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1. BACKGROUND

In the 1960’s several attempts were made at formalising .phonological
theory, resulting in systems as diverse as those of Peterson and Harary
(1961), Batég (1967) and Chomsky and Halle (1968). Of these works,
the most impressive is the last. SPE, as it is commonly referred to, con-
tains a lengthy discussion of English word stress. Batég (1967), which
is probably the most thorough in its development of the formal founda-
tions, does not include a discussion of suprasegmental or prosodic phe-
nomena, although the phonological theory he sets out to formalise, Harris’
(1951) structuralistic account, is by no means silent about such issues.
In this respect, there is a marked difference between SPE and Batédg’s
little book. Batdg himself remarks:

“There are two things absent from our system: the theory of junctures
and the theory of suprasegmental elements of utterance. The reason
of our omitting them is that both of them are still immature and they
require a more full elaboration by linguists themselves. In their present
state they are not fit for logical analysis and formal treatment.” (op.
cit., 120)

Chomsky and Halle made an attempt in SPE to treat suprasegmental
phonology as segmental phonology, that is, they extended the feature
framework to treat suprasegmental phenomena like stress, and segmental
phenonema in a unified manner. In so-called standard generative phono-
logy, which is the phonological tradition originating in SPE, this has been
one of the leading ideas. A rather sharp reaction to this segmental ap-
proach in the mid-1970’s has given rise to metrical phonology, which
employs several types of hierarchical representation to deal with supra-
segmental phonology. The metrical theories that now dominate the
field seem to agree that the SPE policy of representing stress as segmental
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features is basically incorrect and that an entirely different prosodic
theory is needed for the proper treatment of stress and other supraseg-
mental phenomena, like vowel harmony or tone. In a sense, then, modern
metrical theory appears to agree with Batdg’s assessment of the state of
suprasegmental phonology in the 1960’s.

This state of affairs in contemporary phonology raises the question
which this paper tries to answer: Just how different are the ‘flat’ seg-
mental representations of standard generative phonology and the ‘hier-
archical’ ones of metrical theory? My aim is to show that segmental repre-
sentations using numerical features can be defined that are isomorphic
with metrical trees and metrical grids (cf. Liberman and Prince 1977 on
these notions). This implies that every rule which can be stated for metri-
cal trees or metrical grids, can be stated for numerical representations in
the style of SPE as well.

2. NUMERICAL REPRESENTATIONS AND METRICAL GRIDS

In the notation of SPE, stress patterns are indicated in the phonological
representation by assigning natural numbers to the vowels. SPE uses the
interpretation convention that when the stress goes up, the numbers go
down. So a vowel with the stress feature [1 stress] is more heavily stressed
than a vowel with the feature [2 stress]. To make the comparison with
metrical grids a little easier, we will adopt the somewhat more natural
convention that the numbers go up when the stress goes up in this section.
(Of course, this convention does not make any difference for the repre-
sentations at hand, since we are interested in their form, not in their in-
terpretation.)

Formally, we will define numerical stress representations as strings of
ordered pairs. The left hand member of each ordered pair will indicate
a syllable, the right hand member will indicate the stress level of that syl-
lable. Here we deviate from SPE, but since we may assume some percola-
tion convention which sends the stress number of a syllable to its vocalic
nucleus, this does not really matter. The stress levels are taken from
some interval I = [1,n] of N, the set of natural numbers.

Definition 1
Fix a set S of syllables. Let I be some interval [1,n] of N. Then we
define a numerical stress representation as a string over S x L.

The notion of a numerical stress representation as defined above is of
course a very crude notion. For phonological purposes, many such repre-
sentations are uninteresting, so further restrictions on the set of possible
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numerical stress representations are called for. Later on, we will encounter
some of these futher restrictions. Before considering these, we will first
consider the related notion of a metrical grid. What metrical grids are,
is usually made clear by giving examples of diagrams of particular metrical
grids. Here is an example from Prince (1983: 21):

(1) Diagram of a metrical grid

X
X X
X X X

X X X X X X
Jim saw her in the park

In such diagrams, the height of the column of marks above each syllable
indicates in a pleasant visual way its stress level. It is immediately clear
that the nuclear stress of this sentence is on the syllable park, and that
Jim is more heavily stressed than saw.

