
APPLYING THE EXPRESSO ALGORITHM TO LARGE PARSED CORPORA
Gosse Bouma and John Nerbonne, Center for Language and Cognition, Groningen

Abstract. Information extraction (IE) culls information from text including relations, our focus here, such

as head-of(Sergej-Brin, Google). The Espresso algorithm was developed to do this (Pantel &

Pennacchiotti 2006), and we extend their work here first by using as input not raw text but rather

syntactic analyses derived from the text, and second by applying the algorithm to Dutch. This required

parsing hundreds of millions of words of text, which was regarded as infeasible only ten years ago.

1. Introduction

It is interesting to extract relations automatically from text to use in inference, to populate

ontologies and to study the history of ideas (Kizito et al. 2009). Information extraction may be

seen as an application of work in natural language semantics of the sort pioneered by Frans

Zwarts (Zwarts 1983). Information extraction systems learn patterns for extracting pairs of

words or phrases instantiating a given relation from text. For instance, for the relation capital

of, a system might learn extraction patterns such as `ARG1 is capital of ARG2', or 'The

ambassador of ARG2 was called back to ARG1'. Lightly supervised information extraction systems

learn extraction patterns by means of a bootstrapping procedure, where a set of seed pairs is

used to find patterns associated with the seeds, and where the patterns thus found are used in

turn to find potential instantiations of the relation. The process then iterates with the (best)

new instantiations to find more patterns, until some termination criterion is met.

Bootstrapping procedures like this require large text collections for learning patterns, so it is

therefore not surprising that most work in this area has used unannotated corpora and has

been aimed at learning extraction patterns based on surface strings. In learning patterns based

on surface strings, one encounters a certain amount of morphological and word order variation

(i.e. present and past tense verbs, singular and plural forms of nouns, presence of adjectival and

adverbial modifiers) which may hinder identification of the most general extraction patterns.

Using parsed data can help here, as it allows the use of syntactic patterns instead of surface

patterns. Xu, Uszkoreit & Li (2007) argue that abstract syntactic patterns, represented as

attribute-value matrices, may actually be used to learn not just binary relations, but also

relations with three or four arguments. In this paper, we restrict ourselves to binary relations,

and we use the shortest path between the two arguments in a dependency graph as extraction

pattern. Dependency paths abstract over morphological and word order variation, and thus can

be used to identify relevant patterns more reliably than surface patterns.

We apply a well-known information extraction algorithm, Espresso (Pantel & Pennacchiotti

2006), to large, syntactically parsed, Dutch corpora (110M - 700M words). Although the

experiments in Espresso are based on learning surface patterns, there is nothing in the

algorithm which requires this, and thus using dependency paths instead of surface strings is

relatively straightforward, except of course for the amount of additional CPU time required for

parsing large text collections.

We show that applying the Espresso-algorithm to a parsed version of Dutch Wikipedia (110M

words) allows us to obtain state of the art results for learning the part-whole relation. Next, we

discuss a number of experiments in learning relations between named entities (politician -

political party, soccer player - club, company owner - company, institute - location) based on a

large corpus of newspaper text and Wikipedia (700 M words). Accuracies vary from 97% for the

politicians - political party relation to only 30% for the soccer player - club relation. In the latter

case, accuracy can be improved significantly by requiring that the arguments of extracted

instance pairs must be distributionally similar to seeds or previously extracted instance pairs.

2. Corpora and Parser

Alpino (Van Noord 2006) is a wide-coverage, robust, parser for Dutch. Its grammar is designed

following ideas of Head-driven Phrase Structure Grammar (Pollard & Sag 1994). It uses a

maximum-entropy model for statistical disambiguation, and coverage has been increased over

the years by means of semi-automatic extension of the lexicon based on error-mining (Van

Noord 2004). Efficiency is improved by using a part-of-speech tagger to filter out unlikely POS

tags before parsing (Prins & Van Noord 2001) , and by means of a technique which filters

unlikely derivations based on statistics collected from automatically parsed corpora (van Noord

2009).

Alpino has been used as a crucial component in Joost, a question-answering system for Dutch

(Bouma et al. 2005). Joost has been used in the CLEF evaluation campaigns, where it achieved

the best results for Dutch, and it has also been used to develop a QA system for Dutch

Wikipedia, and as part of an interactive, multimodal, medical QA system (Tjong Kim Sang,

Bouma & de Rijke 2005; Fahmi 2009). Whereas most QA systems only use parsing to analyze the

question and sometimes to analyze text snippets returned by the IR component, we used Alpino

to parse the complete text collections used for all of these systems (80M, 110M, and 2M words,

respectively). The benefits are that syntactic information can be used to optimize the IR process,

and that off-line answer extraction can be based on dependency patterns. Jijkoun, Mur & de

Rijke (2004) show, for instance, that both the recall and the precision of patterns for extracting

answers off-line improve if patterns are dependency paths, instead of surface strings. Fahmi

(2009) argues that syntactic information is crucial for identifying the complex noun phrases that

are the arguments of medical relations (cause, symptom, treatment).

