

Expert Python Programming

Tarek Ziadé

Chapter No. 10
"Documenting Your Project"

For More Information: www.packtpub.com/expert-python-programming/book

In this package, you will find:
A Biography of the author of the book

A preview chapter from the book, Chapter NO.10 "Documenting Your Project"

A synopsis of the book’s content

Information on where to buy this book

About the Author
Tarek Ziadé is CTO at Ingeniweb in Paris, working on Python, Zope, and Plone technology
and on Quality Assurance. He has been involved for five years in the Zope community and has
contributed to the Zope code itself.

Tarek has also created Afpy, the French Python User Group and has written two books in French
about Python. He has gave numerous talks and tutorials in French and international events like
Solutions Linux, Pycon, OSCON, and EuroPython.

Before starting with Chapter 1, I would like to thank a few people that helped
me while I was writing this book:

The whole Python community of course, the AFPY user group, Stefan
Schwarzer for his slides on optimization, his quote and his great feedback and
reviews, Georg Brandl for reviewing Chapter 10 about Sphinx, Peter
Bulychev for assistance on CloneDigger, Ian Bicking for assistance on
minimock, the Logilab team for assistance on PyLint, Gael Pasgrimaud, Jean-
François Roche, and Kai Lautaportti for their work on collective.buildbot,
Cyrille Lebeaupin, Olivier Grisel, Sebastien Douche and Stéfane Fermigier
for various reviews.

Thanks to the OmniGroup and their great OmniGraffl e tool; all
diagrams were made with it
(see http://www.omnigroup.com/applications/OmniGraffle).

A very special thanks goes to Shannon "jj" Behrens who did a deep reviewing
of this book.

http://www.packtpub.com/expert-python-programming/book

For More Information: www.packtpub.com/expert-python-programming/book

Expert Python Programming
Python rocks!

From the earliest version in the late 1980s to the current version, it has evolved with the
same philosophy: providing a multi-paradigm programming language with readability and
productivity in mind.

People used to see Python as yet another scripting language and wouldn't feel right about using it
to build large systems. But through the years and thanks to some pioneer companies, it became
obvious that Python could be used to build almost any kind of a system.

In fact, many developers that come from another language are charmed by Python and make it
their first choice.

This is something you are probably aware of if you have bought this book, so there's no need to
convince you about the merits of the language any further.

This book was written to express many years of experience in building all kinds of applications
with Python, from small system scripts done in a couple of hours to very large applications written
by dozens of developers over several years.

It describes the best practices used by developers to work with Python.

The first title that came up was Python Best Practices but it eventually became Expert Python
Programming because it covers some topics that are not focused on the language itself but rather
on the tools and techniques used to work with it.

In other words this book describes how an advanced Python developer works every day.

http://www.packtpub.com/expert-python-programming/book

For More Information: www.packtpub.com/expert-python-programming/book

What This Book Covers
Chapter 1 explains how to install Python and makes sure all readers have the closest, standardized
environment. I almost removed this chapter since the book is not intended for beginners. But it
was kept because there are definitely some experienced Python programmers out there who are not
aware of some of the things presented. If you are, don't feel frustrated about it, as the rest of the
book will probably meet your needs.

Chapter 2 is about syntax best practices, below the class level. It presents iterators, generators,
descriptors, and so on, in an advanced way.

Chapter 3 is also about syntax best practices, but focuses above the class level.

Chapter 4 is about choosing good names. It is an extension to PEP 8 with naming best practices,
but also gives tips on designing good APIs.

Chapter 5 explains how to write a package and how to use code templates and then focuses on
how to release and distribute your code.

Chapter 6 extends Chapter 5 by describing how a full application can be written. It demonstrates
it through a small case study called Atomisator.

Chapter 7 is about zc.buildout, a system for managing a development environment and
releasing applications, which is widely used in the Zope and Plone community and is now used
outside the Zope world.

Chapter 8 gives some insight on how a project code base can be managed and explains how to set
up continuous integration.

Chapter 9 presents how to manage software life cycle through an iterative and
incremental approach.

Chapter 10 is about documentation and gives tips on technical writing and how Python projects
should be documented.

Chapter 11 explains Test-Driven Development and the tools that can be used to do it.

Chapter 12 is about optimization. It gives profiling techniques and an optimization
strategy guideline.

Chapter 13 extends Chapter 12 by providing some solutions to speed up your programs.

Chapter 14 ends the book with a set of useful design patterns. Last, keep an eye on
http://atomisator.ziade.org, which is the website that was build throughout the book. It
has all code sources presented and will contain errata and other add-ons.

http://www.packtpub.com/expert-python-programming/book

For More Information: www.packtpub.com/expert-python-programming/book

Documenting Your Project
Documentation is work that is often neglected by developers and sometimes by
managers. This is often due to a lack of time towards the end of development cycles,
and the fact that people think they are bad at writing. Some of them are bad, but the
majority of them are able to produce fi ne documentation.

In any case, the result is a disorganized documentation made of documents that are
written in a rush. Developers hate doing this kind of work most of the time. Things
get even worse when existing documents need to be updated. Many projects out
there are just providing poor, out-of-date documentation because the manager does
not know how to deal with it.

