the input [1].

2.1 Representing Instructions

DRT was initially designed to deal with texts, so we
will use an extension of standard DRT that enables us
to cope with instructions such as given in the example
above. This extension introduces actions and modal
operators into the DRS-language.

Let us �rst de�ne the syntax of the DRS language.
Basic DRSs have two components: a set of discourse
referents, and a set of conditions upon those referents.
Discourse referents stand for objects mentioned in the
course of the dialogue. Conditions constrain the inter-
pretation of these discourse referents. More formally,
DRSs and merge of DRSs are de�ned in the usual way:

Syntax of DRSs:

1. If fx1; : : : ; xng is a set of discourse ref-
erents, and f
1; : : : ;
mg is a set of
DRS-conditions, then the ordered pair
hfx1; : : : ; xng; f
1; : : : ;
mgi is a DRS;

2. If B1 and B2 are DRSs, then so is (B1

� B2).

Following Lascarides [8], we extend the DRS lan-
guage with action terms. Atomic action terms are
identi�ed by the Æ-operator. Complex action-terms
are composed out of other action terms by either ;
(sequence) or j (free choice).

Syntax of DRS-action-terms:

1. If B is a DRS, then ÆB is a DRS-action-
term;

2. If A1 and A2 are DRS-action-terms,
then so are (A1;A2) and (A1 j A2).

The DRS-condition subsume those of standard
DRT. Further we have the modal operators 2 and
3 (clauses 3 and 6), hybrid DRS-conditions formed
by discourse referents and DRSs (clause 5), and the
command operator (clause 7).

Syntax of DRS-conditions:

1. If R is a relation symbol for an n-
place predicate and x1. . . xn are dis-
course referents then R(x1,. . . ,xn) is a
DRS-condition;

2. If x1 and x2 are discourse referents, then
x1 = x2 is a DRS-condition;

3. If B is a DRS, then :B, 2B, 3B are
DRS-conditions;

4. If B1 and B2 are DRSs, then B1 _ B2,
B1) B2 are DRS-conditions;

5. If x is a discourse referent and B a DRS,
then x:B is a DRS-condition;

6. If A is a DRS-action-term, and B a
DRS, then [A]B and hAiB are DRS-
conditions;

7. If A is a DRS-action-term then !A is a
DRS-condition.

One of the theoretical motivations behind the inter-
nal structure of DRSs is the analysis of pronouns and
other anaphoric expressions. Pronouns are interpreted
in DRT by binding a previously introduced accessible
discourse referent. Accessibility is governed by the
way DRSs are nested into each other, and hence nar-
rows down the choice of an antecedent in the process
of pronoun resolution.

2.2 Example Representations

We will now illustrate the formal syntax de�nition
by giving some examples that show how instructions
can be modelled. We will use the more convenient box
notation for DRSs in the examples that follow. Recall
that we use the Æ-operator to form action-DRSs from
DRSs and the ! operator to express that an action is
commanded. So, the directive Go to the post oÆce!

translates to the following DRS:

x y

robot(x)
postoÆce(y)

!Æ

e

go(e)
to(e,y)
agent(e,x)

This DRS states that the plan in the actual world
contains the action for the robot to go to the post of-
�ce. Semantically, actions relate two possible worlds:
the world (or state) in which the action is issued, and
the world in which the e�ects of the action hold. Be-
cause actions themselve can be of complex nature, we
will use an additional world that describes what con-
stitutes the action. This enables us to reason about
possible outcomes of actions (not only for the purpose
of planning, but also to verify that the resulting states
are desired) and to check the preconditions of actions.

2.3 Interpretating Instructions

One way to interpret DRSs is to translate them to
ordinary �rst-order logic. This is the approach that
Bos & Oka follow [3], and they use classical �rst-order
theorem provers and model builders to automate in-
ference. The translation they use is based on the rela-
tional translation for modal logic to �rst-order formu-
las and essentially similar to the standard translation
from DRT to �rst-order logic [6], extended with rules
to deal with the modal operators and DRS-action-
terms. The example DRS above would get the fol-
lowing translation in �rst-order logic:

9w 9x 9y (possible world(w) ^ robot(w,x) ^
postoÆce(w,y) ^ 9v 9a (action(w,a,v) ^ 9e
(go(a,e) ^ to(a,e,x) ^ agent(a,e,y))))

