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Abstract

Even though many recent semantic parsers are
based on deep learning methods, we should not
forget that rule-based alternatives might offer
advantages over neural approaches with respect
to transparency, portability, and explainabil-
ity. Taking advantage of existing off-the-shelf
Universal Dependency parsers, we present a
method that maps a syntactic dependency tree
to a formal meaning representation based on
Discourse Representation Theory. Rather than
using lambda calculus to manage variable bind-
ings, our approach is novel in that it consists of
using a series of graph transformations. The re-
sulting UD semantic parser shows good perfor-
mance for English, German, Italian and Dutch,
with F-scores over 75%, outperforming a neu-
ral semantic parser for the lower-resourced lan-
guages. Unlike neural semantic parsers, our
UD semantic parser does not hallucinate out-
put, is relatively easy to port to other languages,
and is completely transparent.

1 Introduction

Semantic parsing is the task of mapping natural
language sentences to a formal meaning represen-
tation such as Abstract Meaning Representations
(Banarescu et al., 2013) or Discourse Representa-
tion Structures (Bos et al., 2017). The current trend
in this area is strongly geared towards using meth-
ods based on deep learning. The best performing
parsers use pre-trained language models (van No-
ord et al., 2020; Zhou et al., 2021; Bevilacqua et al.,
2021; Bai et al., 2022). But a good performance
is perhaps not the only thing that matters. A draw-
back of neural semantic parsers is that their output
lacks explainability: why are the meaning represen-
tations composed in the way they are? Moreover,
they require vast amounts of training data, and are
usually specific for a particular language. In addi-
tion, their performance usually decreases for longer
input sentences.

In other words, it may look like we have made a
lot of progress, but viewed from a different perspec-
tive, we might actually have made a step back. This
is especially so with regards to transparency and in-
terpretability of semantic parsers. In this paper we
describe a semantic parsing system for Discourse
Representation Structures — the formal meaning
representations proposed by Discourse Representa-
tion Theory (Kamp and Reyle, 1993; Abzianidze
et al., 2017) — that is based on Universal Depen-
dencies (UD, de Marneffe et al., 2021). The first
advantage of the UD framework is that it has been
developed for numerous languages (using a cross-
linguistically consistent annotation scheme) and
that several high-performing parsers have been de-
veloped for UD. This will make it easier, as we will
show, to develop semantic parsers for languages
other than English, in our case German, Italian and
Dutch. The second advantage of using UD as input
describing the syntactic structure of the sentence,
is that it provides us with explainable support of
the output of the meaning representation, based on
the derivation provided by the UD parser.

The innovative contribution of the system, UD-
boxer, that we describe here is in the way the mean-
ing representations are computed. Even though the
original Discourse Representation Structure (DRS)
is formally an ordered pair of a set of discourse ref-
erents and a set of conditions, we recast the DRS
as a directed acyclic graph. Through graph trans-
formation rules our system changes the input UD
syntactic representation step-by-step into a fully
fledged formal meaning representation.

2 Related Work

Our aims are similar to those of Reddy et al. (2016)
and Reddy et al. (2017), who map UD to logical
forms in three steps: (1) enriching the UD tree with
missing syntactic information and long-distance
dependencies, turning it into a graph, (2) binariza-
tion of the dependency graph, (3) substituting the
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Figure 1: Graph transformations for Tracy lost her glasses, from left to right: initial UD graph, connecting the User
role, expanding the proper name, and adding and connecting tense information. The token attribute refers to the
semantic label or concept for a given node or edge.

words and using typed lambda expressions that en-
code the lexical semantics and dependency labels
for λ-expressions that either copy, invert or merge
lambda-expression to compose predicate-argument
structures, and (4) applying β-conversion to get a
reduced, normalized logical form.

The main difference of our work with that of
Reddy et al. (2017) is that we do not require com-
plicated operations involving logical variables. By
making the target meaning representations free of
variables in the form of a graph, the mapping from
UD to meaning representation is solely based on
a sequence of graph transformations (Zhizhkun,
2006). This allows us to apply our method on lan-
guages other than English.