But setting up a documentation process at the beginning of the project and treating
documents as if they were modules of code makes documenting easier. Writing can
even be fun when a few rules are followed.

This chapter provides a few tips to start documenting your project through:

The seven rules of technical writing that summarize the best practices
A reStructuredText primer, which is a plain text markup syntax used in
most Python projects
A guide for building good project documentation

The Seven Rules of Technical Writing
Writing good documentation is easier in many aspects than writing a code. Most
developers think it is very hard, but by following a simple set of rules it becomes
really easy.

We are not talking here about writing a book of poems but a comprehensive piece of
text that can be used to understand a design, an API, or anything that makes up the
code base.

•

•

•

http://www.packtpub.com/expert-python-programming/book

For More Information: www.packtpub.com/expert-python-programming/book

Documenting Your Project

[224]

Every developer is able to produce such material, and this section provides seven
rules that can be applied in all cases.

Write in two steps: Focus on ideas, and then on reviewing and shaping
your text.
Target the readership: Who is going to read it?
Use a simple style: Keep it straight and simple. Use good grammar.
Limit the scope of the information: Introduce one concept at a time.
Use realistic code examples: Foos and bars should be dropped.
Use a light but suffi cient approach: You are not writing a book!
Use templates: Help the readers to get habits.

These rules are mostly inspired and adapted from Agile Documenting, a book
by Andreas Rüping that focuses on producing the best documentation in
software projects.

Write in Two Steps
Peter Elbow, in Writing with Power, explains that it is almost impossible for any
human being to produce a perfect text in one shot. The problem is that many
developers write documentation and try to directly come up with a perfect text.
The only way they succeed in this exercise is by stopping the writing after every
two sentences to read them back, and do some corrections. This means that they are
focusing both on the content and the style of the text.

This is too hard for the brain and the result is often not as good as it could be. A lot
of time and energy is spent in polishing the style and shape of the text, before its
meaning is completely thought through.

Another approach is to drop the style and organization of the text and focus on
its content. All ideas are laid down on paper, no matter how they are written. The
developer starts to write a continuous stream and does not pause when he or she
makes grammatical mistakes, or for anything that is not about the content. For
instance, it does not matter if the sentences are barely understandable as long as the
ideas are written down. He or she just writes down what he wants to say, with a
rough organization.

By doing this, the developer focuses on what he or she wants to say and will
probably get more content out of his or her brain than he or she initially thought he
or she would.

•

•

•

•

•

•

•

http://www.packtpub.com/expert-python-programming/book

For More Information: www.packtpub.com/expert-python-programming/book

Chapter 10

[225]

Another side-effect when doing free writing is that other ideas that are not directly
related to the topic will easily go through the mind. A good practice is to write them
down on a second paper or screen when they appear, so they are not lost, and then
get back to the main writing.

The second step consists of reading back the whole text and polishing it so that it is
comprehensible to everyone. Polishing a text means enhancing its style, correcting its
faults, reorganizing it a bit, and removing any redundant information it has.

When the time dedicated to write documentation is limited, a good practice is to cut
this time in two equal durations—one for writing the content, and one to clean and
organize the text.

Focus on the content, and then on style and cleanliness.

Target the Readership
When starting a text, there is a simple question the writer should consider: Who is
going to read it?

This is not always obvious, as a technical text explains how a piece of software works,
and is often written for every person who might get and use the code. The reader can
be a manager who is looking for an appropriate technical solution to a problem, or a
developer who needs to implement a feature with it. A designer might also read it to
know if the package fi ts his or her needs from an architectural point of view.

Let's apply a simple rule: Each text should have only one kind of readers.

This philosophy makes the writing easier. The writer precisely knows what kind
of reader he or she is dealing with. He or she can provide a concise and precise
documentation that is not vaguely intended for all kinds of readers.

A good practice is to provide a small introductory text that explains in one sentence
what the documentation is about, and guides the reader to the appropriate part:

Atomisator is a product that fetches RSS feeds and saves them in a
database, with a filtering process.

If you are a developer, you might want to look at the API description
(api.txt)

If you are a manager, you can read the features list and the FAQ
(features.txt)

If you are a designer, you can read the architecture and
infrastructure notes (arch.txt)

http://www.packtpub.com/expert-python-programming/book

For More Information: www.packtpub.com/expert-python-programming/book

Documenting Your Project

[226]

By taking care of directing your readers in this way, you will probably produce
better documentation.

Know your readership before you start to write.

Use a Simple Style
Seth Godin is one of the best-selling writers on marketing topics. You might
want to read Unleashing the Ideavirus, which is available for free on the Internet
(http://en.wikipedia.org/wiki/Unleashing_the_Ideavirus).

Lately, he made an analysis on his blog to try to understand why his books sold
so well. He made a list of all best sellers in the marketing area and compared the
average number of words per sentences in each one of them.

He realized that his books had the lowest number of words per sentence (thirteen
words). This simple fact, Seth explained, proved that readers prefer short and simple
sentences, rather than long and stylish ones.

By keeping sentences short and simple, your writings will consume less brain power
for their content to be extracted, processed, and then understood. Writing technical
documentation aims to provide a software guide to readers. It is not a fi ction story,
and should be closer to your microwave notice than to the latest Stephen King novel.

