
Syllabification of Middle Dutch

Gosse Bouma
Rijksuniversiteit Groningen

g.bouma@rug.nl

Ben Hermans
Meertens Institute

ben.hermans@meertens.knaw.nl

Abstract

The study of spelling variation can be seen as a window allowing us to
understand the phonological systems of the dialects of Middle Dutch, and to
what extent they differed. Syllabic information is of great help in the study of
spelling variation, but manual annotation of large corpora is a labor-intensive
task. We present a method for automatic syllabification of words in Middle
Dutch texts. We adapt an existing method for hyphenating (Modern) Dutch
words by modifying the definition of nucleus and onset, and by adding a
number of rules for dealing with spelling variation. The method combines a
rule-based finite-state component and data-driven error-correction rules. The
hyphenation accuracy of the system is 98.4% and word accuracy is 97.4%.
We apply the method to a Middle Dutch corpus and show that the resulting
annotation allows us to study temporal and regional variation in phonology
as reflected in spelling.

1 Introduction

The Corpus Van Reenen Mulder1 (van Reenen and Mulder, 1993; Coussé, 2010)
consists of Dutch legal texts from the 14th Century. It is one of the very few
resources from that period that has been made available in electronic form. Due
to its size and composition (over 2.700 documents dated between 1300 and 1399
and from all Dutch speaking regions in the Netherlands and Flanders) it is ideally
suited for the study of spelling variation.

Our research is motivated by the need to study spelling variation of older Dutch
texts. To a large extent spelling variation is determined by phonological system-
aticity; that is, differences in spelling can be a consequence of differences between
dialects. Take for instance the difference between <priester>, <preyster> and
<prester> ‘priest’. It is possible that the differences in the spelling of the vowel
in the first syllable reflects a difference in the phonological status of this vowel
in the respective dialects; a centralizing diphtong in the case of <priester>, a

1www.diachronie.nl/corpora/crm14

×

falling diphthong in the case of <preyster>, and a long mid vowel in the case
of <prester>. This is a legitimate analysis, because in the Dutch dialect area as
it is now, these differences are still attested. It is highly important to find cases
where orthographic variation is determined by phonological systematicity, because
they allow us to gain more insight into the phonological structure of the dialects of
Middle Dutch. It would be the first step in the construction of a dialect atlas of the
dialects of Middle Dutch.

To realize this goal the presence of information regarding syllable structure is
of great help. With the presence of syllabic information it becomes a lot easier
to determine the class of graphemes that are allowed in a specific position in a
syllable, like the coda. That, again, might help us to gain more insight into the
phonological processes that played a role in the domain of the coda. Consider, for
instance, the fact that the grapheme <gh> is found fairly often in the coda position.
Examples are <meghtich> ‘mightly’ and <ghetyghnesse> ‘testimony’. Normally,
the grapheme <gh> represents the voiced velar fricative. What does the presence
of this grapheme in coda position tell us? It suggests perhaps that, in some Middle
Dutch dialects, the process of devoicing did not apply in the same way it applies in
the modern dialects. The study of the distribution of the graphemes representing
voiced obstruents might reveal significant information regarding the processes of
devoicing, voice assimilation and the difference between dialects of Middle Dutch
with respect to these processes.

A second example of the importance of syllable structure is the distribution
of <l> in the coda. An important difference between dialects is to what extent
they allow the grapheme <l> in this position. In some dialects we find forms like
<arnolde> (proper name) and <goldene> ‘golden’, whereas in other dialects we
find the corresponding <arnoude> and <goudene>. The study of the distribution
of <l> in coda position might reveal how exactly the sound change whereby /l/
vocalized to a glide developed over time, how it spread regionally, and in which
phonological environments it took place.

In short, the study of spelling variation can be seen as a window allowing us to
understand the phonological systems of the dialects of Middle Dutch, and to what
extent they differed. By extenstion it allows us to study the development of phono-
logical processes over time, and the way they spread regionally. The information
of syllabic information is of great help in the study of spelling variation, and this
is the reason why we think it is important to construct a method for automatic
syllabification of words in Middle Dutch texts.

In this paper, we present a method to automatically add syllable boundaries
to Middle Dutch words. The method adapts an existing method for hyphenating
Modern Dutch words to Middle Dutch and consists of two parts: a finite-state
transducer which implements the two main rules for Dutch hyphenation, and a
statistical component that automatically learns rules to correct errors in the output
of the first method.