In Liberman (1975: 280) a formal definition of the notion of a metri-
cal grid is given, which is presented below in definition 2 in a somewhat
simplified form:

Definition 2 :

A metrical grid is a structure (£,F), where £ is an ordered set
of ordered sets (Lj)] <j<n and F is a function mapping each
member of Lin+] onto some member of Ly in an order preserving
way: if & and ¢ are members of. Ly+1, then F(8) is ordered
before F(&)) just in case ¢; is ordered before 8.

Actually, Liberman states an additional requirement on well formed
metrical grids, which we will consider shortly.

In Liberman’s definition, F provides the columns of the grid: for
two elements are in the same column on adjacent levels iff the function
F maps one of them onto the other. The ordered sets Lj, on the other
hand, provide the horizontal rows.

For the purposes of stress theory, Liberman’s definition is too liberal,
because it enables one to distinguish between grids that should be equi-
valent. For example, one could distinguish all of the following
four metrical grids:
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() X y
X X y y
New York New York
y X
X X y y
New York New York

Let us therefore adopt a more restrictive definition of metrical grids,
which allows them less expressive power.

Definition 3

A proper metrical grid is a structure (X,*), where X C A x I, T as
in def. 1, A a string of syllables, and * the ordering of X derived
from the ordering on A in the following way: (a,m)*(b,n) iff
a comes before b in the string A. We further require that (a,n)
in X if (a,n+1) is, and that for every a in A: (a,1) is in X,

To see the motivation behind this definition, note that a diagram such
as (1) above is completely specified by giving (1) the labels of the rows,
(2) those of the columns and (3) the horizontal and the vertical specifi-
cations of the marks. It is easy to see that A provides the horizontal
coordinates of the diagram, I the vertical coordinates (number the rows
1 to n from the bottom to the top) and X those pairs of coordinates on
which there is a mark.

‘ By way of example, consider the following proper metrical grid for
the expression New York: < { (New,1), (York,1) (York,2)} , {(New,1)
*(York,1), (New,1)*(York,2) } >. In the form of a diagram, this becomes:

(3)  Diagram of a proper metrical grid

X 2
X X 1
New York

It is important to note that the distinctions in (2) above cannot be ex-
pressed in the present formalisation, since the marks only indicate whether
a particular pair of coordinates is a member of X. Therefore we have only
two options available in the diagram for each pair of coordinates: either
a mark or a blank.

Proper metrical grids are rather redundant. Therefore we want to con-
sider a less redundant structure.
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Definition 4.

A reduced proper metrical grid is a substructure R of a proper
metrical grid G, such that (x,n) in XR iff no pair (x,m), where
m is less than n, is in X, and *R is the restriction of * to XR-

A reduced proper metrical grid gives only the maximal members of each
column in the grid’s diagram. Those are the only entries we need to
know: all lower entries are in the non-reduced grid as well, and all higher
entries are of course not in the non-reduced grid.

Fact 1
On reduced proper metrical grids, the ordering * is linear.

To see this, note that (x,m) and (y,n) are unordered in a metrical grid
only if x =y. In reduced metrical grids, no pairs (x.m) and (y,n) exist,
such that x =y, and m # n.

Next we will consider the relation between reduced proper metrical
grids and numerical stress representations. This relation turns out to be
extremely straightforward:

Fact 2
(X,*) is a reduced proper metrical grid if and only if it is a numer-
ical stress representation.

According to this fact, the notions of a reduced proper metrical grid and
a numerical stress representation coincide. To see this, just note that
any string A can be written as a structure (X,*), where X is the set of A’s
elements and * is the linear ordering of the string (i.e. a*b means that a
comes before b in A).