A few tips to keep in mind are:

Use simple sentences; they should not be longer than two lines.
Each paragraph should be composed of three or four sentences, at the most,
that express one main idea. Let your text breathe.
Don't repeat yourself too much: Avoid journalistic styles where ideas are
repeated again and again to make sure they are understood.
Don't use several tenses. Present tense is enough most of the time.
Do not make jokes in the text if you are not a really fi ne writer. Being funny
in a technical book is really hard, and few writers master it. If you really
want to distill some humor, keep it in code examples and you will be fi ne.

You are not writing fi ction, so keep the style as simple as possible.

•

•

•

•

•

http://www.packtpub.com/expert-python-programming/book

For More Information: www.packtpub.com/expert-python-programming/book

Chapter 10

[227]

Limit the Scope of the Information
There's a simple sign of bad documentation in a software: You are looking for some
information that you know is present somewhere, but you cannot fi nd it. After
spending some time reading the table of contents, you are starting to grep the fi les
trying several word combinations, but cannot get what you are looking for.

This happens when writers are not organizing their texts in topics. They might
provide tons of information, but it is just gathered in a monolithic or non-logical
way. For instance, if a reader is looking for a big picture of your application, he or
she should not have to read the API documentation: that is a low-level matter.

To avoid this effect, paragraphs should be gathered under a meaningful title for
a given section, and the global document title should synthesize the content in a
short phrase.

A table of contents could be made of all the section's titles.

A simple practice to compose your titles is to ask yourself: What phrase would I type
in Google to fi nd this section?

Use Realistic Code Examples
Foo and bar are bad citizens. When a reader tries to understand how a piece of
code works with a usage example, having an unrealistic example will make it harder
to understand.

Why not use a real-world example? A common practice is to make sure that each
code example can be cut and pasted in a real program.

An example of bad usage is:

We have a parse function:

 >>> from atomisator.parser import parse

Let's use it:

 >>> stuff = parse('some-feed.xml')
 >>> stuff.next()
 {'title': 'foo', 'content': 'blabla'}

A better example would be when the parser knows how to return a feed content with
the parse function, available as a top-level function:

 >>> from atomisator.parser import parse

http://www.packtpub.com/expert-python-programming/book

For More Information: www.packtpub.com/expert-python-programming/book

Documenting Your Project

[228]

Let's use it:

 >>> my_feed = parse('http://tarekziade.wordpress.com/feed')
 >>> my_feed.next()
 {'title': 'eight tips to start with python',
 'content': 'The first tip is..., ...'}

This slight difference might sound overkill, but in fact it makes your documentation
a lot more useful. A reader can copy those lines into a shell, understands that parse
uses a URL as a parameter, and that it returns an iterator that contains blog entries.

Code examples should be directly reusable in real programs.

Use a Light but Sufficient Approach
In most agile methodologies, documentation is not the fi rst citizen. Making software
that works is the most important thing, over detailed documentation. So a good
practice, as Scott Ambler explains in his book Agile Modeling: Effective Practices for
Extreme Programming and the Unifi ed Process, is to defi ne the real documentation
needs, rather than creating an exhaustive set of documents.

For instance, a single document that explains how Atomisator works for
administrators is suffi cient. There is no other need for them than to know how to
confi gure and run the tool. This document limits its scope to answer to one question:
How do I run Atomisator on my server?

Besides readership and scope, limiting the size of each section written for the
software to a few pages is a good idea. By making each section four pages long at
the most, the writer will have to synthesize his or her thought. If it needs more, it
probably means that the software is too complex to explain or use.

Working software over comprehensive documentation
The Agile Manifesto.

Use Templates
Every page on Wikipedia is similar. There are boxes on the left side that are used
to summarize dates or facts. At the beginning of the document is a table of contents
with links that refer to anchors in the same text. There is always a reference section
at the end.

http://www.packtpub.com/expert-python-programming/book

For More Information: www.packtpub.com/expert-python-programming/book

Chapter 10

[229]

Users get used to it. For instance, they know they can have a quick look at the table
of contents, and if they do not fi nd the info they are looking for, they will go directly
to the reference section to see if they can fi nd another website on the topic. This
works for any page on Wikipedia. You learn the Wikipedia way to be more effi cient.

So using templates forces a common pattern for documents, and therefore makes
people more effi cient in using them. They get used to the structure and know how to
read it quickly.

Providing a template for each kind of document also provides a quick start
for writers.

In this chapter, we will see the various kinds of documents a piece of software can
have, and use Paster to provide skeletons for them. But the fi rst thing to do is to
describe the markup syntax that should be used in Python documentation.

A reStructuredText Primer
reStructuredText is also called reST (see http://docutils.sourceforge.net/rst.
html). It is a plain text markup language widely used in the Python community to
document packages. The great thing about reST is that the text is still readable since
the markup syntax does not obfuscate the text like LaTeX would.

Here's a sample of such a document:

=====
Title
=====

Section 1
=========

This *word* has emphasis.

Section 2
=========

Subsection
::::::::::

Text.

reST comes in docutils, a package that provides a suite of scripts to transform a
reST fi le to various formats, such as HTML, LaTeX, XML, or even S5, Eric Meyer's
slide show system (see http://meyerweb.com/eric/tools/s5).