For testing and evaluation as well as for automatically learning error-correction
rules, we created a gold standard list of hyphenated word types. To this end, 50% of

the word types from the corpus was hyphenated automatically using the rule-based
finite-state system. The output of the automatic system was manually corrected
to obtain a gold standard. Note that given the limited size of the corpus (approxi-
mately 650.000 tokens and 43.000 types),2 we could also have corrected all types
and used the corrected list to hyphenate running text. The advantage of our au-
tomatic method over a dictionary-based method, however, is that it will also be
able to hyphenate words that are not in the dictionary, and thus, its coverage on
unseen corpus-data will probably be better than a method based only on dictionary
look-up. In practice, highest accuracy is probably obtained by applying dictionary
look-up for known words, and the automatic method for unknown words.

In the context of two recent projects (Adelheid3, InPolder4) the texts in the
corpus van Reenen Mulder have been annotated with lemmas (in Modern Dutch
spelling) and morphological structure. Syllable boundaries, however, are not indi-
cated. As there is a considerable gap between the original spelling and the corre-
sponding lemma’s in Modern Dutch, it is not easy to determine syllable boundaries
or hyphenation points on the basis of a hyphenated Modern Dutch dictionary.

Below, we describe previous work on hyphenating (Modern) Dutch and rele-
vant differences between Modern and Middle Dutch. Next, we present our imple-
mentation of the finite-state hyphenation method, which achieves a hyphenation
accuracy of 94.0%. In section 5, we apply transformation-based learning and im-
prove accuracy to 98.4%. In section 6, we give some examples of using the corpus
for studying temporal and regional tendencies in spelling variation.

2 Hyphenating Modern Dutch

Bouma (2003) describes a method for accurate hyphenation of Modern Dutch
text. It consists of two steps: a finite-state transducer that implements the max-
imum onset principle, the most important rule for hyphenating Dutch words, and
a transformation-based learning component that, given a word list of correctly hy-
phenated words, automatically learns rules to correct errors produced by the finite-
state transducer. The system is trained and evaluated on hyphenated word forms
obtained from CELEX. The reported hyphenation accuracy (i.e. percentage of cor-
rectly inserted hyphens) is 99.3% and the word accuracy (i.e. percentage of cor-
rectly hyphenated words) is 98.2%.

Below, we give an informal overview of the system, emphasizing those aspects
that will need reconsideration for our current task.

The rules for syllabifying words in Dutch follow two general principles:

1. Syllable boundaries cannot cross morpheme boundaries.

2This is an approximation, as the transcription contains diacritic tokens to indicate unclear parts
of the original manuscripts, words written as one, etc. We ignored those in our counts.

3http://adelheid.ruhosting.nl
4http://depot.knaw.nl/8914/

2. The maximum onset prinpiciple is respected. That is, consonants that may
be added to either a preceding or following syllable are added to the onset of
the following syllable if this does not violate constraints on onset clusters.

The finite-state method for hyphenating words only implements the second
constraint. The reason for ignoring the first constraint is that detecting morpheme
boundaries is hard, and requires, at least, a detailed lexicon and an implementation
of morphological rules. The second constraint can be implemented using finite-
state techniques. A detailed description is in Bouma (2003). That solution involves
the following steps:

1. Mark the beginning of a word (represented as a sequence of characters).

2. Mark the beginning and end of each nucleus in a word.

3. Insert a hyphen at each position between a nucleus and a following nucleus,
in such a way that the onset of the second nucleus is maximal.

4. Remove all markers except the hyphens.

Each of these steps can be implemented as a finite-state transducer, and the re-
sulting system is then the composition of these transducers. The implementation of
the rules is greatly simplified by the replace operator (Karttunen, 1995; Gerdemann
and van Noord, 1999), a finite-state method for implementing phonological rules
(i.e. contextually sensitive rules for replacing one symbol sequence by another).

In step 2, the method requires that each nucleus is marked. A nucleus is de-
fined here as the maximal sequence of characters (going from left to right) that
can represent a vowel or diphtong in Dutch. To this end, a listing of all possible
nucleus character sequences is provided. Similarly, in step 3, the method requires
that the onset of the second syllable follows the rules of Dutch orthography. Again,
this is implemented by providing a list of all possible onset character strings. No
constraints are imposed on the coda of a syllable, other than that it must consist of a
sequence of consonants. An example of this algorithm for the word <aardappel>
‘potato’, a compound of <aard> ‘earth’ and <appel> ‘apple’ is shown below:

aardappel
⇓

+aardappel
⇓

+@aa@rd@a@pp@e@l
⇓

+@aa@r-d@a@p-p@e@l
⇓

aar-dap-pel

Note that the sequence <aa> is marked as a single nucleus, in spite of the
fact that a letter <a> can also form a nucleus by itself. The output of the system
contains an error, as it identifies aar-dap as a syllable boundary, where this should
have been aard-ap, following the morphological boundary between <aard> and
<appel>.