Similar in spirit to our work, but different in exe-
cution, is recent work by Shen and Evang (2022),
who present a DRS parser that is competitive in
accuracy with recent sequence-to-sequence models
and at the same time compositional. This latter
property makes their system transparent and more
explainable. Shen and Evang (2022) recast DRS
parsing as a sequence labeling task, and achieve
a good performance with F-scores of 84.4 for En-
glish, 78.3 for German, 80.4 for Italian, and 72.1
for Dutch on PMB 3.0.0 data (and therefore not
directly comparabable with our results, working
with a more recent version of the PMB).

3 Method
3.1 Overall Idea

Our semantic parsing method is based on the in-
sight provided by Bos (2021) that Discourse Rep-
resentation Structures can be represented as rela-
tively simple directed acyclic graphs without re-
sorting to variables. In a Discourse Representa-

tion Graph (DRG) the nodes denote entities (repre-
sented by a WordNet synset) and constants (names,
numbers, dates, etc.), the edges denote thematic
roles, comparison operators, and discourse rela-
tions. Our semantic mapping comprises a series
of transformations from UD to DRG, exempli-
fied by Figure 1 and Figure 2. Our full system
is publicly available: https://github.com/
WPoelman/ud-boxer

We use semantically annotated data from the Par-
allel Meaning Bank (Abzianidze et al., 2017). The
PMB provides a large set of English, German, Ital-
ian and Dutch sentences paired with Discourse Rep-
resentation Structures (DRSs). Since release 4.0.01

the PMB also provides DRSs in a variable-free
variant, using relative indices instead of variables,
following the procedure outlined in Bos (2021).
This notation corresponds directly to a DRG. There
is a straightforward mapping from DRG to DRS of
formulas of first-order logic (see Figure 2). We use
this format in developing our system. The PMB
has gold, silver (partially annotated) and bronze
(no manual annotations) standard data available.
We only use gold for UD-boxer, while for Neural
Boxer, a strong neural parser based on van Noord
et al. (2020), we use all available data for German,
Italian and Dutch. However, for training Neural
Boxer on English data we only use the gold and
silver data (van Noord et al., 2018). The data splits
are shown in Table 1. Note that English also has
an extra evaluation set of 830 instances. This was
the hidden test set in the shared task of Abzianidze
et al. (2019) and now serves as an extra test set.

1The data of the Parallel Meanng Bank is available here:
https://pmb.let.rug.nl/data.php.

https://github.com/WPoelman/ud-boxer
https://github.com/WPoelman/ud-boxer
https://pmb.let.rug.nl/data.php
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Figure 2: Removing redundant nodes followed by substitution semantic symbols for syntactic relations, and
corresponding DRS in box format for Tracy lost her glasses.

Gold Silver Bronze
Train Dev Test Train Train

English 7,668 1,169 1,048 127,303 151,493
German 1,738 559 547 6,355 156,286
Italian 685 540 461 4,088 100,963
Dutch 539 491 437 1,440 28,265

Table 1: Number of documents for the four languages
for PMB release 4.0.0.

3.2 System Overview

The overall system expects a sentence as input and
consists of three main steps: (1) creating a UD
parse; (2) applying the graph transformation rules;
and (3) substituting syntactic labels for semantic
entities. The final output is a DRG and can be
exported to various formats.

The first step is implemented by using existing
off-the-shelf UD parsers. This is a modular part
of the system — any UD parser can be plugged
in. In the context of this paper we used two state-
of-the-art UD parsers: Stanza (Qi et al., 2020) and
Trankit (Nguyen et al., 2021), both of which go
head to head in their performance for English and
also achieve good results for the other languages
of our study.

The second step, the graph transformation, is car-
ried out by using GREW, a graph rewriting frame-
work specifically designed for linguistic graphs and
trees (Bonfante et al., 2018; Guillaume, 2021). The
focus of this step is to apply structural changes to
the graph: adding, removing or combining nodes
and edges. Some node and edge label substitution

might be carried out already during graph transfor-
mation, but most of that is left to the final step. Fig-
ure 3 shows a language-neutral transformation rule
that connects a thematic role to an entity, whereas
Figure 4 is an example of a language-specific rule.

rule connect_user {
pattern {

USER [upos=PROPN|NOUN];
* -[1=nsubj]-> USER;
REL: TARGET -[1=nmod, 2=poss]->

INDICATOR;
}
without {

TARGET -[token=User]-> USER;
}
commands {

add_edge TARGET -[token=User]->
USER;

del_edge REL;
del_node INDICATOR;

}
}

Figure 3: Example of language-neutral rule (in GREW
syntax) to connect the User role to an entity.