Writers can focus on the content and then decide how to render it, depending on the
needs. For instance, Python itself is documented into reST, which is then rendered in
HTML to build http://docs.python.org, and in various other formats.

http://www.packtpub.com/expert-python-programming/book

For More Information: www.packtpub.com/expert-python-programming/book

Documenting Your Project

[230]

The minimum elements one should know to start writing reST are:
Section structure
Lists
Inline markup
Literal block
Links

This section is a really fast overview of the syntax. A quick reference is available
for more information at: http://docutils.sourceforge.net/docs/user/rst/
quickref.html, which is a good place to start working with reST.

To install reStructuredText, install docutils:
$ easy_install docutils

You will get a set of scripts starting with rst2, to be able to render reST in
various formats.

For instance, the rst2html script will produce HTML output given an reST fi le:
$ more text.txt
Title
=====

content.

$ rst2html.py text.txt > text.html
$ more text.html
<?xml version="1.0" encoding="utf-8" ?>
...
<html ...>
<head>
...
</head>
<body>
<div class="document" id="title">
<h1 class="title">Title</h1>
<p>content.</p>
</div>
</body>
</html>

Section Structure
The document's title and its sections are underlined using non-alphanumeric
characters. They can be overlined and underlined, and a common practice is to use
this double markup for the title, and keep a simple underline for sections.

The most used characters to underline a section title are in the following order of
precedence: =, -, _, :, #, +, ^.

•
•
•
•
•

http://www.packtpub.com/expert-python-programming/book

For More Information: www.packtpub.com/expert-python-programming/book

Chapter 10

[231]

When a character is used for a section, it is associated with its level and it has to be
used consistently throughout the document.

For example:
=====
Title
=====

Section 1
=========

xxx

Subsection A

xxx

Subsection B

xxx

Section 2
=========

xxx

Subsection C

xxx

The HTML output of this fi le will look like the illustration shown above.

http://www.packtpub.com/expert-python-programming/book

For More Information: www.packtpub.com/expert-python-programming/book

Documenting Your Project

[232]

Lists
 reST provides bullet, and enumerated and defi nition lists with auto-enumeration
features:

Bullet list:

- one
- two
- three

Enumerated list:

1. one
2. two
#. auto-enumerated

Definition list:

one
 one is a number.

two
 two is also a number.

Inline Markup
 Text can be styled using an inline markup:

emphasis: Italics
strong emphasis: Boldface
``inline literal``: Inline preformatted text
`a text with a link`_: This will be replaced by a hyperlink as long as it is
provided in the document (see in the Links section).

Literal Block
 When you need to present some code examples, a literal block can be used. Two
colons are used to mark the block, which is an indented paragraph:

This is a code example

::

 >>> 1 + 1
 2

Let's continue our text

•

•

•

•

http://www.packtpub.com/expert-python-programming/book

For More Information: www.packtpub.com/expert-python-programming/book

Chapter 10

[233]

Don't forget to add a blank line after :: and after the block,
otherwise it will not be rendered.

Notice that the colon characters can be put in a text line. In that case, they will be
replaced by a single colon in the various rendering formats:

This is a code example::

 >>> 1 + 1
 2

Let's continue our text

If you don't want to keep a single colon, you can insert a space between example and
::. In that case, :: will be interpreted and totally removed.

Links
 A text can be changed into an external link with a special line starting with two dots,
as long as it is provided in the document:

Try `Plone CMS`_, it is great ! It is based on Zope_.

.. _`Plone CMS`: http://plone.org

.. _Zope: http://zope.org

A usual practice is to group the external links at the end of the document. When the
text to be linked contains spaces, it has to be surrounded with ` characters.

 Internal links can also be used by adding a marker in the text:

This is a code example

.. _example:

::

 >>> 1 + 1
 2

Let's continue our text, or maybe go back to
the example_.

Sections are also targets that can be used:

=====
Title
=====

Section 1
=========

xxx

http://www.packtpub.com/expert-python-programming/book

For More Information: www.packtpub.com/expert-python-programming/book

Documenting Your Project

[234]

Subsection A

xxx

Subsection B

-> go back to `Subsection A`_

Section 2
=========

xxx

Building the Documentation
 An easier way to guide your readers and your writers is to provide each one of
them with helpers and guidelines, as we have learned in the previous section of this
chapter.

From a writer's point of view, this is done by having a set of reusable templates
together with a guide that describes how and when to use them in a project. It is
called a documentation portfolio.

From a reader point of view, being able to browse the documentation with
no pain, and getting used to fi nding the info effi ciently, is done by building a
document landscape.

Building the Portfolio
 There are many kinds of documents a software project can have, from low-level
documents that refer directly to the code, to design papers that provide a high-level
overview of the application.

For instance, Scott Ambler defi nes an extensive list of document types in
his book Agile Modeling (see http://www.agilemodeling.com/essays/
agileArchitecture.htm). He builds a portfolio from early specifi cations to
operations documents. Even the project management documents are covered, so the
whole documenting needs are built with a standardized set of templates.

