1. Universals and Quasi-Universals.

It seems to be a property of every natural language that it can express universally quantified statements. The need for making universal claims must be deeply ingrained in human nature, even
though we realize they are seldom true. Sometimes this lack of truth is taken as a hint to the though we realize they are seldom true. Sometimes this lack of truth is taken as a hint to the hearer to restrict his domain of interpretation in a suitable manner, guided by general pragmati
principles. So, for example, the statement "I can see everybody quite well from here" is usuall principles. So, for example, the statement "I can see everybody quite well from here" is usually
understood not to pertain to the speaker. In other cases the speaker fulfills this task herself by
indicating that the univeral indicating that the universal applies with certain restrictions, for instance by hedging the quantifie
with almost or nearly or by mentioning excertions with almost or nearly or by mentioning exceptions. Such statements I will refer to here a
quasi-universals. The study of quasi-universals has been largely ignored in semantic theories mainly, I take it, because until recently semantic theories of quantification were concerne primarily with predicate logic and had nothing to offer for the analysis of the venstly more concompled
quantificational systems of natural languages. With the arrival of generalized auantifier theory and discourse represestation theory, we now have more complete descriptive coverage and the eginingss of an explanatory account. This paper explores the properties of a particular kind of quasi-universals, viz. universals with qualified exceptions. The proposals offered herc should be an adequate theory of natural language quantification should cover.

Exceptions to universally quantified statements can be stated in several ways in English. The
statement in (1a) is qualified differently in (1b) and (1c):
(1) a. Every day it was raining.
c. Every day except Sunday it was raining

In this paper, I give a compositional semantics for exception-phrases introduced by either but o except (for). As a matter of fact, there are more expressions in English which serve the sam general purpose, including the archaic save, and locutions like not counting X, with the exception
of Y, barring Z etc. However, they do not appear to behave significantly different from except for.

Any account of exception-phrases in English must take into consideration the differences in distribution and cooccurrence restrictions between but and exceppt. In what follows, I will only y b
concerned with the use of but as a marker of exception, and ignore the but of contrastive conjunction, as well as the but found marker of exceeption, and ignore the but of contrastives as But for your help, I would not have made it.. Simplifying somewhat, we can observe that but seems to be restricted to the PP-position inside universally quantified NPs, whereas except-PPs occur there, as well as in any position
where sentential modifiers may occur, such as the sentence-initial position, the sentence-final and the VP-initial position. In addition to (1c), for instance, we have:
terne
(1) d. Except for Sunday, it was raining every day.
e. It was, except for Sunday, raining every day,
f. It was raining every day, except for Sunday.
ther important difference between but and except is the fact that except is not necessarily linked to a universal NP, as the examples in (2-3) purport to show:
(2) a. Except for June, car sales were down from last year
b. Except for the car, your possessions have no value. b. Excepp for today, I'm all booksed this weck.
(3) a. \#Car sales were down from last year but June.
b. \#Your possessions but the car have no
c. \#I'm all booked this week but today.

As a matter of fact, it is necessary here to distinguish between to kinds of except-PPs: free PPs Ask the ones in (2) above, and connected PPs which serve as postmodifiers in NPs, such as the one in example (1c). The latter do not cooccur wihh definite articles, whereas the former do:
(4) a. Every student except for Stan has left
b. Every sududent except for San , has letit b. Every student, except for Stan, has left.
c.\#The students except for Stan have left. d. The sududents, except for for Stan, have left. e.. My students except for Alvin are all female.
f. My students, except for Alvin, are all female.

The main distinction, then, that emerges is the one between free and connected exception phrases. Conenected exxeption phrases ares strictly y sasociated with universalal determiners, in particulatreverery,
all and $n o$ (i.e. rooghly the class of quantifiers which can be modified by almost $)$, whereas free exception-phrases apply to certain kinds of propositions, namely those that express, in one way or another, a univessal salesent in which there is no overtid universal quandifier for the PPs to be linked
such as donkey-sentences. in to:
(5) a. If a farmer owns a donkey, he's sure to beat it, except for Pedro, who is a Buddhist.
b. If a farmer owns a donkey, he will beat it, except when the donkey is a pet.

Another observation related to this is that connected exception-phrases behave differently with regard to wh-words than do free ones. As noted by Horn and Bayer (1984), (5c) has to be thing like that. On the other hand, when who cannot be paraphrased as nobody and the question is not meant to be rhetorical, but-phrases are not acceptable, as (5d) makes clear.
(5) c. Who but a total idiot would say a thing like that?
d. \#Who but John is coming to the party?

Free exception-pprases, on the other hand, are fine with real questions as the example in (5e) below shows. As Fred Landman pointed out to me, in all of these cases the exception phrases is equivalent too a besides phrase, a meaning which it Dutch couterpart behalve often has in other
constructions as well (cf. Landman and Moerdijk 1980).