The final step, substitution, involves labeling
nodes and edges that do not have valid DRS labels
yet, as well as connecting box nodes (the only struc-
tural part of this step). Currently, this step is com-
prised of applying simple mappings extracted from
the training data and leveraging syntactic and mor-
phological information from the UD parse. This
is also a modular component and additional ap-
proaches can be added. Existing systems that go
beyond syntax are a good candidate to be added
here, e.g., named entity recognition systems.
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rule box_negation_det {
pattern {

N [lemma=no|not|never];
* -[1=advmod|det]-> N;

}
without {

P [token=NEGATION];
}
commands {

del_node N;

add_node NEGATION_BOX;
NEGATION_BOX.token = NEGATION;

}
}

Figure 4: Example of English specific rule to introduce a
negation box. The box gets connected in the substitution
and labeling step.

The transformation rules as well as the mappings
for the substitution are developed using the training
data and tested on the development set. Currently
there are 19 language independent rules and four
specific rules per language. These specific rules
deal with either negation or quantifiers (e.g. all,
every, none). Rules were developed by analyzing
the UD graph and gold SBN graph side-by-side for
a given example sentence. We then aimed to cre-
ate the most general and simple rule(s) that (struc-
turally) transformed the UD graph into the SBN
graph.

The node and edge mappings are extracted when
the graph transformations are applied and result
in a graph isomorphic to the gold-standard graph.
The UD information is then extracted and stored
per triple (from node, edge, to node) if the mapping
was correct. This creates a positive feedback loop,
as the rules improve, the labeling improves as well.
This process was bootstrapped by creating a tiny
set of initial mappings from dependency relations
to DRS roles and operators. Our approach here
serves as a baseline of sorts, since word sense dis-
ambiguation and edge labeling are only done with
the most frequent occurrences in the training data.

3.3 Evaluating DR Graphs

Counter is the standard evaluation tool for DRSs
(van Noord et al., 2018). However, it is specifically
designed for the clausal notation of DRS. This
notation does not use a graph-like structure directly,
but works with clauses that can have three or four
components. It is therefore not suitable for the
(simpler) DRGs that our system produces.

SMATCH (Cai and Knight, 2013) was cre-

ated for evaluating Abstract Meaning Represen-
tations, which are directed acyclic graphs, like
DRGs. SMATCH supports the Penman notation
(Kasper, 1989), converts a graph into a set of
triples, while automatically performing role inver-
sion when needed. By converting a DRG into
Penman format, we can simply use SMATCH to
compare system output with the gold standard, for
which SMATCH computes an F-score based on
matching triples. A DRG in Penman format is
shown in Figure 5.

(b0 / box
:member (e1 / entity

:lemma female :pos n :sense 02
:Name "Tracy")

:member (e2 / entity
:lemma lose :pos v :sense 02
:Agent e1 :Theme e3 :Time e4)

:member (e3 / entity
:lemma glasses :pos n :sense 01
:User e1)

:member (e4 / entity
:lemma time :pos n :sense 08
:TPR now))

Figure 5: Penman format for a Discourse Representation
Graph for Tracy lost her glasses.

As Figure 5 shows, we split up WordNet synsets
components to support a more fine-grained evalua-
tion. This also gives us flexibility in the evaluation
process, where we can toggle between evaluating
word sense disambiguation (strict) or not (lenient).
In this paper, we use only strict evaluation.

3.4 Comparison System

For comparison with our system we train
a neural DRG parser based on BERT (De-
vlin et al., 2019), following van Noord et al.
(2020).2 This is a bi-LSTM sequence-to-
sequence model, which uses (frozen) BERT em-
beddings to initialize the encoder. Specifically,
we use bert-base-cased for English and
bert-base-multilingual-cased for the
other languages. The word-level decoder is trained
from scratch. We do not apply any preprocessing
nor postprocessing, simply taking the input sen-
tence and output DRS in sequential box notation
as is. We follow the procedure described in van
Noord et al. (2020) by first pretraining on gold +
non-gold data, after which we fine-tune on just the
gold data.