Since a complete portfolio is tightly related to the methodologies used to build the
software, this chapter will only focus on a common subset that you can complete
with your specifi c needs. Building an effi cient portfolio takes a long time, as it
captures your working habits.

http://www.packtpub.com/expert-python-programming/book

For More Information: www.packtpub.com/expert-python-programming/book

Chapter 10

[235]

A common set of documents in software projects can be classifi ed in three categories:

 Design: All documents that provide architectural information, and low-level
design information, such as class diagrams, or database diagrams
Usage: Documents on how to use the software; this can be in the shape of a
cookbook and tutorials, or a module-level help
Operations: Provide guidelines on how to deploy, upgrade, or operate
the software

Design
 The purpose of design documentation is to describe how the software works and
how the code is organized. It is used by developers to understand the system but
is also a good entry point for people who are trying to understand how the
application works.

The different kinds of design documents a software can have are:

Architecture overview
Database models
Class diagrams with dependencies and hierarchy relations
User interface wireframes
Infrastructure description

Mostly, these documents are composed of some diagrams and a minimum amount
of text. The conventions used for the diagrams are very specifi c to the team and the
project, and this is perfectly fi ne as long as it is consistent.

UML provides thirteen diagrams that cover most aspects in a
software design. The class diagram is probably the most used one,
but it is possible to describe every aspect of software with it. See
http://en.wikipedia.org/wiki/Unified_Modeling_
Language#Diagrams.

Following a specifi c modeling language such as UML is not often fully done,
and teams just make up their own way throughout their common experience.
They pick up good practice from UML or other modeling languages, and create
their own recipes.

•

•

•

•

•

•

•

•

http://www.packtpub.com/expert-python-programming/book

For More Information: www.packtpub.com/expert-python-programming/book

Documenting Your Project

[236]

 For instance, for architecture overview diagrams, some designers just draw boxes
and arrows on a whiteboard without following any particular design rules and take
a picture of it. Others work with simple drawing programs such as Dia (http://
www.gnome.org/projects/dia) or Microsoft Visio (not open source, so not free),
since it is enough to understand the design. For example, all architecture diagrams
presented in the Chapter 6 of this book where made with OmniGraffl e.

 Database model diagrams depend on the kind of database you are using. There
are complete data modeling software applications that provide drawing tools to
automatically generate tables and their relations. But this is overkill in Python most
of the time. If you are using an ORM such as SQLAlchemy (for instance), simple
boxes with lists of fi elds, together with table relations as shown in Chapter 6 are
enough to describe your mappings before you start to write them.

 Class diagrams are often simplifi ed UML class diagrams: There is no need in Python
to specify the protected members of a class, for instance. So the tools used for an
architectural overview diagram fi t this need too.

 User interface diagrams depend on whether you are writing a web or a desktop
application. Web applications often describe the center of the screen, since the
header, footer, left, and right panels are common. Many web developers just
handwrite those screens and capture them with a camera or a scanner. Others
create prototypes in HTML and make screen snapshots. For desktop applications,
snapshots on prototype screens, or annotated mock-ups made with tools such as
Gimp or Photoshop are the most common way.

 Infrastructure overview diagrams are like architecture diagrams, but they focus
on how the software interacts with third-party elements, such as mail servers,
databases, or any kind of data streams.

Common Template
 The important point when creating such documents is to make sure the target
readership is perfectly known, and the content scope is limited. So a generic template
for design documents can provide a light structure with a little advice for the writer.

Such a structure can include:
Title
Author
Tags (keywords)
Description (abstract)
Target (Who should read this?)
Content (with diagrams)
References to other documents

•
•
•
•
•
•

•

http://www.packtpub.com/expert-python-programming/book

For More Information: www.packtpub.com/expert-python-programming/book

Chapter 10

[237]

The content should be three or four screens (a 1024x768 average screen) at the most,
to be sure to limit the scope. If it gets bigger, it should be split into several documents
or summarized.

The template also provides the author's name and a list of tags to manage its
evolutions and ease its classifi cation. This will be covered later in the chapter.

 Paster is the right tool to use to provide templates for documentation. pbp.skels
implements the design template described, and can be used exactly like code
generation. A target folder is provided and a few questions are answered:

$ paster create -t pbp_design_doc design

Selected and implied templates:

 pbp.skels#pbp_design_doc A Design document

Variables:

 egg: design

 package: design

 project: design

Enter title ['Title']: Database specifications for atomisator.db

Enter short_name ['recipe']: mappers

Enter author (Author name) ['John Doe']: Tarek

Enter keywords ['tag1 tag2']: database mapping sql

Creating template pbp_design_doc

Creating directory ./design

 Copying +short_name+.txt_tmpl to ./design/mappers.txt

The result can then be completed:

===
Database specifications for atomisator.db
===

:Author: Tarek
:Tags: database mapping sql

:abstract:

 Write here a small abstract about your design document.

.. contents ::

Who should read this ?
::::::::::::::::::::::

Explain here who is the target readership.

Content

http://www.packtpub.com/expert-python-programming/book

For More Information: www.packtpub.com/expert-python-programming/book

Documenting Your Project

[238]

:::::::

Write your document here. Do not hesitate to split it in several
sections.

References
::::::::::

Put here references, and links to other documents.

Usage
 Usage documentation describes how a particular part of the software works. This
documentation can describe low-level parts such as how a function works, but also
high-level parts such command-line arguments for calling the program. This is the
most important part of documentation in framework applications, since the target
readership is mainly the developers that are going to reuse the code.