Since it is clear that we can construct a unique reduced proper metrical
grid for every proper metrical grid and reconstruct the proper metrical
grid from its reduced counterpart, we can safely state the following result:

Fact 3
* The notions of a numerical stress representation, a proper metrical
grid and a reduced proper metrical grid are notational variants.

In connection with definition 2, it was mentioned that Liberman’s defini-
tion of a metrical grid is in fact somewhat more complicated than stated
there. Liberman requires that grids like (1) above are ruled out by de-
finition. He states the requirement that if two marks are adjacent on some
level, they should be separated by at least one and at most two marks
on the next lower level, if such a level exists. In diagram (1), the marks
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for Jim and saw are adjacent on the second level, yet the marks for these
two syllables are adjacent on the first, the lowest, level as well. Similarly,
saw and park have adjacent marks on level two, but in this case the num-
ber of intervening marks on the next lower level is too high: 3.

In the formalism of proper metrical grids, Liberman’s requirement
can be formulated as follows: :

Definition 5.

An alternating proper metrical grid is a proper metrical grid G,
such that if (x,n+1) and (y,n+1) in X and there is no (z,n+1) such
that (x,n+1)*(z,n+1) and (z,n+1)*(y,n+1), then we have in X at
least one and at most two (z,n), such that (x,n)*(z,n)*(y,n).

For numerical stress representations, a similar restriction can be for-
mulated:

Definition 6.

An alternating numerical stress representation is a numerical
stress representation such that if (x,m) and (y,n) in the string,
1 <m<n, and there is no (z,k) between (x,m) and (y,m) such
that k > m, then we have at least one and at most two (z,k)
such that (z,k) between (x,k) and (y,k) in the string and k = m
- 1.

By inspection of these definitions, we have:

Fact 4.
(X,*) is a reduced alternating proper metrical grid iff it is an al-
ternating numerical stress representation.

This fact is completely analogous to fact 2. As a corollary, we further
have:

Fact 5.

Alternating numerical stress representations, alternating proper
metrical grids and reduced alternating proper metrical grids are
notational variants.

Just how useful alternating proper metrical grids are as a tool for describ-
ing stress patterns, is not clear. We saw that a reasonable grid description
like (1) above is outside the scope of alternating grids. In fact, even such
pleasant alternating grids as the one in (4) below are ruled out:
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@ x X 3
X X X X X 2
X X X X X X X X X 1
a b c d e f g h i

Grid (4) is ruled out because there are three elements between the marks
for a and ¢ on level 2, although the marks for ¢ and 7 are adjacent on level
3.

For the purposes of linguistic theory, it seems better to drop the strong
alternation requirement on proper metrical grids (in Prince (1983), the
best paper so far on the role of metrical grids in the description of stress
phenomena, no such requirement is made). On the other hand, ordinary
proper metrical grids allow stress descriptions that never occur in anyone’s
stress theory. For example, grids like the one in (5) below should be pro-
hibited:

(5) A stupid grid
X X X 3

X X X
X X X 1
a b c

So it secems reasonable to state at least the following well-formedness
condition on metrical grids:

Definition 7. ‘

A good grid is a proper metrical grid with the property that m # n
whenever (a,m) and (b,n) are adjacent and maximal members
of X.

Grid (5) is not a good grid, since (a,3) and (b,3) are adjacent and maxi-
mal in their column, yet their right hand members are equal. The same
is true for (b,3) and (c,3).

The corresponding notion for numerical stress representations is stated
in the following definition:

Definition 8.
A good numerical stress representation is a string of pairs (x,n),
such that for any two adjacent pairs (y,m) and (z,k): m # k.

It is reasonable to require that every stress representation be good in
the sense defined above. It is doubtful whether a stronger condition
should be postulated, to wit, that any two syllables should have different
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stress levels. Call a stress representation ideal when it conforms to defini-
tions 7 or 8, but with the adjacency condition dropped. We will see in
the section about metrical trees that tree representations are ideal stress
representations.

