[PetersWerkWiki] [TitleIndex] [WordIndex

Werkoverleg met GvN, GB en MW

Taken:

  1. PaQu & Universal Dependencies

    • ❏ UD-info opnemen in XML
      • ❏ Bestaande corpora bijwerken
    • ❏ Visualisatie zonder JavaScript-library

      • ✔ Weergave van gewone UD en extended UD
      • ❏ nauwkeuriger tekstbreedte: webfonts?
      • ❏ tooltip verbeteren (kleuren, positie)
      • ❏ als te breed voor venster, dan in stukken verdelen?
    • ❏ Downloaden van UD, per zin en voor een heel corpus
    • ❏ Beschrijving op info-pagina
  2. Forced Alignment...

    • ✔ Proef in ~/spraak/fa/mfcc herhalen, nu met mfcc per tiende(bijv) woord i.p.v. per klank

      • → zie beneden


Let op: Alle waardes voor O/Z Baseline zijn fout

missing = 0
een sample per klank

N / O / Z  N+O / Z    N / Z      N / O      O / Z
0.388      0.612      0.552      0.515      0.633    Baseline
0.531      0.819      0.757      0.529      0.764    SVM: linear
0.434      0.620      0.628      0.527      0.653    SVM: rbf
0.646      0.948      0.951      0.541      0.909    AdaBoost
0.379      0.623      0.564      0.505      0.555    Gaussian Naive Bayes

missing = NaN
een sample per klank

N / O / Z  N+O / Z    N / Z      N / O      O / Z
0.388      0.612      0.552      0.515      0.633    Baseline
0.655      0.902      0.887      0.557      0.873    SVM: linear
0.395      0.611      0.527      0.493      0.601    SVM: rbf
0.619      0.931      0.938      0.559      0.900    AdaBoost
0.385      0.615      0.551      0.489      0.560    Gaussian Naive Bayes

missing = 0
samples per lettergreep = 2

N / O / Z  N+O / Z    N / Z      N / O      O / Z
0.388      0.612      0.552      0.515      0.633    Baseline
0.649      0.899      0.874      0.574      0.842    SVM: linear
0.411      0.629      0.557      0.520      0.584    SVM: rbf
0.643      0.913      0.918      0.514      0.907    AdaBoost
0.366      0.598      0.554      0.454      0.551    Gaussian Naive Bayes

missing = NaN
samples per lettergreep = 2

N / O / Z  N+O / Z    N / Z      N / O      O / Z
0.388      0.612      0.552      0.515      0.633    Baseline
0.654      0.906      0.889      0.573      0.865    SVM: linear
0.355      0.598      0.516      0.420      0.548    SVM: rbf
0.623      0.919      0.915      0.574      0.915    AdaBoost
0.381      0.595      0.557      0.485      0.561    Gaussian Naive Bayes

missing = 0
samples per lettergreep = 3

N / O / Z  N+O / Z    N / Z      N / O      O / Z
0.388      0.612      0.552      0.515      0.633    Baseline
0.620      0.873      0.868      0.572      0.818    SVM: linear
0.404      0.611      0.544      0.509      0.627    SVM: rbf
0.662      0.917      0.920      0.565      0.926    AdaBoost
0.375      0.596      0.562      0.434      0.561    Gaussian Naive Bayes

missing = NaN
samples per lettergreep = 3

N / O / Z  N+O / Z    N / Z      N / O      O / Z
0.388      0.612      0.552      0.515      0.633    Baseline
0.670      0.906      0.894      0.603      0.862    SVM: linear
0.382      0.560      0.536      0.461      0.597    SVM: rbf
0.680      0.944      0.928      0.514      0.924    AdaBoost
0.393      0.596      0.562      0.470      0.558    Gaussian Naive Bayes

missing = 0
samples per lettergreep = 4

N / O / Z  N+O / Z    N / Z      N / O      O / Z
0.388      0.612      0.552      0.515      0.633    Baseline
0.612      0.891      0.837      0.573      0.820    SVM: linear
0.437      0.627      0.609      0.521      0.611    SVM: rbf
0.638      0.920      0.927      0.568      0.912    AdaBoost
0.391      0.592      0.570      0.500      0.556    Gaussian Naive Bayes

missing = NaN
samples per lettergreep = 4

N / O / Z  N+O / Z    N / Z      N / O      O / Z
0.388      0.612      0.552      0.515      0.633    Baseline
0.682      0.902      0.874      0.627      0.871    SVM: linear
0.413      0.594      0.593      0.506      0.561    SVM: rbf
0.639      0.938      0.899      0.548      0.899    AdaBoost
0.375      0.583      0.559      0.473      0.548    Gaussian Naive Bayes

missing = 0
samples per lettergreep = 5

N / O / Z  N+O / Z    N / Z      N / O      O / Z
0.388      0.612      0.552      0.515      0.633    Baseline
0.620      0.875      0.837      0.590      0.825    SVM: linear
0.420      0.641      0.558      0.544      0.629    SVM: rbf
0.635      0.940      0.936      0.557      0.895    AdaBoost
0.365      0.594      0.554      0.454      0.545    Gaussian Naive Bayes

missing = NaN
samples per lettergreep = 5

N / O / Z  N+O / Z    N / Z      N / O      O / Z
0.388      0.612      0.552      0.515      0.633    Baseline
0.660      0.911      0.892      0.595      0.852    SVM: linear
0.408      0.632      0.562      0.492      0.598    SVM: rbf
0.625      0.920      0.933      0.620      0.908    AdaBoost
0.387      0.596      0.561      0.502      0.550    Gaussian Naive Bayes

missing = 0
samples per lettergreep = 6

N / O / Z  N+O / Z    N / Z      N / O      O / Z
0.388      0.612      0.552      0.515      0.633    Baseline
0.597      0.895      0.838      0.552      0.814    SVM: linear
0.406      0.621      0.557      0.546      0.621    SVM: rbf
0.619      0.944      0.936      0.545      0.910    AdaBoost
0.377      0.576      0.543      0.507      0.542    Gaussian Naive Bayes

missing = NaN
samples per lettergreep = 6

N / O / Z  N+O / Z    N / Z      N / O      O / Z
0.388      0.612      0.552      0.515      0.633    Baseline
0.643      0.897      0.886      0.572      0.854    SVM: linear
0.383      0.618      0.565      0.468      0.612    SVM: rbf
0.630      0.933      0.917      0.566      0.897    AdaBoost
0.379      0.587      0.550      0.494      0.540    Gaussian Naive Bayes

missing = 0
samples per lettergreep = 7

N / O / Z  N+O / Z    N / Z      N / O      O / Z
0.388      0.612      0.552      0.515      0.633    Baseline
0.572      0.851      0.837      0.506      0.782    SVM: linear
0.425      0.619      0.618      0.471      0.606    SVM: rbf
0.611      0.911      0.920      0.609      0.907    AdaBoost
0.390      0.603      0.551      0.491      0.566    Gaussian Naive Bayes

missing = NaN
samples per lettergreep = 7

N / O / Z  N+O / Z    N / Z      N / O      O / Z
0.388      0.612      0.552      0.515      0.633    Baseline
0.621      0.889      0.878      0.526      0.859    SVM: linear
0.424      0.625      0.598      0.489      0.637    SVM: rbf
0.608      0.913      0.930      0.590      0.912    AdaBoost
0.389      0.605      0.547      0.488      0.563    Gaussian Naive Bayes


CategoryPaQu CategoryUniversalDependencies CategorySpraakAccenten CategoryForcedAlignment