The three main kinds of documents are:

 Recipe: A short document that explains how to do something. This kind of
document targets one readership and focuses on one specifi c topic.
 Tutorial: A step-by-step document that explains how to use a feature of the
software. This document can refer to recipes, and each instance is intended to
one readership.
Module helper: A low-level document that explains what a module contains.
This document could be shown (for instance) when you call the help built-in
over a module.

Recipe
 A recipe answers a very specifi c problem and provides a solution to resolve it.

For example, ActiveState provides a Python Cookbook online (a cookbook is a
collection of recipes), where developers can describe how to do something in Python
(see http://aspn.activestate.com/ASPN/Python/Cookbook).

These recipes must be short and are structured like this:

Title
Submitter
Last updated
Version
Category
Description

•

•

•

•

•

•

•

•

•

http://www.packtpub.com/expert-python-programming/book

For More Information: www.packtpub.com/expert-python-programming/book

Chapter 10

[239]

Source (the source code)
Discussion (the text explaining the code)
Comments (from the web)

Often, they are one-screen long and do not go into great details. This structure
perfectly fi ts a software's needs and can be adapted in a generic structure, where
the target readership is added and the category replaced by tags:

Title (short sentence)
Author
Tags (keywords)
Who should read this?
Prerequisites (other documents to read, for example)
Problem (a short description)
Solution (the main text, one or two screens)
References (links to other documents)

The date and version are not useful here, since we will see later that the
documentation is managed like source code in the project.

Like the design template, pbp.skels provide a pbp_recipe_doc template that can
be used to generate this structure:

$ paster create -t pbp_recipe_doc recipes

Selected and implied templates:

 pbp.skels#pbp_recipe_doc A recipe

Variables:

 egg: recipes

 package: recipes

 project: recipes

Enter title (use a short question): How to use atomisator.db

Enter short_name ['recipe'] : atomisator-db

Enter author (Author name) ['John Doe']: Tarek

Enter keywords ['tag1 tag2']: atomisator db

Creating template pbp_recipe_doc

Creating directory ./recipes

 Copying +short_name+.txt_tmpl to ./recipes/atomisator-db.txt

•

•

•

•

•

•

•

•

•

•

•

http://www.packtpub.com/expert-python-programming/book

For More Information: www.packtpub.com/expert-python-programming/book

Documenting Your Project

[240]

The result can then be completed by the writer:

========================
How to use atomisator.db
========================
:Author: Tarek
:Tags: atomisator db

.. contents ::

Who should read this ?
::::::::::::::::::::::

Explain here who is the target readership.

Prerequisites
:::::::::::::

Put here the prerequisites for people to follow this recipe.

Problem
:::::::

Explain here the problem resolved in a few sentences.

Solution
::::::::

Put here the solution.

References
::::::::::

Put here references, and links to other recipes.

Tutorial
A tutorial differs from a recipe in its purpose. It is not intended to resolve an isolated
problem, but rather describes how to use a feature of the application step by step.
This can be longer than a recipe and can concern many parts of the application. For
example, Django provides a list of tutorials on its website. Writing your fi rst Django
App, part 1 (see http://www.djangoproject.com/documentation/tutorial01)
explains in ten screens how to build an application with Django.

A structure for such a document can be:

Title (short sentence)
Author
Tags (words)
Description (abstract)
Who should read this?
Prerequisites (other documents to read, for example)
Tutorial (the main text)
References (links to other documents)

•
•
•
•
•
•
•
•

http://www.packtpub.com/expert-python-programming/book

For More Information: www.packtpub.com/expert-python-programming/book

Chapter 10

[241]

The pbp_tutorial_doc template is provided in pbp.skels as well with this
structure, which is similar to the design template.

Module Helper
 The last template that can be added in our collection is the module helper template.
A module helper refers to a single module and provides a description of its contents,
together with usage examples.

Some tools can automatically build such documents by extracting the docstrings
and computing module help using pydoc, like Epydoc (see http://epydoc.
sourceforge.net). So it is possible to generate an extensive documentation based
on API introspection. This kind of documentation is often provided in Python
frameworks. For instance Plone provides an http://api.plone.org server that
keeps an up-to-date collection of module helpers.

The main problems with this approach are:

There is no smart selection performed over the modules that are really
interesting to document.
The code can be obfuscated by the documentation.

Furthermore, a module documentation provides examples that sometimes refer to
several parts of the module, and are hard to split between the functions' and classes'
docstrings. The module docstring could be used for that purpose by writing a text
at the top of the module. But this ends in having a hybrid fi le composed of a block
of text, then a block of code. This is rather obfuscating when the code represents less
than 50% of the total length. If you are the author, this is perfectly fi ne. But when
people try to read the code (not the documentation), they will have to jump the
docstrings part.

Another approach is to separate the text in its own fi le. A manual selection can then
be operated to decide which Python module will have its module helper fi le. The
documents can then be separated from the code base and allowed to live their own
life, as we will see in the next part. This is how Python is documented.

 Many developers will disagree on the fact that doc and code separation is better than
docstrings. This approach means that the documentation process is fully integrated
in the development cycle; otherwise it will quickly become obsolete. The docstrings
approach solves this problem by providing proximity between the code and its usage
example, but doesn't bring it to a higher level: a document that can be used as part of
a plain documentation.

