Challenges in Finding the Determinants of Dialect Variation

John Nerbonne and Hermann Niebaum

Rijksuniversiteit Groningen

Kick-off Meeting, Determinants of Dialect Variation

Groningen, Jan. 9, 2004

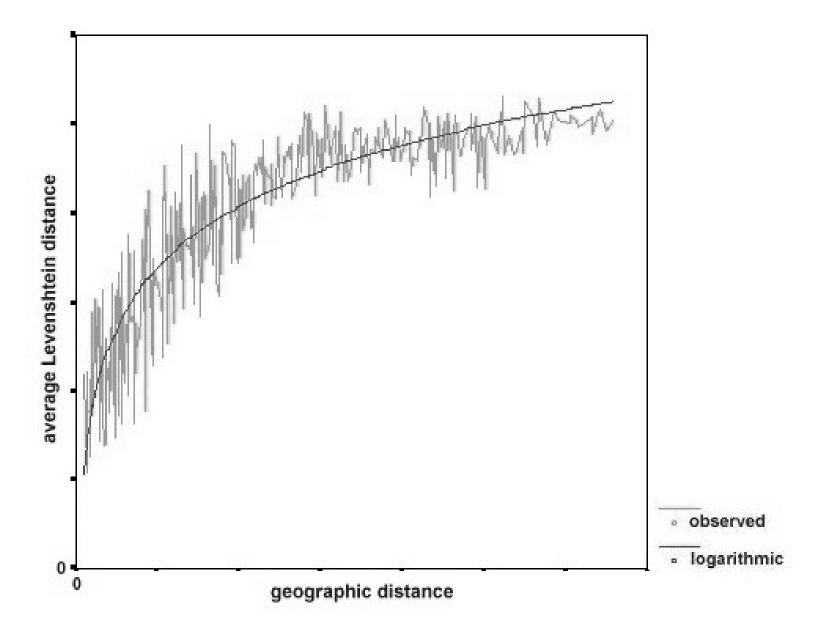
Determinants of Dialect Variation (DDV)

- Point of Departure
- Goals
- Special Challenges
- Schedule
- NWO project 2003-2007
 - Project Team
 - Institutions

DDV Point of Departure — General

- Dialectometry is successful
 - Jean Séguy, initiator, 1971
 attention to aggregate dialect differences
 data viewed categorically—same or different
 attention to pronuciation, lexis, morphology, syntax
 - Hans Goebl, canonizer broadened linguistic application deepened connections to numerical taxonomy, cartography importance of unlikely overlap: "G.I.W." 'weighted similarity'

DDV Point of Departure — Local


- Levenshtein Measure of Pronunciation Difference
 - Wilbert Heeringa, Diss. 2004
 pronunciation difference measured numerically attention to reliability, validity
 - Wilbert Heeringa and John Nerbonne, 2002 geographic explanation of dialect difference heralded by Seguy, 1971
- Syntactic Atlas of the Netherlandic Dialects
 - Hans Bennis, Hans den Besten, Johan Rooryck, Johan Van de Auwera, and Magda Devos first compendium of Dutch syntactic variation one of the earliest syntactic atlases anywhere

DDV Goals

- Validate pronunciation approach on German
 - test with same parameters, representation type
 - analyse sample—choice of sites
 - compare dialects to standard German
 - —compare to Herrgen-Schmidt Dialektaliät
 - collaborate on analysis of determinants
- Apply nominal measure to Dutch syntax
 - see Nerbonne & Kleiweg for example of nominal measure
 - check geographic cohesion of syntax variables
 - check systemic affinities (θ : parametric variation) idea: see Agrawal on discovering associations in databases
 - collaborate on analysis of determinants

DDV Goals

- Analyze determinants: what predicts linguistic distance?
- idea: regression analysis with linguistic distance as dependent variable
- Investigate independent variables:
 - geographic distance, travel distance (and/or trade routes, pilgrim routes?)
 - * water vs. land
 - population size (product of populations)
 - —together with geography yields Trudgill's "gravity model"
 - tribal history
 - other? trade? on route?

DDV Goals

- Establish a dialectometric package, Kleiweg's "Lev"
- Encourage experimentation with techniques
- Internal use, tutorial presentation
 - Compare to Goebl's package
- Models: Rumelhart & McClelland's PDP, Sankoff's VARBRULE, Shieber's PATR

DDV Challenges/Opportunities

- How well do linguistic levels correlate?
 - pronunciation, lexis, syntax, ?morphology?
 - do some theoretical views imply high correlation?
 - LAMSAS pronunciation, lexis correlate r = 0.65
- Effective check on systemic affinities (θ : parametric variation) would open door to data-intensive language typology.
 - Typology DB's in Amsterdam, Leipzig,
- Can we contrast similarity (dialectological measure) with degree of shared innovation (historical measure)?
 - Wang on regularity of sound change

Levenshtein Sequence Comparison

Basic idea: Distance between two sequences is the sum of the "costs" needed to rewrite one string into another

kœstə	delete ə	1
kœst	replace œ by ɔ	2
kost	insert r	1
korst		
		4

Lots of (sets of) operations can transform one string into another.

Definition: Levenshtein distance between two sequences $L(s_1, s_2)$ is the minimal cost needed to rewrite s_1 into s_2 .

Algorithm notes correspondences

Levenshtein distance(Lat. pater, Germ. faðir)

		f	а	ð	i	r
	0	1	2	3	4	5
p	1	0.4	1.4	2.4	3.4	4.4
a	2	1.4	0.4	1.4	2.4	
t	3	2.4	1.4	0.9	1.9	
е	4	3.4	2.4		2.1	
r	5	4.4				2.1

identifies correspondences in individual word pairs p:f, t:ð, e:i

historical linguistics requires *regular* correspondences, e.g., p:f in *pisces:fish*, *plenum:full*, *primus:first* as evidence of relatedness

Challenge

- Lift the identification of individual correspondences
- Obtain identification of regular correspondences
 - how often is "regular"?
 - what to do with near-correspondences?
 - how to incorporate effect of phonetic environment?
- Enable studies in language contact and historical linguistics

DDV Project Team 10/2003–9/2007

Staff:

- Wilbert Heeringa, postdoc, Groningen background: Dialectometry
- Christine Siedle, graduate student, Groningen background: phonetics, computational linguistics
- Marco Spruit, graduate student, Meertens background: computational linguistics

Supervision

- Sjef Barbiers, Syntactic Theory, Meertens
- Hans Bennis, Syntactic Theory, Meertens
- John Nerbonne, Computational Linguistics, P.I., Groningen
- Hermann Niebaum, Dialectology, Groningen
- Advisors: t.b.a.