2Detailed instructions can be found here:
https://github.com/RikVN/Neural_DRS/
blob/master/AllenNLP.md#sbn-experiments.

https://github.com/RikVN/Neural_DRS/blob/master/AllenNLP.md#sbn-experiments
https://github.com/RikVN/Neural_DRS/blob/master/AllenNLP.md#sbn-experiments
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English German Italian Dutch
Dev Test Dev Test Dev Test Dev Test

UD-Boxer (Stanza) 82.1 (0.3) 82.0 (0.0) 78.4 (0.0) 77.3 (0.0) 76.2 (1.9) 78.4 (0.9) 75.5 (0.0) 75.8 (0.0)
UD-Boxer (Trankit) 81.9 (0.3) 81.8 (0.0) 78.4 (0.0) 77.5 (0.0) 77.8 (0.0) 79.1 (0.0) 75.8 (0.0) 75.8 (0.0)
Neural Boxer (gold) 82.8 (4.6) 84.0 (3.7) 64.2 (0.4) 63.8 (0.2) 55.5 (1.5) 55.7 (1.5) 51.2 (0.2) 51.1 (0.4)
Neural Boxer (best) 92.5 (2.0) 92.5 (2.3) 74.6 (0.4) 74.7 (0.5) 75.6 (0.0) 75.4 (0.0) 71.9 (0.9) 71.6 (1.0)

Table 2: Average macro F1-scores on the dev and test set of the four languages in PMB 4.0.0. The number in
parentheses indicates the percentage of ill-formed DRSs in the output. For Neural Boxer, best indicates that it
was trained on gold, silver and bronze data (German, Italian, and Dutch) or only on gold and silver data (English).
UD-Boxer (Stanza) and UD-Boxer (Trankit) obtain an F-score of 81.3 and 81.5 on the English evaluation set.

4 Results

Table 2 shows the main results for UD-boxer. We
show the results of using two syntactic parsers
(Stanza and Trankit) and compare to the perfor-
mance of the neural system, trained on just the gold
PMB data and on gold and non-gold data. Our sys-
tem is not competitive with the best Neural Boxer
for English, but clearly outperforms this model for
German, Italian and Dutch. However, when only
using gold data, the performance of our model is
quite close to Neural Boxer for English, while pro-
ducing considerably fewer ill-formed DRSs.

In a manual analysis, we found that the few er-
rors made by UD-Boxer were all caused by un-
expected sentence roots in the UD output of the
Stanza parser. A case in point is the input All of
my friends like computer games where Stanza de-
cides that it is a noun phrase with All as the root,
whereas Trankit assigns like as the root. Currently
no transformation rules deal with such cases. The
graph gets malformed because the root is cut away
at some point since it is a determiner and those can
generally be left out of DRSs.

But the majority of ill-formed output is produced
by the neural parsers. An example, which also ex-

female.n.02

die.v.01

time.n.08geological_formation.n.01

heart_attack.n.01

Patient TimeCauser

now

TPRName

Figure 6: Erroneously (wrong type of disease, incorrect
named entity) and ill-formed output (node missing) of
Neural Boxer for She died of tuberculosis.

hibits hallucination of semantic information, is the
output DRG for She died of tuberculosis (Figure 6),
where the disease changed into a heart attack and is
recognized as an anonymous geological formation
(there is a role Name without a constant). This
strange phenomenon occurs often in output from
both neural parsers. The problem with detecting
these anomalies is that often these graphs score
well, even though they are semantically ill-formed.

5 Conclusion
Our results show competitive performance between
UD-Boxer and Neural Boxer for English, when a
limited amount of training data is available for the
neural approach. In addition, it shows strong cross-
lingual performance using a few simple language-
specific rules and only gold training data to extract
the mappings. Adding more transformation rules
and creating a label substitution component based
on machine learning will likely push the perfor-
mance of UD-Boxer even higher. The phenomena
we have in mind are named entities, numeral ex-
pressions, time and date expressions, and discourse
relations, for which only simple rules have been de-
fined so far. Since UD-Boxer is a modular system,
it is rather straightforward to add such rules.

An important difference between the two seman-
tic parsers is that UD-Boxer is guaranteed to output
a well-formed meaning representation, provided
that the input UD is accurate. Because Neural
Boxer is following a seq2seq transformer approach,
the output does not always correspond to a graph
and therefore requires ad-hoc postprocessing rules
to make such output interpretable. Another serious
deficiency of neural parsers is that it sometimes
hallucinates semantic material without warning. A
transparent semantic parser, even with a slightly
lower performance in some cases, might be a good
alternative for certain applications, in particular
when lower-resourced languages are involved.
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