The interaction of exception-phrases with questions is not too surprising, given the
quantificational natural of $w h$-questions (cf. for instance the theory of questions in Higginbotham and May 1981). Exxception prisases are a good test for quantificational structures and clearly
distinguish for instance wh-questions from relative clauses, even though the latter are structurl distinguish for instance wh-questions from relative clauses, even though the later are structurally
very similar in English, cp. the following contrast:
(5) f. Who except for John left drunk before midnight?
g. *Everybody who except for John left before midnight was drunk

Relative pronouns, unlike question pronouns, simply are not quantifiers, and this makes sentence such as (5 g) unacceptable. When the exception phrase seems to occur at the end of the relativ
clause, as in (5 h) below, the sentence is fine, but here we may safely assume that the excention phasese is in construction with the whole noun plrase, and does not really belong to the relative
clause at all:
(5) h. Everybody who left before midnight, except for John, was drunk.

To retum to (5 c), it is not entirely clear to me why but gives rise to a rhetorical interpretation
This observation does not appear to follow directly from the semantics given helow This observation does not appear to follow directly from the semantics given below. The status o
rhetorical questions is an interesting one, also with regard to the analysis of negotive polatis rhetorical questions is an interesting one, also with regard to the analysis of negative polarity item.
(Ladusaw 1979), but a thorough investigation of their properties is beyond the scope of this paper.
2. Connected Exception-Phrases
2.1. Determiner- vs. NP-Modification. For a compositional analysis of connected exceptio
 exception phrase modifies the common noun, is not plausible, since that offers no clear way restricting such modifiers to universally quanitified expressions. For instance, we could say that in every student but Jim, the predicate student is modified by but Jim and denotes the set of studen
minus Jim. The quantifier every is restricted to that set. However, this would work equally fin for such ungrammatical NPs as *some student tut John or ${ }^{*}$ many a student but John. So if we
want want to rule such expressions out semantically, it will be necessary to combine the exception
phrase to the determiner, or else to the quantified NP. rer

If we treat connected exception-phrases as NP modifiers, another problem arises. The NPs with which an exception-phrase can combine form a a aturaral semanatic class, but this natural class canno
be defined in terms of denotations only. The NPs three students and all students have the same be defined in terms of denotations only. The NPs sthree students and all students have the same denotation in situations where the number of students is three, yet ven then only the latter nou in all situations, but this is an unnecessary complication. An extensional semantics can be maintained if we consider but te as parts of the deteerminer. In other words. all .t but me could be viewed as a discontinuous determiner. This may also appear plausible e iven the existence of a tudents, which is best analyzed as a complex determiner. This kind of analysis is obviously no

constituents. Nevertheless, it has in fact been proposed recently in Keenan and Stavi's (1986) paper on determiners. It is of course also preminisecten of some theories of relative clauses
proposed in the early days of generative grammar see es Stockwell, Schachter and Parte 1973 proposed in the early days of generative grammar (see e.g. Stockwell, Schachter and Partee 1973 necessary to give a nonextensional account for free exception phrases in any case. In the case of relative clauses and prepositional phrases, a standard argument against treating them as part of the determiner is the fact that they can modify conjoined NPs, as in the man and the woman in the biue T-bird or a father and a son who quarreled constantly. In the case of but-phrases, this
argument is a little harder to make. For example, in every man and every woman but X, the argument is a little harder to make. For example, in every man and every woman bund
modifier is more likely to be construed with the second conjunct than with the whole conjunclion. Hence the garden-path effect in a noun phrase like every man and every woman but John. However, I trust that a noun phrase iike every man and every woman but John and Mary is sufficiently acceptable to warrant pursuing the possibility of interpreting connected exception-
phrases as NP-modifiers. This will also make it easier to treat cases like none but the brave phraserve the fair, where the exception phrase modififis a pronominal NP. The other approach forres one to analyze none into no + one, which may be historicalf conncected exception-phrases
synchronic syntactic evidence. I begin with a semantic analysis of conncel synchronic synactic evidence. Hbegin wind ant of the determiner, and then proceed to give a more
based on the assumption that they are part complex semantics which assumes that they are NP-modifiers.
cher
2.2. Semantics for DET .. but NP. In order to characterize the meaning of connected exception phrases, a word must be said about the semantic interpretation of determiners. Following some
work on generaized quantifier theory (Zwarts 1983, Van Benthem 1986), I define determiner work on generalized quantifier theory (Zwarts
meanings as functions Q which assign to a domain of quantification E a binary relation Q_{E} metween subsets of E. (In what follows, , the domain subscript will be dropped.) The relations
expressed by the universal determiners every and no are defined as follows:
(6)
Noreas A iff $\mathrm{A} \cap \mathrm{A} \cap \mathrm{B}=\varnothing$
\varnothing