A nice consequence of ideal representations is the following:

Fact 6.
Ideal stress representations have a unique syllable bearing maxi-
mal stress (‘designated terminal element’).

It seems desirable that every stress description contains a unique de-
signated terminal element bearing the main stress. It is not clear, however,
that the formalism of the representation should take care of this. Since we
need stress rules as well, to specify the position of the main stress in par-
ticular languages, we have another mechanism at our disposal. On the
other hand, we might state in our general definition of metrical grids
that they should contain a unique designated terminal element, without
having recourse to ideal metrical grids.

Definition 9.

A pointed metrical grid is a good grid with the property that it con-
tains a pair (x,n) such that for every (y,m): m <n. Call this pair its
point.

It is obvious that the point of a metrical grid is its designated terminal
element.

Definition 10.

A pointed numerical stress representation is a good numerical
stress representation such that there is a pair (x,n) in the string
such that for every (y,m): m <n.

Summary . In this section, we have considered a great many definitions of
metrical grids. Of these, good grids and pointed grids appear to be most
useful for linguistic purposes. For every type of grid, there is an equivalent
numerical stress representation. These numerical stress representations are
identical with reduced grids. So we might conclude that numerical stress
representations of the types considered above are just less redundant ver-
sions of metrical grids. As a corollary we have that every rule statable
on metrical grids, is statable on the corresponding numerical stress re-
presentations as well.
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3. METRICAL TREES AND NUMERICAL STRESS REPRESENTATIONS

Today, the most popular way of representing stress is drawing a so-called
metrical tree. Now what is a metrical tree?

Definition 11.

A metrical tree is a rooted binary branching tree, whose root
is labeled by R, whose other nonterminal nodes are labeled by S
or W, and whose terminal nodes are labeled by syllable symbols.
Furthermore, if a node is labeled W (S), then its sister is labeled S

W).

Here is an example of a metrical tree:

v A
S W
/\ /\
w S w
| | | |
ten nis play er

In these trees, S means ‘Strong’ and W means ‘Weak’. From (6) we learn
that tennis has a heavier stress than player, since the node dominating
the string tennis is S, and the node dominating player is W. Likewise, in
player, the first syllable has a heavier stress than the second.

Naturally, the syllable that is dominated by S only is heavier than all
other syllables. In (6), this syllable is ten. It is an immediate consequence
of definition 11 that there is always a unique syllable dominated by S
only. »

Fact 7.

The designated terminal element of a metrical tree is the terminal
node that is dominated by S and R only.

Fact 8.

Every metrical tree has a unique designated terminal element.

These two facts turn out to follow directly from a more general proposi-
tion about metrical trees:

Fact 9.
Metrical trees are ideal stress representations.
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Ideal stress representations were defined in the previous section as stress
representations in which no two syllables have the same stress values.
We will say that two sylilablesin a metrical tree have identical stress values
iff their top~to-bottom paths are labeled identically. For example, the
top-to-bottom paths in (6) are labeled RSS, RSW, RWS and RWW. So
in (6) no two top-to-bottom paths are labeled identically. We will now
derive fact 9 by proving the following claim:

Fact 10. '
Let X and Y be two different top-to-bottom paths in a metrical
tree T. Then X and Y are labeled differently.

Proof: Let X be (xj,..,x,), where x|,..,.x are (non-terminal) nodes in
T and Y be (yl, ,ym) For any node Xx, let v(x) denote its label. Since
T is rooted, xy =y,. Let k be the maximal number such that (x;,..,x 1)
= (¥ Yy Since xg = Y k is at least 1, and since X # Y,k is less than
n. The string (xy,..,x i) is the common part of X and Y. Now suppose
that X and Y are labeled identically. Then for every i, v(x;) = v(y})-
Therefore v(x41) = v(yy47)- We know that x| and y ., are sister
nodes, since they have a common immediate dominating node: xj = y).
But then one of them should be labeled W and the other S, by definition
11. This contradicts our assumption that v(xj4;) = v(yy4). Since the
latter assumption follows from our initial assumption that X and Y were
labeled identically, this initial assumption must be false. Q.E.D.