The hyphenation accuracy of a system that only uses the notions nucleus and
onset, is 94.5%, and word accuracy is 86.1%. To improve accuracy, one can
use data-driven machine learning techniques that learn from correctly segmented
words. In Bouma (2003), a method is presented that uses transformation-based
learning (Brill, 1995; Ngai and Florian, 2001). Given a word, the system considers
both the hyphenation predicted by the finite-state system and the correct hyphen-
ation produced by a human expert. By inspecting large data samples, the system
learns rules that correct frequent errors in the system output. In Bouma (2003),
290.000 hyphenated words from CELEX are used for training, and a hyphenation
accuracy of 99.3% and a word accuracy of 98.2% is achieved. This accuracy is
comparable to that of state-of-the-art hyphenation methods, such as the hyphen-
ation patterns implemented in the text typesetting package LATEX. An interesting
feature of transformation-based learning is that the error-correcting rules can them-
selves be interpreted as finite-state transducers, and thus can be composed with the
baseline finite-state hyphenator to obtain a highly efficient and accurate finite-state
hyphenator.

3 Challenges

Adapting the method described above to Middle Dutch requires that we modify the
definition of nucleus and onset and deal with some peculiarities of Middle Dutch
spelling.

Middle Dutch texts exhibit a substantial amount of spelling variation, as il-
lustrated in table 1. As a consequence, nuclei and onsets will also exhibit a wider
range of variation than in Modern Dutch. The nucleus <ey> in <borghermeyster>,
for instance, does not exist in Modern Dutch. More in general, the spelling of long
vowels sometimes involves doubling of the character (as in Modern Dutch), but in
other cases addition of <e>, <i> or <y> Thus, we find <aan>, <aen>, <ain>,
and <ayn>.5

While spelling variation in itself does not make the hyphenation task harder
(it just requires adding alternative spellings of nuclei and onsets), there are some
patterns that do require special attention:6

• The characters <i> and <j> are interchanged frequently (<iaer> vs <jaer>

5Van Halteren et al., www.ccl.kuleuven.be/CLARIN/vanhalteren.pdf, and Kestemont et al.
(2010) address the issue of spelling normalization, where tokens in the original text are linked to the
most likely lemma in Modern Dutch.

6These are all a consequence of the fact that Middle Dutch orthography is influenced by Latin,
which did not distinguish between <i> and <j>, <v> and <u>, and did not have a <w>.

borgchermestere
borgermestere
borghemeestere
borghemeyster
borghermeester
borghermeistere
borghermester
borghermeyster
borhermestere
burchmeester

burgeremeystere
burgermeesteren
burgermeister
burgermeystere
burghemeesteren
burghemeisteren
burghemeysteren
burghemeysters
burghermeestere
burghermeistere

burghermeisters
burghermestere
burghermeysters
burghmeester
burghmeisters
burghmesters
burghmeysteren
burghmeysters
burgmesters

Table 1: Spelling variants of the Dutch word for ‘mayor’. Inflected forms are only
included if the uninflected form with the same spelling was absent.

‘year’, <ighelic> vs. <jghelic> ‘in fact’).

• Similarly, <u> and <v> are often used interchangeably: <uerclaringhen>
vs. <verclaringhen> ‘statement’, <uerstaen> vs. <verstaen> ‘understand’,
<zeuentien> vs. <zeventien> ‘seventeen’.

• The letter <w> is often used for the diphtong <uu> (<uutghesproken>
vs. <wtghesproken> ‘stated’, <zuutzide> vs. <zwtzide> ‘southside’).

• Finally, double <v> is sometimes used to denote a vowel (long <u>) (as in
<hvvs> (‘house’)) or a consonant (<w>) as in <gesvvoren> (‘sworn’).

This makes syllabification hard, as <i>, which only is (part of) a nucleus in mod-
ern spelling, may also be (part of) an onset in Middle Dutch. Similarly, <j> is
only used in onsets in Modern Dutch (except for the diphtong <ij>), but can also
be (part of) a nucleus in Middle Dutch. The same ambiguity holds for the character
pairs <u> and <v>, the character <w> and the character bigram <vv>.