These relations have the properties of left-downward monotonicity and left additivity, and share with other determiner-interpretations the property of conservativity:
(7) Left Downward Monotonicity
QAB and $\mathrm{A}^{\prime} \subseteq \mathrm{A}$ imply $\mathrm{QA}{ }^{\prime} \mathrm{B}$
${ }^{\text {Leff } A \text { Additivity }}{ }_{\mathrm{QAB}} \mathrm{OA}^{\prime} \mathrm{B}$ imply $\mathrm{Q}\left(\mathrm{A} \cup \mathrm{A}^{\prime}\right) \mathrm{B}$
Conservativity
QAB implies $\mathrm{QA}(\mathrm{A} \cap \mathrm{B})$
Left additive quantifiers are called "uniting" in Van Benthem (1984: 457). Van Benthem notes (in
his theorem 4.4.4, p. 458) that on the nonempty sets, the only quantifiers satisfying some broad his theorem 4.4.4, p. 458) that on the nonempty sets, the only quantifiers satisfying some broad
constraints which are both left-downward monotone and uniting are every (and its synonyms) and constraints which are both left-downward monotone and uniting are every (and its synonyms) and
no. These two properties, then, characterize formally the class of determiners we are interested in no. These two properties, then, characterize formally the class of determiners we are interested in
here. For example, ,the determiner neither is semantically related to no, but cannot be modified by
a but-clause. Cp. the ungrammaticality of (8):
(8) Neither man but Tim was pleased.

This seemingly odd fact follows directly from our characterization, since neither does not have the properties of left-downward monotonicity and left-additivity, because "neither A is a a B,
presupposes that the cardinality of $\|A\| l l$
is 2 . Hence "neither A is a B^{\prime} does not entail "neither A ' B^{B} whenever A^{\prime} cenotinality of $\| \mathrm{Alll}$ is 2 . Hence "neither A is a B " does not entail "neither A^{\prime} is cardinality presupposition

Another fact of some interest is the unacceptability of connected exception phrases with not all, a * not all men but Tim. complex determiner (as in Hoeksema 1986a, for completely independent reasons), because the is treated as a NP-modifier, as some would have it, it is not let clear why it cannot combine with the perfectly acceptable expression all men but Tim.

The semantic interpretation of connected exception phrases can be stated as follows
(9) QAB but $\mathrm{C}=\mathrm{d} \mathrm{Q} \mathrm{Q}(\mathrm{A}-\{\mathrm{cc}) \mathrm{B}$ and $\mathrm{c} \notin \mathrm{B}$, for any left-downward monotone
and left-additive Q , and undefined for all other Q .

This definition is not entirely correct, because it only deals with those cases with the exceptionppear to be somewhat odd (cf? ? Howdent but every every female one), and anyway a proper extension of the above definition to quantificational arguments is straightforward. ${ }^{2}$ Note that the definition does not require that c be a member of
A. In other words, the truth-conditions for a sentence like All A. In other words, the truth-conditions for a sentence like All students but Jim were straight do not
require that J im be a student. That seems to be an obvious Gricean implicatre, sine the exception clause would otherwise be vacuous. Note also that the implicature is not cancelled by egation, and hence it is not an entailment. In. Notet alsect that the inplicature is not cancelled by from the one given in Keenan and Stavi (1986: 281). According to these authors, All students but
Sim were straight would be true just in case Jim is the only student who in not straight. Fornally:
(10) every ... but Jim A B iff $[\mathrm{j}]=\mathrm{A} \cap \mathrm{E}-\mathrm{B}$

Hence in their semantics, it is logically entailed that Jim is a student If we treat that as an implicature, we can explain why the question Is every student butt Ifim straight? seems to
presuppose that Jim is a student. It would be certainly be very odd to answer that question with ${ }_{N o,}$ presuppose is not a student.

Keenan and Stavi note that every... but Jim denotes a conservative function under their definition. we require that primitive deterniners sition makes Q.. but constraise for any Q and c . If we reeurre hat primilive determiners, such as the ones that but-phrases operate on, have the
property of right-continuity (cf. Thijsse 1983, van Benthem 1986), then indeed it follows that complex determiners of the form Q.but c are conservative relations according to our semantic
definition, given that Q is conservative.
 Qe derive $\mathrm{Q}(\mathrm{A}-\mathrm{C})(\mathrm{C})(\mathrm{B} \cap \mathrm{A})$ by right-continuity. This in turn equals $\mathrm{QA}(\mathrm{B} \cap \mathrm{A})$ but c , which is
what we wanted to show.
fter some hesitation, I decided to add to clause $c \notin B$ to def. (9). So from All students but Jim are straight, it may be concluded that Jim is not straight. This is treated as a logical entailment here, even though we could also give a Gricean account. After all, if Jim were straight, then by eft-additivity we conclude that all students are straight. The exception phrase would be redundant
ent that case. The implicature arises from the assumption of non-redundancy. Whie ac sums there has at least the advantage that it differentiates between such pairs of statements as:

(1) a. \#Every even number but 2 is an even number. b. \#Every even number but 3 is an even number.