Another elementary property of metrical trees has been stated in an
earlier paper of mine (Hoeksema 1982):

Fact 11.
Any metrical tree T is completely characterised by the left-to-
right ordering of its top~to-bottom paths.

For instance, if T is the metrical tree in (6), then the ordered set of its
top-to-bottom paths can be written as ((ten, RSS), (nis, RSW) (play,
RWS), (er, RWW)).

Not every tree is completely characterised by the set of its top- to—
bottom paths in the linear order of its terminal elements. Take for ex-
ample the following tree: :

) A
PN

B B

| |

b b




Formal Properties of Stress Representations 93

This tree has the following string of vertical paths: ((b, AB), (b, AB)).
This string, however, is not unique for (7), since the tree in (8) below
has exactly the same string of vertical paths:

(8) A
!
i

These examples do not contradict fact 11, however, since both (7) and
(8) are ruled out as metrical trees.

Let us now prove fact 11. We will do this by proving a somewhat
stronger claim. We say that a phrase structure grammar G has the Path-
Tree Property iff every one of its derivation trees is uniquely charac-
terised by the linear string of its vertical paths. Here is the claim we will
prove:

Fact 12.

A context-free phrase structure grammar G has the Path-Tree
Property if every production rule has the form A = X]...X,, Where
Xj # X;41 forevery i such that 1 <i<n.

Proof: Let T be any tree, then its path-representation p(T) is the string
((a, X)), - s (2, X)), where aj..a, is the terminal string of T and X;
is (v(x})5ees V(X)), where X|.Xp is the string of nodes dominating aj,
such that x; immediately dominates Xj41- We have to show that the map-
ping p is one-to-one on the domain of trees generated by a grammar of
the form specified in fact 12 above. In other words, if p(Ty) = p(Tz),
then T = T,. We will prove this by showing how T can be recovered from
p(T) in a unique fashion. First note that for every X; in p(T), its first
element is identical to that of any other X:, to wit, the root of T. We
will write this first element as f1(X;). In geéneral, f(X) is the n-th ele-
ment in the string X. So f{(X;) = f1(Xy) ... = f{(X,)) = the root of T.
Now we try to find the daughters of this root. For every X, going from
1 to n, draw a new node labeled by fr(Xp) iff £(X;) # f2(Xj41)s to the
right of the previously drawn daughters of the root. However, if f5(X;)
= f2(Xi+])’ then these symbols must correspond with the same node in
T, because two adjacent nodes labeled identically are ruled out by the
condition on G in fact 12. For every new node established in this fashion,
we can find its daughters etc., until the whole tree T is recovered. Since
the instructions to draw new nodes are unambiguous, fact 12 follows.
Q.ED.
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In order to show that fact 12 implies fact 11, we have to show
that any metrical tree is generated by a context-free grammar of the
type specified in fact 12. From the definition of metrical trees, it is
immediately clear that any such tree is generated by a context-free
grammar employing the following production rules:

(9)  PS-rules for metrical trees
X->SWIWS
X = x
(where X =R;S or W and x is a syllable symbol)

Inspection of these rules suffices to see that they are of the required type.

Let us now turn to the main question of this section: Can metrical
trees be written as numerical stress representations? In other words, is
it possible to define a class of numerical stress representations that is
equivalent to the class of metrical trees?

The answer to this question turns out to be rather simple, once we
use the concept of a path-representation. In this respect, a path-repre-
sentation plays the same role here as reduced grids did in the section
about metrical grids.

First 1 will sketch a rather attractive mapping from metrical trees to
numerical stress representations which I have presented in my above men-
tioned paper, Hoeksema (1982)."