Note that the translation increases the arity of all
predicates symbols with one, where the additional ar-
gument position denotes a possible world. A miminal
�rst-order model satisfying this formula (and further

background knowledge in the form of meaning postu-
lates describing the pre-conditions and e�ects of ac-
tions) could contain the following information:

D={d1,d2,d3,d4,d5,d6,d7,d8}

F(possible_world)={d1,d2,d3}

F(robot)={(d1,d4),(d2,d4),(d3,d4)}

F(postoffice)={(d1,d5),(d2,d5),(d3,d5)}

F(action)={(d1,d2,d3)}

F(go_from_to)={(d2,d4,d6,d5)}

F(at_loc)={(d1,d4,d6),(d3,d4,d5)}

Bos & Oka [3] actually emply automated model
builders to generate models of these kind, and use
these to extract actions for the dialogue manager.
Since models are essentially
at structures without re-
cursion, they are easy to process. For instance, all
quanti�cation and boolean structures are explicit in
models. This makes models ideal to function as a
database-lookup table to �nd out whether there are
actions to be performed by the system.

However, the state-of-the-art in automated model
building is not in a stage yet where it leads itself easily
to integration in eÆcient implementations. Although
the model building methods performs well for exam-
ples up to a few utterances, in general the instruc-
tions in the IBL corpus are much larger than that and
sometimes reach ten to twenty utterances in a learning
dialogue. Therefore we use an alternative rule-based
method to extract executable primitives from DRSs.
This technique is much more eÆcient and will be pre-
sented in the next section.

3 Procedure Speci�cation Language
The internal representation of a route is a sequence

of high-level task speci�cations (primitives). For this
reason a production-rule based approach has been
used to interpret the DRS as a sequence of procedure
names.

The Procedure Speci�cation Language (PSL) pro-
vides a common interchange language to describe re-
sources. A list of robot executable procedures are ex-
tracted from the DRS and saved as a new procedure
-the result of Instruction Based Learning-. The PSL
provides the skeletal syntax used to compose the pro-
cedure names and the required parameters.

The PSL terms are either special characters or reg-
ular string literals, where string literals are made of
sequences of characters excluding the special charac-
ters. The complete set of special characters that can-
not appear as part of a string literal is:

& | # % $ ->

These characters can only be used for the special
syntactic forms described in the above RSL syntax
overview

The core syntax of the PSL syntax is the rule a->b.
Rules associate the condition a on the left of the spe-
cial syntax -> with the string on the right of -> cor-
responding to the robot procedure. For example, the
rule

event(X)&go(X)&to(X; Z)&$landmark(Z)�>

go(prep =0 to0; landmark = $landmark(Z)) (1)

will generates the procedure

go(prep='to',landmark='postoffice')

from the DRS in Section 2.2.
In each PSL rule, the condition is a conjunction of

terms separated using the special syntax &, where each
term can be a one or two place predicate symbol, a
variable predicate, a variable action. In (1) event(X)
is an example of a one place predicate while to(X,Z)
is a two place predicate. The upper case symbol in
parenthesis (i.e X for event(X)) is the variable associ-
ated with the predicate. In the example in Fig 1, only
the event,go,to predicates with the same value for X
can be considered to satisfy the condition for rule (1).

A variable predicate is indicated as the special sym-
bol $ followed by a string litteral. A variable predicate
indicates a class of possible predicates. In the rule ex-
ample (1), $landmark(Z) speci�es that the predicate
must be of landmark type.

A list containing all the predicate belonging to each
class de�ned must be included with the PSL. The syn-
tax to specify a class and all the members belonging
to it is:

class name:predicate 1|predicate 2|....|...

where class name is the string litteral indicating
the class and predicate 1|predicate 2 is the list
of terms predicate 1,predicate 2 belonging to the
class separated by the special symbol |.

An action predicate is indicated as the special sym-
bol # followed by a predicate pointing to an action.
For example, an action predicate can indicate an ac-
tion to be executed while executing another action (for
example sure from the hospital er go forwards until you

come to dixons extracted from u9 GC HW in the IBL
corpus)

The end of both a rule and a class list is indicated by
the the special syntax %. The list of the de�ned class
is preceded by the string #parameters#,while the list
of the rules is preceded by the string #rules#.

The PSL rule based approach facilitates the inter-
pretation of a user command into a call to a proce-
dure with the correct parameter associated to it. The

introduction of parametrised primitives allows it to
generalise the use of the procedure. For instance, the
procedure designed for turn left after the tree should
also work if the value tree for the parameter landmark
is replaced by the value church. It is also possible to
pass di�erent combinations of parameters to the prim-
itive procedure.