The first sentence has the mild oddness of a logical contradiction, whereas the second one denics memthing it seems to presuppose. To the extent hat such sentences are felt to be odd in different ways, the present account seems
are straightorward contradictions.
2.3. NP-modification. In this section, the above semantics is reformulated to accomodate the 2. NP-modification. In this secton, hat above semanics is reformuated io accomodate the his makes it necessary to go intensional. The interpretation of a noun phrase Det Nom is defined as the image of $\|$ Nom\|l under the relation $\| D$ Detl. Thus, if $\| D$ etll $=Q$, and $\| N$ Nomll $=A$, then $\| D$ De
Nom\| $=$ Q $A]=\{X \mid Q A X]$ To narrow down the class of noun phases to which but-phrase Nomll $=\mathrm{Q}[\mathrm{A}]=\{\mathrm{XI} \mathrm{QAX}\}$. To narrow down the class of noun phrases to which but-phrases
pply, we can require that they have two model-theoretic properties which reflect the apply, we can require that they have two model
monotonicity and additivity requirements given before:

$$
\begin{aligned}
& \begin{array}{l}
\text { (12) Closure under submodels. } \\
\text { Let } \mathrm{E}^{\prime} \subseteq \mathrm{E} \text {, and } \mathrm{X} \subseteq \mathbb{N P}_{\mathrm{E}} \text {, then } \mathrm{X} \cap \mathrm{E}^{\prime} \subseteq \| \mathbb{N P \| _ { \mathrm { E } }} . \\
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { hen } \mathrm{X} \cap\left(\mathrm{E} \cup \mathrm{E}^{\prime}\right) \subseteq{\|N P\|^{2}}^{\text {E }}
\end{aligned}
$$

Note in particular that the first requirement entails that the quantified sentence is true at the empty nodel. This rules out all kinds of existenial quitive rest reven students, which may hold true o of a predicate at two models without holding true of that predicate at the union of these models. Another fact to note is that these two properties are preserved under boolean meets, so that
conjunctions of NPs which have these two properties will also have them. This accounts for the onjunctions of NPs which have these two properties will also have them. This accounts for th observation that connected exception-phrases may combine with conjunctions of universally quantified noun phrases.

The interpretation of connected exception-phrases can now be stated thus

$$
\underset{\left.\mathrm{X} \notin\|\mathbb{N P}\|_{\mathrm{E}}\right]}{\text { (13) }} \underset{\mathbb{N P} \text { but } \|_{\mathrm{E}}=\left(\mathrm{X} \subseteq \mathrm{E}: \mathrm{X}-\{\|\mathrm{lll}\|\} \in\|\mathbb{N P}\|_{\mathrm{E}-\|\mathrm{lll}\|\}}\right. \text { and }}{ }
$$

The consequences of this definition for the two main cases, NPs beginning with all and NPs
beginning with $n o$, are as follows: while all X denotes the set of X s supersets, all X but c denotes
the set of all supersets of X from which c has been subtracted. Likewise no X denotes the set of all sets not overlapping with X, and no X but c the result of adding c to every set in that collection.
Hence a sentence ile All students but Jim are straight still entails under the new semantics that Jim is not straight, whereas No students but J Iim are straight entails that Jim is not straight.
3. Free Exception-Phrases.
3.1. Except + Universals For the semantics of free exception-phrases, it is prefectly obvious that a simple extensional, which is to say truth-functional, approach is not possible. This comes as no
surprise, given that there really do not seem to be any truth-functional sentential operators. Even negation, the standarde examply, do hos reeent to be any truth-functional sentential operators. Even
1987, following a rather long line of logilicians reealocated to the predicate operators (Horn sentence operators, such as the lidverbials certaingly and possibly, are all obviously intensional in sentince operators, such as the adverbials certainly and possibly, are all obviously intensional in
nature. In interpreing free exception phrases, we must seek to capture the notion "universal sentence" which appears to be the crucial one in defining the kind of sentences which have such
phrases. As a first approximation, let us consider the conditions of additivity and closure under submodels mentioned earlier. However, the situation is more complex here, because mixed universal//existential sentences can also be modified by free exception-phrases, at least when the universal quantifier has wide scope:
(14) a. Except for John, every student has a car.
b. There is a seat for every guest, except for you.