4 Adapting a Rule-based Hyphenator

As the general principles of syllabification have not changed, the general archi-
tecture of the rule-based, finite-state, hyphenator for Modern Dutch outlined in
section 2 can remain unchanged. To account for the difference in orthography,
however, we must adapt the definition of nucleus and onset. Furthermore, charac-
ters i,j,u,v, and w require special attention.

4.1 Spelling issues

To make the task of identifying nuclei and onsets more accurate, we first replace
the character u with U in those cases where u functions as consonant, and replace
v,w, and j with V,W and J respectively, in contexts where these function as vowels:

nucleus a, aaC, ae, ai, au, e, ee, ei, eu, ey, i, ie, ii, iae, J,
o, oe, ooC, ou, oi, oy, u, uuC, ue, uy, ui, V, Vy, W, y, ye

onset b, bl, br, c, ch, cl, cr, d, dr, dw, f, fl, fr, g, gh, gl,
gr, h, j, k, kl, kn, kr, l, m, n, p, ph, pl, pr, Q, r, s,
sc, sch, schr, scr, sl, sn, sp, spl, spr, st, str, t, th,
tj, tr, U, v, vl, vr, w, wr, x, z, zw

Table 2: A listing of the definition of nucleus and onset. Upper case C de-
notes any consonant. Upper case Q denotes the letter combination qu. Upper
case J,U,V,W indicate occurrences of lower case j,u,v,w that function as vowel
(<j>,<v>,<w> or consonant<u>).

• In the sequences aue, eue, and oui, u almost always functions as a v.
Therefore, we replace such sequences with aUe, eUe, and oUi, respectively,
where we use U as the character that denotes a u functioning as a consonant.

• In the sequences C1vC2 and +vC2, v almost always functions as u. (We
impose some restrictions on C2 to prevent over-generalization.) We replace
the v in such sequences with V to denote a v functioning as a vowel character.

• In the sequences C1wC2 and +wC2, w almost always functions as uu. We
replace the w in such sequences with W to denote a w functioning as a vowel
character.

• In the sequences + jn and + jm, j functions as i. Therefore, we replace j
with J to denote a j functioning as vowel.

After these rules have been applied, the steps that identify nuclei and syllable
boundaries are applied as in the finite-state method presented above.

4.2 Updating definitions

A nucleus is represented orthographically as a sequence of one, two, or sometimes
three vowel characters. Middle Dutch spelling allows for some sequences that are
not used in Modern Dutch (i.e. <ae>, <ai>, <ey>, <ii>, <iae>, <oy>, <uy>,
<ye>). We inspected the word list to find the most frequent cases and incorporated
these in the definition of nucleus, as shown in table 2. The spelling of onsets is to
a large extent identical to that in Modern Dutch.

The nuclei aaC, ooC and uuC in the list are not quite in accordance with lin-
guistic notions, but were introduced to make the prediction of hyphenation points
more accurate. In Modern Dutch, long vowels in closed syllables are represented
by a double character <aa>, <oo> or <uu>.7 Therefore, if we encounter such

7The long vowel <ee> is an exception, as this can also occur in word-final open syllables, i.e.
<zee> ‘sea’.

a sequence, we know the syllable of which it is the nucleus has to contain a non-
empty coda. By marking the following consonant as part of the nucleus in such
cases, we prevent the maximum onset principle from considering the consonant as
part of the onset of a following syllable. The problem can be illustrated with a
word like <clooster>, ‘monastry’. By recognizing a nucleus oos, we predict the
hyphenation cloos-ter. Had we predicted the nucleus oo, we would obtain the
hyphenation cloo-ster, as <st> is a possible onset. It should be noted, though,
that the rule that says that <aa>, <oo>, and <uu> are always followed by a non-
empty coda is not absolute (in contrast with Modern Dutch). So, we do also find
examples such as <coo-pen> and <boo-de> and thus this strategy is less accurate
in Middle Dutch than in Modern Dutch.

4.3 Implementation

We implemented the hyphenation system as a sequence of finite-state transducers.
The steps in the algorithm are the same as for Modern Dutch, except that we intro-
duce one additional step where certain letters are replaced by upper case letters in
order to make the following steps more accurate.

1. Mark the beginning of a word (represented as a sequence of characters).

2. Replace letters j,u,v,w and bigram qu with an upper case letter in certain
contexts.

3. Mark the beginning and end of each nucleus in a word.

4. Insert a hyphen at each position between a nucleus and a following nucleus,
in such a way that the onset of the second nucleus is maximal.