While, as explained in more detail in [9], the choice
of the initial set of primitives is corpus based (that is it
has been driven by the way users express themselves),
both the parameter combinations and the interpreta-
tion of predicates into a parameter value is mainly
robot driven as explained in more detail in [7].

The PSL rule syntax allows to establish the desired
mapping between the predicates from the DRS rep-
resentation and their interpretation into the correct
value for the correct parameter. For example the user
utterances: turn right and take a right should produce
the same precedure call despite being represented as
two di�erent types of events in the DRS (i.e. as a turn
and a take action rispectively). Table 1 shows two pos-
sible rules allowing to obtain the same procedure call
for both utterances.

event(X)&turn(X)&in(X,Z)&$direction(Z)->

turn($direction(Z))

event(X)&take(X)&$direction(Z)->

turn($direction(Z))

Table 1: PSL rules. Example of two rules mapping
di�erent symbolic representation of an action into the
same procedure.

Not all the information present in the DRS is used
in detecting the condition components of the rule. One
aspects still not yet fully implemented is the use of
negation in the condition part of the rule. This would
allow the designer to exclude undesired combination
of predicates to be mapped into a rule.

4 Basic Program Components
A requirement in Instruction Based Learning is that

components such as conditionals, loops, sequences
found in instructions are correctly converted into
robot executable procedures. Utterances containing
conditional expressions have not been found in this
corpus. Here, instructions consist mainly of sequences
and loops.

4.1 Sequences

Since the order of the actions in the utterance is
preserved by the DRS, extracting a properly ordered
sequence of primitives and building the corresponding

procedure code is straight forward. For instance, the
pseudocode for the user explanation (example extract
from u22 GB CD in the IBL corpus):

Instructor : er you have to take right and then

again the �rst right

is shown in Table 2.

def action():

....
take(direction='right')

take(direction='right',ordinal='first')

.....

Table 2: Sequential Instructions. Pseudocode for the
sequence of procedures obtained from a sequence of
user actions

4.2 Loops

References to loops where an action has to be ex-
ecuted a �xed number of times are not found in the
corpus. However, while-loops and do-until-loops are
frequently found. These can either be explicit or im-
plicit.

Implicit while-loops are found in actions such as
in the example extracted from u22 GB CD in the IBL
corpus:

Instructor : er you have to take right

This action implicity requires from the robot
to search for the landmark right turning while
following the road. Such implicit loops are
handled inside pre-programmed procedures (e.g.
take(direction='right',ordinal='first'). See
[7] for more details.

However, an action can be explicitly described as
loop by the user in utterances such the one from
u20 GB EP extracted from the IBL corpus:

Instructor : ..keep turning right until you ve got

the grand hotel on your left..

With the PSL it is possible to de�ne a suitable rule
which allows to introduce the loop explicitly on the
right hand side of it. For example, the rule in Ta-
ble 3 will produce the pseudocode in table 4 for the
utterance from u20 GB EP. As a result, everytime the
program in Table 4 is called the loop will be executed.

event(X)&turn(X)&in(X,Z)&$direction(Z)

&until(X,C)&#proposition(C) ->

while !(#proposition(C)):

turn(direction=$direction(Z))

Table 3: Loop.Example of a rule extracting an explicit
while-loop.

def action():

....
while !(near(landmark='grand hotel'):

turn(direction='right')

....

Table 4: Loop. Pseudocode for the utterance
u20 GB EP .

5 Reusing Previously Learnt Proce-

dures
One of the key features of IBL is the reuse of pre-

viously explained procedure as part of explanations
of new more complex procedure. In the corpus of
route instructions, this takes the form of previously
explained routes being reused in later route explana-
tions. Three possible ways of reusing previous routes
can be found in the corpus. In the �rst case, the user
explicitly refers to the use of the whole of a previously
explained route followed by a series of actions. The
following example is extracted from u12 GA EG in the
IBL corpus:

Instructor : go to the post oÆce at the post

oÆce turn left take a right at the crossroads

tescos is on the left hand side of the street

In the second case, the user still explicitly refers to
a previously explained route. However, this time the
route has to be used only partially since at a given
point (e.g. a landmark) a diversion is introduced by
the user. The following example u6 GC CM is extracted
from the IBL corpus:

Instructor : right erm head as though you re

going towards the post oÆce so you go over

the bridge but instead of carrying straight on

take a right carry on down that road until it

bears round to the right slightly and at the end

of the road the museum is there

In the third case, the user does not explicitly refers
to a previously explained route, but only refers to a
landmark used in it. Thus that route has to be in-
ferred. The following u13 GA CL example is extracted
from the IBL corpus:

Instructor : go to the bridge mentioned previ-

ously continue over the crossroads immediately

after the bridge and follow the road to its end

on your right you ll �nd the queens pub

In all these cases the system must be able to cor-
rectly link previously learnt sequences of actions with
new instructions. As explained in more detail in [10],
during the execution of a sequence of actions, the �nal
state of the robot after an action must be compatible
with the initial state of the next action. As a con-
sequence, the recalled procedure has to be tailored so
that the next procedure can be successfully executed.

For example in the utterance u12 GA EG, the �rst
action recalls the procedure to go to the post oÆce,
which ends with the robot facing the entrance of the
post oÆce, but this is not a suitable initial state for
the next action (i.e turn left). So for the robot to
succeed, the procedure go postoffice() should not
be executed entirely. However, to determine which
elements of a previously learnt sequence must be kept
is not an easy problem.

A solution to this problem could be the
rule in Table 5. In this case the procedure
go postoffice() is executed until the condition
near(landmark='postoffice') is veri�ed, where
near(landmark='postoffice') is a vision based pro-
cedure that check whether the robot is near the post
oÆce.

event(X)&go(X)&to(X,Y)&postoffice(Y)->

while !(near(landmark='postoffice'):

go postoffice()

Table 5: Linking Sequences. The procedure
go postoffice() is executed until the robot is near
the post oÆce.

Then, the part of the procedure go postoffice()

which drives the robot into a position facing the post
oÆce, will not be executed. Note that this implies a
concurrent execution of the two procedures.

Future work will cover the resolution of the prob-
lem above also for more complex cases such as the
u13 GA CL example and will evaluate the eÆcacy of
the various components presenteded in this paper in
converting Natural Language instructions into robot
procedures.

Acknowledgments

This work is supported by EPSRC grants
GR/M90023 and and GR/M90160.

References
[1] Patrick Blackburn, Johan Bos, Michael Kohlhase,

and Hans de Nivelle. Inference and Compu-
tational Semantics. In Harry Bunt, Reinhard
Muskens, and Elias Thijsse, editors, Computing
Meaning, volume 2, pages 11{28. Kluwer, 2001.

[2] Johan Bos. Implementing the binding and ac-
commodation theory for anaphora resolution and
presupposition projection. Computational Lin-
guistics, to appear.

[3] Johan Bos and Tetsushi Oka. An Inference-based
Approach to Dialogue System Design. In Pro-
ceedings of Coling 2002, 2002.

[4] C. Crangle and P. Suppes. Language and Learn-
ing for Robots. CSLI Lecture Notes 41. Chicago
University Press, Stanford, 1994.

[5] http://www.tech.plym.ac.uk/soc/staff
/guidbugm/ibl/index.html.

[6] Hans Kamp and Uwe Reyle. From Discourse to
Logic; An Introduction to Modeltheoretic Seman-
tics of Natural Language, Formal Logic and DRT.
Kluwer, Dordrecht, 1993.

[7] Theocharis Kyriacou, Guido Bugmann, and
Stanislao Lauria. Personal Robot Training via
Natural-Language Instructions. In Proceedings of
IROS 2002, 2002. to appear.

[8] Alex Lascarides. Imperatives in Dialogue. In Pro-
ceedings of the 5th International Workshop on
Formal Semantics and Pragmatics of Dialogue
(BI-DIALOG), pages 1{16, Bielefeld, Germany,
2001.

[9] Stanislao Lauria, Guido Bugmann, Theocharis
Kyriacou, Johan Bos, and Ewan Klein. Train-
ing Personal Robots Using Natural Language In-
struction. IEEE Intelligent Systems, pages 38{45,
September/October 2001.

[10] Stanislao Lauria, Guido Bugmann, Theocharis
Kyriacou, and Ewan Klein. Mobile Robot Pro-
gramming Using Natural Language. Robotics and
Autonomous Systems, pages 171{181, 2002.

[11] Rob A. Van der Sandt. Presupposition Projection
as Anaphora Resolution. Journal of Semantics,
9:333{377, 1992.