Clearly, such sentences do not have to be true at submodels of models they are true at. Take a model of a situation where every student has a car, remove the cars from its universse, and we have
a submodel where the sentence is obviously false. We have also seen that free exception--hber a submodel where the sentence is obviously false. We have also seen that free exception-phrases
can be used in sentences with definite descriptions, which are universals with existential import.
Rather interestinly there Rather interestinly, there appears to to be a constraint against existential/universal sentences
(sentences where the existential quantifier has scope over the universal quantifier) with preposed exception-phrases. For instance, the following cases are bad:
(15) a. \#Except for this Cadillac, somebody damaged every car.
b. \#Except for you, a friend of mine called everybody a b. \#Except for you, a friend of mine called everybody an idiot.
c.\#Exept for Mark, a proessor left messages for every sudent.
d. \#Except for Lily, I sometimes detest all my siblings.

In (15d), a temporal existential quantifier is used instead of an existential noun phrase. Though the effect is perhaps weaker, this sentence is clearly less acceptable than the corresponding
sentence without sometimes. Note that these examples are fine when the exception-phrase is sentence wi:
extraposed:
(16) a. Somebody damaged every car, except for this Cadillac.
b. A friend of mine called everybody an idiot, except for you.
c. A professor left messages for every sudent, except for Mark.
c. A professor reft messages for every student, except
d. I sometimes detest all my siblings, except for Lily.

It is rather difficult to make sense of these facts. Perhaps the most obvious way out would be to
laim that so-called free exception-phrases are actually not free, but must occur under the scope of a universal quantifier. Exceppion-phraseses in initialy notitioen are c-commanded by the subbect position, but not by the direct object position, according to such studies as Reithhart (1983). Hence similar to the ones in (15), but with a different kind of subject, are much better, even with a deeply embedded universal quantifier:

> (17) a. Except for your uncle, I don't trust any doctor. b. Except for the bubonic pague, I think it is rasonable to say that I've treated just about every uisease you could name. c. Except for 1936, Idon't hhink he has ever filed income tax. d. Except for Judy, John dislikes all of his classmates.

Next, consider an analysis in terms of some level of logical form along the lines of certain theories of scopal ambiguties which invoke a rule of Quantifier Raising (such as the theory in May 1985),
Some initial motivation for such an analysis might come from the phenomenon of "inverse Some initial motivation for such an analysis might come from the phenomenon of "invers
linking". This phenomenon is discussed at length in the work of May, and its defining characteristic is a quantifier in a modifier of a noun phrase having wide scope over the main determiner of that noun phrase. A typical example is: On our trip we saw a little bit of every city. determiner of hal noun phrase. A typical example is: On our trip we saw a little bit of every city
As Fred Landman pointed out to me, free exception phrases are acceptable in such cases. cf
Except for Amsterdam, a representative from every city attended the conference, or Except for Except for Amsterdam, a representative from every city attended the conference, or Except for
Jones, I read the dossier of every member of this department. However, a Quantifier-Raising theory, or similarly, a theory which employs a rule of Quantifying-In (such as Montague 1973), is not likely to shed much light on the mater. The reason is that such h a theory always allows for
wide scope teading for the downstairs quantifier. Hence it must predict that the sentences in (15) wide scope reading for the downstairs quantifier. Hence it must predict that the sentences in (15)
are acceptable on that reading. In fact this is not the case, since no such reading is available. are acceptable on that reading. In fact this is not the case, since no such reading is available
Perhaps the most promising solution to the problem is arrived at when we impose the following
purely semantic (that is, model-theoretic) condition on the propositions to which free exceptionphrases can apply:

(18) Additivity: ${ }_{\text {|lexcept }}^{\text {NP }}$ SIII is defined only when the following holds for $\|S\|$:

$\|S\|_{E}=1$ and $\|S\|_{E^{\prime}}=1$, then $\|S\|_{E U}=1$.

This closure-condition is obviously related to the additivity requirement for connected exceptionthey lack this closure-property. To give a simple example, if somebody is touring every city in Canada and somebody is touring every city in the US, it does not follow that somebody is touring every city in North America, the union of Canada and the US. Interestingly, mixed
quantification does have the additity
 America. The acceptability of the examples in (16) must be due to scope factors. If the existentia
quantifier has scope over the exception-phrase, then the exception-phrase modifies a sentence wit quantifier has scope over the exception-phrase, then the exception-phrase modifes a sentence wit in (16) are more similar to the ones in (17), which have names instead of indefinite noun phrases,
than they are to the sentences in (15), with regard to the additivity property. Names, it should be than they are to the sentences in (15), with regard to the additivity property. Names, it should
noted, are like universal quantifiers in this respect. For instance, from 'John visits every city noted, are like universal quanififiers in this respect. For instance, from 'John visits every city in
the US' and 'John visits every city in Canada' we conclude that John visits every city in North
America. Again, we have additivity.