5. Remove all markers except hyphens, and convert upper case letters to their
lower case counterparts.

The most crucial parts are steps 3 and 4, which require a definition of nucleus
and onset. We used the definitions in figure 2. We arrived at these definitions by
iterative testing on the list of types from the corpus.

The manually developed rule-based system is useful mostly as a base-line sys-
tem that helped us in creating a manually corrected list of word types with hyphen-
ation points. That is, we compiled a word list from our corpus and automatically
hyphenated the word types using our finite-state hyphenator. 50% of the resulting
data was corrected by a human expert. As the accuracy of the rule-based system is
relatively high, the amount of manual labor was modest and far more efficient than
an approach where hyphenation patterns have to be added manually to all words.

After creation of the gold standard word list, we observed that the automatic
system in fact achieved 94.0% hyphenation accuracy and 90.1% word accuracy.

word (answered) a n d w e r d e
system an-dwer-de 0 0 1 0 0 0 1 0
correct and-wer-de 0 0 2 0 0 0 1 0

word (pilgrimage) b e d e v a e r d
system be-deu-aerd 0 0 1 0 0 1 0 0 0
correct be-de-uaerd 0 0 1 0 0 9 0 0 0

Table 3: Aligning system output and correct hyphenation patterns

5 Applying Transformation-based learning

By comparing the output of the automatic finite state hyphenation program with the
correct hyphenation in our segmented word list, we can detect where the program
makes errors. If we can find patterns or regularities in the errors, we can try to add
rules to the hyphenator that would correct or prevent these errors.

Transformation-based learning Brill (1995); Ngai and Florian (2001) is a ma-
chine learning method that automatically tries to find the rule that corrects most
errors in the data. The score of a rule (on a set of training data) is the number
of correctly corrected errors minus the number of newly introduced errors (as the
rule will usually also apply to a number of cases that were actually correct). The
method has been used mostly in part-of-speech tagging, and requires annotated
data for training. Given a corpus that is both manually annotated (providing the
gold standard) and annotated by a baseline POS tagger (for instance, a system that
always assigns the most frequent POS for a word), TBL learns rules that replace an
incorrect POS-tag in the system output by a correct POS-tag. After applying the
rule with the highest score to the output of the baseline system, rule scores are re-
computed and the rule with the highest score on the modified data is applied, and
so on until a stopping criterion is reached.

Correcting hyphenation errors can be seen as a similar task. We first assign
to each letter in an input word either the value 0 or 1, where 0 stands for ‘not
preceded by a hyphen’ and 1 stands for ‘preceded by a hyphen’. Furthermore, the
gold-standard hyphenation pattern is aligned with the system output by using two
more codes, 2 in case the hyphen actually has to be placed one more position to the
right, and 9 in case a hyphen has to be placed one position to the left. As explained
in Bouma (2003) this coding has the advantage that the correction of a hyphenation
mistake in general requires 1 instead of 2 correction rules. Two examples of this
alignment scheme are given in table 3.

We performed 10-fold cross-validation, where in each experiment the system
is trained on 90% of the data, and test on the remaining 10%. The highest scoring
rules for one of the experiments are given in table 4.

After applying the rules to a held out portion of the data, we obtain an average
hyphenation accuracy of 97.90% (s.d. = 0.173) and an average word accuracy of

-ster → s-ter
-ru → r-u
-fl → f-l
-y → y

eu-a → e-ua
+io- → +io
c+hei → ch-ei
l-ue → lu-e

Table 4: The highest scoring error correcting rules learned by TBL

96.5% (s.d. = 0.317).
Roche and Schabes (1997) have shown that the rules learned by TBL can be

interpreted as finite-state transducers that replace a symbol by another symbol in
a given context. Sequential rule application corresponds to the composition of the
transducers for the individual rules. An end-to-end system, finally, that hyphen-
ates words, can be obtained by the composition of the finite-state transducer that
represents the rule-based system and the finite-state transducer that implements all
TBL rules. Using the FSA tools, we have computed this finite-state transducer (131
states, executable is 442 kB.)

6 Preliminary Exploration of results

The segmentation program that is the result of combining the rule-based and error-
driven components can be applied to all of the texts in the Corpus van Reenen
Mulder (CRM14). The result is texts in which each word has been segmented into
syllables with an accuracy of over 97%.8

The metadata in CRM14 provides both the year and location of the manuscripts.
Thus, we can easily compute the relative frequency of syllables, onsets, or nuclei
over a period of 100 years (1300-1400). For instance, onsets <gh> and <g> are
often used interchangeably, as witnessed by the fact that we find over 3000 minimal
pairs, i.e. word types that differ only in the choice for <gh> vs. <g> such as <al-
ghe-heel> vs. <al-ge-heel>. Similarly, the nuclei <ei> and <ey> are often used
interchangably (over 700 minimal pairs).