Definition 12,

Let f be a mapping from {S,W,R} * into {1,082} *, where &
indicates the empty string, such that f(S) = 0, f(W) = 1, and
f(R) = . For strings (xy--x,) we define f(x;..x)) = (f(xq)--f(x ).
Let X, where X is any string (x;..x)), indicate its reverse (X %7
If T is a metrical tree, then its associated numerical stress repre-
sentation n(T) = ((a], f()_(-l)),.., (ap, f()—(n))’ where ((ay, X{), ...y
(ap X)) = (D). |

What we get by this mapping is a stress representation in binary numbers,
To get ordinary numerical stress representations, we only have to translate
the binary numbers into decimal numbers. By way of example, we will
derive the numerical representation of the tree in (6).

First, we form its path-representation: ((ten, RSS), (nis, RSW), (play,
RWS), (er, RWW)). Next, we turn the paths around and substitute 1 for
W, 0 for S and delete R: ((ten, 00), (nis, 10), (play, O1), (er, 11)). Finally,
we translate the binary numbers into the decimal system: ((ten, 0), (nis,
2), (play, 1), (er, 3)). Notice that this numerical representation is dif-
ferent from the ones considered earlier, in that the numbers go down
when the stress goes up. If we keep that in mind, we will see that the
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mapping is quite appropriate, since it correctly assigns the main stress
to fen, and it assigns heavier stress to play than to nis.

It is useful to compare the mapping of definition 12 with the algorithm
given in Liberman and Prince (1977: 259) for the conversion of trees
into number representations. Before doing so, we will first state the fol-
lowing proposition:

Face 13,
The mapping from metrical trees into numerical stress represen-
tations described in definition 12 is one-to-one,

This property is very important, for it guarantees that we always can re-
cover a tree from its numerical representation. If that were not possible,
then the two representations would not be equivalent. Since fact 13 im-
mediately follows from definition 12, a proof is not necessary.

Let us now consider the mapping given by Liberman and Prince.
Here is the slightly more elegant formulation of this mapping by Prince
(1983:22):

(10)  Stress numbering
For any terminal node g, determine the first W that dominates
a. Count the number of nodes that dominate this W. Add 1. This
is the stress number of a.

This mapping is certainly not one-to-one. To see this, consider the fol-
lowing two metrical trees:

(11) a. R b. R
W w
s/\ /\w

/\ /\
R
a| b ¢ d a b ¢ d

The stress numbering system of Liberman and Prince treats these trees
as equivalent. Each has the following numbering: ((a,2), (b,4), (c¢,3),
(d.1)). In contrast, our numbering system would yield different numerical
representations for these trees: the associated numerical stress represen-
tation of tree (11a) is ((a, 1), (b, 5), (¢, 3), (d, 0)), and that of tree (11b)
is: ((a,1), (b,7), (c,3), (d,0)). Notice that our stress representations,
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though different from those of Liberman and Prince, agree with theirs in
the relative values of the stress numbers. More precisely, we claim that:

Fact 14.

For any two terminal nodes x,y in a metrical tree: if x has a higher
stress number than y under the Liberman and Prince mapping,
then x has a higher stress number than y under our mapping.

Recall that under the Liberman and Prince mapping x has a higher num-
ber than y iff the path from the lowest W dominating x upward to the root
is longer than the corresponding path for y. But the length of these paths
is equal to the length of the stress numbers in binary in our mapping,
as we may skip the 0’s coming before the first 1. So if x has a longer
binary stress number than y, then evidently x has a higher decimal number
thany.

Let us now compare the metrical tree representations with the struc-
tures studied earlier, metrical grids and numerical stress representations.
From fact 13 we know that we can define a class of numerical stress
representations that are equivalent with metrical trees. That does not
imply, however, that trees and numerical representations in general are
notational variants. One important difference between grids and numerical
representations on the one hand and metrical stress representations is
that there is only a finite set of metrical trees for some string X, but an
infinite number of grids and numerical representations. In fact, the num-
ber of metrical trees for a given string X is a function of the length of X.

In order to make a fair comparison we will assume that there is some
upper bound to the number of grids or numerical representations that
one may associate with a given string. The following requirement seems
natural:

Definition 14.
Call a metrical grid well-behaved iff it has at least as many columns
as rows.