It is natural, given the discussion so far, to define the interpretation of free exception phrases in the

following way

(19) $\|$ Except a $S \|_{E}=$ True iff $\|S\|_{E-\|l\| l \mid\}}=$ True, $\|S\|_{E}=$ False and S is additiv

As we saw in the case of connected exception-phrases, falsehood of S could also be treated as a pragmatic implicature, arising from the desire to use exception phrases only in a nonvacuou nanner. I do not opt for that possibility here, in order to keep the semantics of free and connected
uception phrases as uniform as possible. However, a possible argument for the alternative can be exception phrases as uniform as possible. However, a possible argument fo
based on the existence of modal exception-phrases, such as the one in (20):
(20) Except possibly for John, everybody is having a good time.

Here we want no entailment that the sentence modified by the exccption-phrase is false. However, it seems clear that the modal operator possibly has scope ever more than just the PP for John
Therfore it is not clear that such entaiments would indeed arise, once we have worked out the Therefore it is not clear that such entailments would indeed arise, once we have worked out the smantics of modal exception-phrases. Since the matter is rather complicated, I must delegate it to -

The semantics given here explains why purely existential sentences do not combine with free exception-phrases. Because pure existential sentences are true of all extensions of a model in
which they are true, exception phrases are by definition superfluous, and hence ruled out by the pragmatic principle alluded to above. When there is mixed universal/existential quantification, pragmatic principle aluded to above. When there is mixed universale
closure under extensions does not hold, hence exception phrases are relevant.

Lest it be thought that only properties of quantifiers are relevant to the distribution of exceptionphrases, I should point out that other factors, such as the semantic properties of embedding verbs
also come into play. For instance, the examples in (17) may be contrasted with the following:
(21) a. \#Except for your uncle. I regret that I did not see any doctor.
b. \#Except for the bubonic plague, Ideny that I have yreated just b. \#Except for the bubonic plague,
about every disease in the book.
. \#Except for 1963, John is amazed by the fact that he got fatter every year.

In these cases, which look like the ones in (17) as far as the quantifier stucture is concerned, the
factive verbs effectively block off the exception-phrase from the downstais universal quantifiers. It can also be noted that block sent the exceep are fine when the exception phrase is placed at the end It It can also be noted that these sentences are fine when the exception phrase is placed at the end. .
that case it is possible to interpret it as part of the embedded clause, under the scope of th embedding verb. The reason for the oddness of the examples in (21) can be explained as follow. Unlike propositional attitude verbs, the above factive verbs do onot allow the quantifiiers within
their complements to have wide scope. Hence (2la), for instance, says that I am in the retret their complements to have wide scope. Hence (21 a), for instance, says that Iam in the regret
relation to the proposition that I did not see any doctor, in a domain which is properly restricted so as to exclude the uncle of the hearer. However, that proposition will not change if we add the
ate hearer's uncle to the domain of discussion, under a proper intensional construal of the notion
proposition'. (Of course, the truth- value of the proposition may well change, but not the proposition'. (Of course, the truth- value of the proposition may well change, but not the
proposition itself.) The exception-phrase, then, serves no purpose in each of the above cases, proposition itself.) The e
which is why they are odd.

The additivity condition, which rules out $\exists \forall$ quantification, seems a rather natural one to impose but it may not be sufficient to explain the full range of data. For instance, $\forall \exists \forall$ quantificatio does not have the additivity property. Yet sentences exhibiting this pattern of quantification are perfectly acceptable with free exception-phrases:
(22) a . Except for Karl, every professor gave a lecture for all students.
b. Except for me, everybody knows somebody who knows everybody Except for the cook, nobody has a reason to hurt everybody.

Rather than dropping the requirement, I suggest that perhaps additivity is not computed all the way through. Suppose only the outermost layers of quantifiers are considered. This makes sense way through. Suppose only the outermost layers of quantifiers are considered. This makes sense
if we ascribe some computational reality to the condition, even though, at this point, it is little
more than handwaving. If it is so, then for example $\forall \forall \forall \Phi$ is treated as $\forall \forall \Pi$. more than handwaving. If it is so, then for example $\forall \exists \forall \Phi$ is treated as $\forall \exists \exists \Pi$.
3.2. Definite Descriptions. Unlike connected exception-phrases, free ones can modify sentences
with definite descriptions instead of universaly quantified noun phrases. However, there ara with definite descriptions instead of universaly quantified noun phrases. However, there are cerrain constraints and restrictions on when this modification is possible. For example, it is no following two examples indicates:
(23) a. Except for Harry, I do not like the boys in my class.
b. Except for the first three, these sentences are bad.
b. Except for the irist three, these sentences are bad.
c. Except for you, the students are rather uninterested.
(24) a. \#Except for Harry, I do not like the boy in my class
b. \#Except for that one, this sentence is bad.
b. \#Except for you, the student is rather uninterested

However, this is not the whole story. In copula constructions, there is a distinction between the
and the only:

> (25) a. Except for Richard, I am the only realotor here. b.Except for Richard, I an the realto here. (26) a. Xxcept for Maragaret, the only yealor isichard b.\#Except for Margaret, the realtor is Richard.