Figure 1 compares the change in relative frequency of the onsets <gh> and
<g> over time. It shows that during the period represented in the corpus, the
frequency of onset <gh> is falling while the frequency of onset <g> rises. Note
that for this comparison, obtaining accurate frequency estimates from a corpus with
unsegmented words is challenging, as determining whether g is part of a coda or
onset in word-internal positions is hard without actually segmenting the word.

We can also study regional tendencies in spelling. The geographical distribu-
tion of <ei> as a percentage of all <ei> + <ey> occurrences for a given location,9

8The word accuracy on running text is probably higher than that for a word list for the same
text. One reason is the fact that monosyllabic words tend to be frequent. As the programme hardly
makes mistakes on monosyllabic words (as identification of a nucleus is close to perfect), the overall
accuracy on running text will go up.

9Only shown for locations for which at least 10 occurrences of both forms were available.

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

1300 1320 1340 1360 1380 1400

30
40

50
60

70

year

oc
cu

rr
en

ce
s

pe
r

10
00

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

● ●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

1300 1320 1340 1360 1380 1400

5
10

15
20

25
30

year
oc

cu
rr

en
ce

s
pe

r
10

00

Figure 1: Distribution of the onsets gh (left) and g (right) over time (1300-1400).

Figure 2: <ei> occur-
rences as a percentage of
the total number of <ei>
and <ey> occurrences for
various locations. Darker
colors indicate a higher
percentage of <ei>.

is given in Figure 2. It shows that preference for <ei> was stronger in the south of
the Netherlands than in the north.10

7 Conclusion

The study of phonological processes in historical text can benefit from accurate
information about the morphological and phonological structure of words. We
have presented a method for accurate syllabification of Middle Dutch texts, using
a finite-state and data-driven method originally developed for Modern Dutch. The
result can be compiled into an efficient transducer that can be used to automatically

10The map was created using the Gapmap software, www.gabmap.nl.

annotate large corpora from the given era with syllable boundaries. An obvious
candidate is the Corpus Gysseling.11

By applying this method to the complete CRM14, we obtain a corpus annotated
with syllable boundaries. We demonstrate that this information can be used to
study both temporal and regional variation in the distribution of onsets and nuclei.
In future work, we hope to show that this can be the basis of deeper and more
principled studies into the phonology of Middle Dutch.

References

Gosse Bouma. Finite state methods for hyphenation. Journal of Natural Language
Engineering, 9:5–20, 2003. Special Issue on Finite State Methods in NLP.

Eric Brill. Transformation-based error-driven learning and natural language pro-
cessing: A case study in part-of-speech tagging. Computational Linguistics, 21:
543–566, 1995.

Evie Coussé. Een digitaal compilatiecorpus historisch Nederlands. Lexikos, 20:
123–142, 2010.

Dale Gerdemann and Gertjan van Noord. Transducers from rewrite rules with
backreferences. In Proceedings of the Ninth Conference of the European Chap-
ter of the Association for Computational Linguistics, pages 126–133, Bergen,
1999.

Lauri Karttunen. The replace operator. In 33th Annual Meeting of the Association
for Computational Linguistics, pages 16–23, Boston, Massachusetts, 1995.

M. Kestemont, W. Daelemans, and G. De Pauw. Weigh your words-memory-based
lemmatization for Middle Dutch. Literary and Linguistic Computing, 25(3):
287–301, 2010.

Grace Ngai and Radu Florian. Transformation-based learning in the fast lane. In
Proceedings of the second conference of the North American chapter of the ACL,
pages 40–47, Pittsburgh, 2001.

Emmanuel Roche and Yves Schabes. Deterministic part-of-speech tagging with
finite-state transducers. In Emmanuel Roche and Yves Schabes, editors, Finite
state language processing, pages 205–239. MIT Press, Cambridge, Mass., 1997.

P. T. van Reenen and M. Mulder. Een gegevensbank van 14de-eeuwse Middelned-
erlandse dialecten op de computer. Lexikos, 3:259–281, 1993.

11http://gysseling.corpus.taalbanknederlands.inl.nl/cqlwebapp/search.html