•

•

http://www.packtpub.com/expert-python-programming/book

For More Information: www.packtpub.com/expert-python-programming/book

Documenting Your Project

[242]

The template for Module Helper is really simple, as it contains just a little metadata
before the content is written. The target is not defi ned since it is the developers who
wish to use the module:

Title (module name)
Author
Tags (words)
Content

The next chapter will cover Test-Driven Development using doctests and
module helpers.

Operations
 Operation documents are used to describe how the software can be operated.
For instance:

Installation and deployment documents
Administration documents
"Frequently Asked Questions" documents that help the users when a
failure occurs
Documents that explain how people can ask for help or provide feedback

These documents are very specifi c, but they can probably use the tutorial template
defi ned in the earlier section.

Make Your Own Portfolio
The templates that we discussed earlier are just a basis that you can use to document
your software. From there, as explained in the chapter dedicated to Paster, you can
tune it and add other templates to build your own document portfolio.

Keep in mind the light but suffi cient approach for project documentation: Each
document added should have a clearly defi ned target readership and should fi ll a
real need. Documents that don't add a real value should not be written.

•

•

•

•

•

•

•

•

http://www.packtpub.com/expert-python-programming/book

For More Information: www.packtpub.com/expert-python-programming/book

Chapter 10

[243]

Building the Landscape
 The document portfolio built in the previous section provides a structure at
document level, but does not provide a way to group and organize it to build
the documentation the readers will have. This is what Andreas Rüping calls a
document landscape, referring to the mental map the readers use when they browse
documentation. He came up with the conclusion that the best way to organize
documents is to build a logical tree.

In other words, the different kinds of documents composing the portfolio need to
fi nd a place to live within a tree of directories. This place must be obvious to the
writers when they create the document and to the readers when they are looking
for it.

A great helper in browsing documentation is index pages at each level that can drive
writers and readers.

Building a document landscape is done in two steps:

Building a tree for the producers (the writers)
Building a tree for the consumers (the readers), on the top of the
producers' one

This distinction between producers and consumers is important since they access the
documents in different places and different formats.

Producer's Layout
 From a producer's point of view, each document is processed exactly like a Python
module. It should be stored in the version control system and worked like code.

Writers do not care about the fi nal appearance of their prose and where it is
available. They just want to make sure that they are writing a document, so it is the
single source of truth on the topic covered.

reStructuredText fi les stored in a folder tree are available in the version control
system together with the software code, and are a convenient solution to build the
documentation landscape for producers.

If we look back at the folder structure presented in Chapter 6 for Atomisator, the
docs folder can be used as the root of this tree.

•

•

http://www.packtpub.com/expert-python-programming/book

For More Information: www.packtpub.com/expert-python-programming/book

Documenting Your Project

[244]

The simplest way to organize the tree is to group documents by nature:

$ cd atomisator

$ find docs

docs

docs/source

docs/source/design

docs/source/operations

docs/source/usage

docs/source/usage/cookbook

docs/source/usage/modules

docs/source/usage/tutorial

 Notice that the tree is located in a source folder because the docs folder will be used
as a root folder to set up a special tool in the next section.

From there, an index.txt fi le can be added at each level (besides the root),
explaining what kind of documents the folder contains, or summarizing what
each sub-folder contains. These index fi les can defi ne a listing of the documents
they contain. For instance, the operation folder can contain a list of operations
documents available:

==========
Operations
==========

This section contains operations documents:

− How to install and run Atomisator
− How to install and manage a PostgreSQL database
for Atomisator

So that people do not forget to update them, we can have lists generated
automatically.

Consumer's Layout
 From a consumer's point of view, it is important to work out the index fi les and to
present the whole documentation in a format that is easy to read and looks good.
Web pages are the best pick and are easy to generate from reStructuredText fi les.

http://www.packtpub.com/expert-python-programming/book

For More Information: www.packtpub.com/expert-python-programming/book

Chapter 10

[245]

 Sphinx (http://sphinx.pocoo.org) is a set of scripts and docutils extensions that
can be used to generate an HTML structure from our text tree. This tool is used (for
instance) to build the Python documentation, and many projects are now using it for
their documentation. Among its built-in features, it produces a really nice browsing
system, together with a light but suffi cient client-side JavaScript search engine. It
also uses pygments for rendering code examples, which produces really nice
syntax highlights.

Sphinx can be easily confi gured to stick with the document landscape defi ned in the
earlier section.

 To install it, just call easy_install:

$ sudo easy_install-2.5 Sphinx

Searching for Sphinx

Reading http://cheeseshop.python.org/pypi/Sphinx/

...

Finished processing dependencies for Sphinx

This installs a few scripts such as sphinx-quickstart. This script will generate
a script together with a Makefile, which can be used to generate the web
documentation every time it is needed. Let's run this script in the docs folder and
answer its questions:

$ sphinx-quickstart

Welcome to the Sphinx quickstart utility.

Enter the root path for documentation.