Note that there is no difference, according to some semantic theories, between the interpretation of The realitor and that of the only realtor. Such theories, then, like Montague's (1973) adaptation of

It seems to me that the only is more of a quantifier than the. In particular, it appears that while exception phrases limit the domain of quantification, they do. not limit the domain of entities from
which definite descriptions may pick their referents. This explains, for instance, why in a sentence like
(27) Except for Reagan himself, nobody thinks that the President works to hard.
he quantifier nobody is limited so as not to range over Reagan as well, while the definite description is free to picclup Reagan as not tro refernt. Hence the oddness of (25b): to understand
hat sentence correctly, we must assume there are two realtors, Richard and me, yet the definit descriptionce presrectly, we musposes assume there are two realtors, Richard and me, yet the definite is only one. The only, on the other hand, behaves like
quantifier, quantifier, and so it applies to a properly restricted domain.

suell:

(28) a. Excepl for Harry, Dick is the best friend you ever had.
b. Except for myself, you are the most degenerate of men.

Superlatives and the only behave in more ways like all and $n o$. In particular, they can trigger, just ke these quantifiers, negative polarity items in relative clauses, such as ever in (28a). This sentence is ungrammatical when the superlative best is omitted. ${ }^{3}$ A. Again it seems best to maintain
hat superlatives like quantifiers and the only are context-sensitive in a way in which definite descriptions are not. In this respect they pattere not with quantificational expressions, but with
pronominals, which cons and descriptions are not. In this respect they pattern not with quantific
pronominals, which can refer also back to the object of except, as in:
(29) a. Except for Joe himself, nobody likes his car b. Except for myself, like everybody
c. Except for the men themselves, nobody gave them a chance

In theories such as Discourse Representation Theory, of course, it is not hard to see how this kind
of fact should be handled. Pronouns and definite descriptions are treted and depend for their interpretation not on the regular interpretation function, but rather on something more like the valuation functions of the semantics of predicate logic.
4. Problems and Prospects.

There are several problems involving the logic of exception which have not been touched upon yet. Some appeara to be rather straightforward, such as the integrelation of temporal semantics into
the present framework. Clearly, we need to allow for such sentences as
(30) a. Except for Saturday evening, Bob is free.
b. It always rains here, except when it snows.
b. It always rains here, except when it snows.
c. Except for weddings, he never drinks.

Now, instead of restricting E , the domain of entities, we restrict T , the set of times at which we
evaluate sentences. In the case of generic sentences, the situation is more complex. Bare plurals, for instance, can
give rise to exception phrases (31) a. Except for the Bible, we don't read books around here

b. Except for koalas, bears can be dangerous Except in Holland, unemployment figures are going down.

 Except for bats, mammals don't fly.Such cases are difficult to deal with in nonquantificational theories of bare plurals, such a Carison's (1978) framework. Carison points out many paralellisms between bare plurals and individuals but to kinds. In the interaction of bare plurals with exception phrases, however, we note an important difference with names, because the latter do not normally give rise to exceptio note an important differernce with names, because the latter do not nor
phrases, except for temporal and locational ones in habitual sentences:
(32) a. Bob smokes, except in the car.
b. Bob doesn't smoke, except after dinner.

These cases can be dealt with, presumably, in terms of some hidden quantification over situations.
This is not possible in the case of the examples in (31), except for (31 c).列

Another interesting matter concerms the differences due to collective versus distributive reading While sentences with clearcut distributive readings allow modification by free exception-phrases, similar sentences with collective readings do not:
(33) a. Except for Jim, the men were content
b. Except for Lynne, we all have cars.
b. Except for Lynne, we all
c. Except for Eve, cars.
(34) a. \#Except for Jim, the men were not numerous
4. a. \#Except for Jim, the men were not numerous.
b. \#xexcept Lor Lyne, welifted the stone (on coll. reading)
c. \#Except for Eve, they met in the lobby.

It is not hard to see why we find this distinction in acceptability. After all, it seems natural to
paraphrase the examples in (33) with overt universal quantifiers, using all of the men, all of us and all of them instead of the actual subjects of (33) Such a paraphrase is mot possible in all of us an all of them instead of the actual subjects of (33). Such a paraphrase is not possible in the cases in
(34). So informally, this state of affairs makes sense. What is harder to understand is that the (i3). So informaly, this state of aftairs makes sense. What is harder to understand is that the
plural definite descriptions and pronouns seem to be properly restricted in a way which we said
. was not possible for singular definite descriptions and pronouns. How come? I suggest that this is just apparent, having to do with the particular way in which distributive predicates give rise to
universal quantification. Suppose we add a distributivity operator along the lines of Link (1986) universal quantification. Suppose we add a diststibutivity operator, along the lines of Link (1986)
and Roberts (1987), to mark distributive readings of predicates. This operator can be defined here as follows:
(35) $\|* P(X)\|_{\mathrm{E}}:=\forall \mathrm{X} \in \mathrm{E}: \mathrm{x} \in \mathrm{X} \rightarrow \mathrm{P}(\mathrm{x})$

Note that we have made the universal quantification sensitive to the domain of quantification
which is restricted by the use of exception-phrases even if X itself does not depend on that which is ressricted by the use of exception-phrases, even if X itser does not depend on tha descriptions.
thank the audiences at the Escol conference and Cornell University, where this paper was presented,
Landman.