According to this definition, a metrical grid is well-behaved if the number
of stress levels it can distinguish is not higher than the number of syllables
in the string. Likewise, a well-behaved numerical stress representation
on a string X can be defined as a string over XxN, such that for any
(x,n) in the string n < {X|.

Even if we restrict our - attention to well-behaved good grids, there
are still many more such grids than metrical trees. For instance, on a
string of four elements, there are 40 possible metrical trees, but 108 well-
behaved good grids. Only in the case of well-behaved ideal grids, is the num-
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ber less than the number of trees: 4! = 24, But if we require that each
tree has uniform [S W] or [W S] labeling or obeys the condition that
a right node is strong iff it branches, or the condition that a left node is
strong iff it branches, we are left with only 18 different trees (cf. Halle
and Vergnaud 1978 for discussion of these further restrictions on the
labeling of metrical trees).

Now we must face something of a dilemma. Should we prefer metrical
trees to grids or numerical representations just because there are less
of them (if we ignore the ‘ideal’ representations for the moment)? On
the other hand, we might need more distinctions than the tree theory
provides us with. For example, if we want to make a distinction between
7 stress patterns and tree theory allows for just 4 patterns, then we have
to make arbitrary assignments for at least 3 of the patterns in question.
The issue is further complicated by the fact that tree theory may be
supplemented by more non-terminal vocabulary (cf. the introduction
of feet-symbols in Selkirk 1980).

A drawback of tree theory is that constituency is often rather ar-
bitrary. As this point has been stressed already by several people (e.g.
Prince (1983), Van Zonneveld (1982)), I will not dwell on it here. In this-
respect both numerical representations and metrical grids are superior,
because they are not committed to the existence of the constituents in
question.

Another point in favor of grids and numerical representations is that
they need not be ideal stress representations in our technical sense. For
the unprejudiced observer, it appears to be possible that two non-adjacent
(or even adjacent) syllables in a string have the same stress level. Trees
deny this possibility, as do all other ideal representations. An example
that comes to mind is the stress pattern in a Dutch word like genade
/xana.da/ ‘mercy’. Here the two shwa’s appear to be equally weak.

Finally, it should be noted that relative stress is often a very opaque
notion in tree theory. For example, it is impossible to tell whether b is
stronger than c in the following tree or vice versa:

(11) R
S/\W
PN /\
S W S w
| || |
a b ¢ d

In this tree, it is quite obvious that a is stronger than b, that ¢ is stronger
than d, that ab is stronger than cd, for that is what the labeling tells us.
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What reason is there to suspect, however, that the weak daughter of a
strong node, like b, is stronger than the strong daughter of a weak node,
like ¢? One has to invoke some numbering convention, such as the one of
Liberman and Prince considered above. However, as Prince (1983: 22)
puts it, there is nothing inherent in the tree system that would lead to
the particular rank ordering of terminals entailed by this numbering con-
vention. So this convention involves an auxiliary hypothesis of consider-
able complexity and indeed - from the metrical point of view - arbitrari-
ness. To phrase it differently, if trees were really good representations of
stress, then we would not need any auxiliary representations such as
numerical representations or grids, unless, perhaps, these representations
would follow directly from the tree notation.

Taken together, these arguments against the use of metrical trees in
the description of stress are quite compelling to my mind. What exactly
will turn out to be a good representation of stress, | do not profess to
know. Here I agree with Bruce Hayes,> who remarked that there are
theories of stress employing grids, and ones employing trees, as well as
theories employing both, but the correct theory will probably employ
neither.

NOTLES

1. There is an obvious reformulation of the mapping for those tree theories which
allow labels other than R, S and W (cf. Selkirk 1980). If n is the number of labels
in the theory under consideration, then we will translate the paths into n-ary num-
bers. Again, the mapping is one-to-one.

2. In his talk at the ZWO-Workshop on Nonlinear Phonology, Amsterdam, August 8
1983.
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