> Root path for the documentation [.]:

> Separate source and build directories (y/n) [n]: y

> Name prefix for templates and static dir [.]:

> Project name: Atomisator

> Author name(s): Tarek Ziadé

> Project version: 0.1.0

> Project release [0.1.0]:

> Source file suffix [.rst]: .txt

> Name of your master document (without suffix) [index]:

> Create Makefile? (y/n) [y]: y

Finished: An initial directory structure has been created.

You should now populate your master file ./source/index.txt and create
other documentation

source files. Use the sphinx-build.py script to build the docs, like so:

 make <builder>

http://www.packtpub.com/expert-python-programming/book

For More Information: www.packtpub.com/expert-python-programming/book

Documenting Your Project

[246]

This adds a conf.py fi le in the source folder that contains the confi guration
defi ned through the answers, and an index.txt fi le at the root, together with a
Makefile in docs.

Running make html will then generate a tree in build:

$ make html

mkdir -p build/html build/doctrees

sphinx-build.py -b html -d build/doctrees -D latex_paper_size= source
build/html

Sphinx v0.1.61611, building html

trying to load pickled env... done

building [html]: targets for 0 source files that are out of date

updating environment: 0 added, 0 changed, 0 removed

creating index...

writing output... index

finishing...

writing additional files...

copying static files...

dumping search index...

build succeeded.

Build finished. The HTML pages are in build/html.

The documentation will then be available in build/html, starting at index.html.

http://www.packtpub.com/expert-python-programming/book

For More Information: www.packtpub.com/expert-python-programming/book

Chapter 10

[247]

Besides the HTML versions of the documents, the tool also builds automatic pages
such as a module list and an index. Sphinx provides a few docutils extensions to
drive these features. The main ones are:

A directive that builds a table of contents
A marker that can be used to register a document as a module helper
A marker to add an element in the index

Working on the Index Pages
Sphinx provides a toctree directive that can be used to inject a table of contents in
a document, with links to other documents. Each line must be a fi le with its relative
path, starting from the current document. Glob-style names can also be provided to
add several fi les that match the expression.

For example, the index fi le in the cookbook folder, which we have previously
defi ned in the producer's landscape, can look like this:

========
Cookbook
========

Welcome to the CookBook.

Available recipes:

.. toctree::
 :glob:
 *

With this syntax, the HTML page will display a list of all reStructuredText
documents available in the cookbook folder. This directive can be used in all index
fi les to build a browseable documentation.

Registering Module Helpers
For module helpers, a marker can be added so that it is automatically listed and
available in the module's index page:

=======
session
=======

.. module:: db.session

The module session...

•

•

•

http://www.packtpub.com/expert-python-programming/book

For More Information: www.packtpub.com/expert-python-programming/book

Documenting Your Project

[248]

Notice that the db prefi x here can be used to avoid module collision. Sphinx will
use it as a module category and will group all modules that start with db. in
this category.

For Atomisator db, feed, main, and parser can be used in order to group the entries,
as shown in the fi gure:

In your documentation, you can use this feature when you have a lot of modules.

Notice that the module helper template that we created earlier
(pbp_module_doc) can be changed to add the module directive
by default.

Adding Index Markers
Another option can be used to fi ll the index page by linking the document to
an entry:

=======
session
=======

.. module:: db.session

.. index::
 Database Access
 Session

The module session...

Two new entries, Database Access and Session will be added in the index page.

http://www.packtpub.com/expert-python-programming/book

For More Information: www.packtpub.com/expert-python-programming/book

Chapter 10

[249]

Cross-references
 Finally, Sphinx provides an inline markup to set cross-references. For instance, a link
to a module can be done like this:

:mod:`db.session`

Where :mod: is the module marker's prefi x and `db.session` is the name of the
module to be linked to (as registered previously), keep in mind that :mod: as well
as the previous elements are the specifi c directives introduced in reSTructuredText
by Sphinx.

Sphinx provides a lot more features that you can discover in its website.
For instance, the autodoc feature is a great option to automatically
extract your doctests to build the documentation.
See http://sphinx.pocoo.org.

Summary
This chapter explained in detail how to:

Use a few rules for effi cient writing
Use reStructuredText, the Pythonistas LaTeX
Build a document portfolio and landscape
Use Sphinx to generate nice web documentation

The hardest thing to do when documenting a project is to keep it accurate and up
to date. Making the documentation part of the code repository makes it a lot easier.
From there, every time a developer changes a module, he or she should change the
corresponding documentation as well.

This can be quite diffi cult in big projects, and adding a list of related documents in
the header of the modules can help in that case.

A complementary approach to make sure the documentation is always accurate is to
combine the documentation with tests through doctests.

This is covered in the next chapter, which presents Test-Driven Development
principles, and then Document-Driven Development.

•

•

•

•

http://www.packtpub.com/expert-python-programming/book

For More Information: www.packtpub.com/expert-python-programming/book

Where to buy this book
You can buy Expert Python Programming from the Packt Publishing website:
http://www.packtpub.com/expert-python-programming/book.

Free shipping to the US, UK, Europe and selected Asian countries. For more information, please
read our shipping policy.

Alternatively, you can buy the book from Amazon, BN.com, Computer Manuals and
most internet book retailers.

www.PacktPub.com

http://www.packtpub.com/Shippingpolicy
http://www.packtpub.com/
http://www.packtpub.com/expert-python-programming/book
http://www.packtpub.com/Shippingpolicy