FOOTNOTES

1. As a matter of fact, English almost is not a perfect example since it can also select certain large
numerals, such as one hundred. A better case is the similar Dutch expression vrijwel, which only numerals, such as one hundred. A better case is the similar Dutch expression vrijw
selects the Dutch counterparts of all, and no. Cf. Zwarts 1985 for some discussion. 2. Let G be a principal filter, then QAB except G is true iff $\mathrm{Q}(\mathrm{A}-\mathrm{Q} \mathrm{G}) \mathrm{B}$ \& -(QAB). A noun B. Principal filters are universal quantifiers and ultrafiliers (Montagaue's individual sublimations).
Referring terms denote ultrafilters after type-raising (Partec and Rooth 1983). (It can be shown Referring terms denote ultrafilters after type-raisisng (Partec and Roouh 1983). (It can be shown haat the definition given here yields the same interpretations for exception phrases with type-raised
cefering terms as the one in the main text does for simple referring terms.) Quantifiers which are ot principal filters seem bad in exception phrasess for instance, all students but nobody is awful Other expressions, such as at most seven red ones, which are not principal filters in generalized quantifier theory, should be considered referring terms, since they can be antecedents for discourse
pronouns. Hence it comes as no big surprise that they may appear in exception clauses, cp. all pronouns. Hence it comes as no dig surpi
2. For some discussion of these polarity facts, cf. Hoeksema (1986b)

REFERENCES.
Carlson, G., 1978, Reference to Kinds in English, doctoral dissertation UMass, published by Indiana University Linguistics Club, Bloomington.
Higginbotham, J. and R. May, 1981, "Questions, Quandifiers and Crossing", in: The Linguistic
Review, $1-1$, pp. 41-79.
Hoeksema,. , 2986a, "Monotonicity Phenomena in Natural Language", in: Linguistic Analysis 16, no. $1 / 2$, pp. $25-40$
I. Schuurman, and F. Zwarts, en Superlatieven", in: C. Hoppenbrouwers, J. Houtman, 1. Schuurman, and F . Zwarts, eds., Proeven van taalweternschap, Nederlands Instituut,

Hom, L., 1987, "Aristote As A Montague Grammarian", paper presented at a logic and linguistics colloquium at Stanford July 1987
linguistics colloquium at Stanford, July 1987 .
Linguistics and Philosophy 7-4, pp. $397-414$.
Keenan, E.L. and J. Stavi, 1986, "A Semantic Characterization of Natural Language Determiners", Lin: Linguistics and Philosophy 9-3, pp. 253-326.
Landman, F. and I. Moerdijk, 1980, "Behalve als voorzetsel", in: Spektator 9-4, pp. 335-347. Landin,
Link, G., 1986, "Generalized Quantifiers and Plurals", CSL Report No. 67, CSLI, Stanford.
May R, 1985 , Looical Form, MIT Press Combidge Massachusets. May, R., 1985 , Logical Form, MIT-Press, Cambridge, Massachusetts.
K.J.J. Hintikka, J. Moravcsik, and P. Suppes, eens., Approaches to Natural Language
D. Reidel, Dordrecht.

Partee, B. and M. Rooth, 1983, "Generalized Conjunction and Type Ambiguity", in: R. Baeuerle
C. Schwarze and A. von Stechow, eds., Meaning, Use andrerpetaion of Language, De Gruyter, Berlin. einhart, T., 1983, Anaphora 10 . Roberts, C., 1987, "Distributivity", paper presented at the Gih Amsterdam Colloquium. Sockwell, R.P.,.,. Schacher and B. H. Partee,
Holt, Rinehart and W Wint
Thijsse, E., 1983, "On Some Proposed Universals of Natural Language", in: A.G.B. ter Meulen, ed., Studies in Modeletheoretitic Semantics. Foris, Dordrecht, pp. 19-36.
Van Benthem, J , 1984, "Questions About Quantifiers", Journal of Symbolic Logic, 49-2, Van Benthem,
pp. $443-466$
an Benthem, J., 1986 , Essays in Logical Semantics. D. Reidel Co., Dordrecht. Zwarts, F., 1983, "Determiners: A Relational Perspective", in: A.G.B. ter Meulen, ed., Studies in Modeltheoretic Semantics, Foris, Dordrecht, pp. 37-62.
Z warts, F., 1985, "De zaak vrijuel" in Tabu 15-4,