Although wide-coverage, robust, statistical parsers exist for a number of languages, it is often

simply taken for granted that these are not fast or robust enough for processing the large

volumes of text that are required in IE applications. Pantel, Ravichandran & Hovy (2004) observe

that full parsing of a 15 GB corpus1 would require 54 days of processing by a dependency

parser, and 5.8 years of processing for an (unidentified) syntactic parser. Given the availability

of a large cluster of CPU's (for instance by means of a grid or a cloud computing service), this

objection is beginning to lose its force. The corpora used in the experiments below have all

been parsed by the Alpino parser. The high-performance cluster of the University of Groningen2

was used to run large numbers of jobs in parallel, thus making the task practically feasible.

3. The Espresso Algorithm

We adopted Espresso (Pantel & Pennacchiotti 2006), a lightly supervised algorithm that is

initialized using a small set of seed pairs as an IE algorithm. Pantel & Pennacchiotti (2006) show

that their method achieves state-of-the-art performance when initialized with relatively small

seed sets over the Acquaint corpus (~ 6M words). Recall is improved with web search queries as

additional source of information. We adopt the Espresso method for computing pattern and

instance reliability. Instead of working with unannotated data, we apply this method to parsed

corpora.

In Espresso, the reliability of a pattern p, rπ(p), given a set of instance pairs I, is computed as the

average strength of association with each instance pair i, weighted by instance reliability, rι(i):

In this equation, pmi(i,p) is the pointwise mutual information score (Church & Hanks 1990)

between a pattern, p (e.g., part-of), and an instance pair i (e.g., engine-car), and maxpmi is the

maximum PMI score between all patterns and instances. The reliability of the seed pairs used to

initialize the process is set to 1.

The top-k most reliable patterns are selected to find new instances. The reliability of an

instance pair i, rι(i) is:

1 Corpus size is usually reported in number of words or sentences. We were not able to determine the
number of words in this corpus.
2 Accessible at http://www.rug.nl/cit/hpcv/faciliteiten/HPCCluster. It takes approximately 1 week to
parse 100M words of text on this 400-node cluster. Processing times fluctuate strongly, depending on
the number of scheduled jobs.

http://www.rug.nl/cit/hpcv/faciliteiten/HPCCluster

The recursive discovery of patterns from instance pairs and instance pairs from patterns is

repeated until a threshold number of patterns and/or instance pairs been extracted.

3.1 Pattern Creation

Whereas Pantel & Pennacchiotti (2006) use surface strings as patterns, we used the (shortest)

dependency path between (the root form of) two nominal words (i.e. nouns or proper names)

as patterns. Given a dependency tree, we extract the information that two entities are

connected by means of a dependency pattern. A dependency pattern in our implementation is

the shortest path through the tree connecting two nodes, where the nodes themselves are

replaced by placeholders ARG1 and ARG2.

For example, for the sentences in (3), Alpino produces the dependency trees given in Figures (1)
and (2).

(3) a. Begin volgend jaar treedt ook het Spaanse Telefónica tot Unisource toe
 Early next year, the Spanish Telefónica will also join Unisource
 b. Alle delen van de planten bevatten alkaloïden en zijn daarmee giftig
 All parts of the plants contain alkaloids and therefore are poisonous

Figure 1 Dependency tree for (3a).

Figure 2 Dependency tree for (3b)

The dependency patterns connecting Telefónica and Unisource and alkaloïde and plant,

respectively, are:

(4) a. ARG1+su ← treed_toe → pc+tot+obj1+ARG2
 b. ARG1+obj1 ← bevat → su+deel+mod+van+obj1+ARG2

One advantage of using dependency paths over patterns based on surface strings, is that

dependency paths are able to deal with word order variation. Note that this is especially

relevant for languages like Dutch or German, where there is considerable word order freedom,

as illustrated by the (somewhat abbreviated) grammatical variants of (3a) in (5).

(5) a. Ook Telefónica treedt begin volgend jaar tot Unisource toe
 b. Ook Telefónica treedt begin volgend jaar toe tot Unisource
 c. Telefónica treedt begin volgend jaar ook toe tot Unisource
 d. Begin volgend jaar treedt Telefónica toe tot Unisource

For surface-based approaches, each word order variant may lead to a separate pattern,

whereas our method extracts the same dependency path in each case. Another advantage is

that dependency paths often capture more of the relevant context than surface patterns. Note,

for instance, that the verb stem in (3a) (treedt) precedes the subject, while a verbal particle

(toe) follows the object. Surface based pattern extraction methods tend to concentrate on the

string between the two arguments in a relation, and not always capture enough of the

preceding or following context to obtain an accurate pattern. Finally, note that the preceding

context contains an adverb, ook, and the name Telefónica is prefixed with a determiner and a

modifier (het Spaanse), which most likely are not relevant for formulating an accurate pattern,

and thus would have to be ignored somehow.

Although dependency paths are more abstract than surface patterns, some spurious variation

remains. One important source of variation in dependency patterns is coordination:

(6) a. Unisource sloot eerder allianties met Telefónica en SITA

 b. ARG1+su ← sluit → obj1+alliantie+pc+met+obj1+en+cnj+ARG2

 c. Unisource sloot eerder een alliantie met Telefónica

 d. ARG1+su ← sluit → obj1+alliantie+pc+met+obj1+ARG2

Note that (6a) and (6c) give rise to two different dependency patterns linking Unisource and

Telefónica. In many scenarios, it is safe to ignore the fact that in (6a) Telefónica is part of a

coordination inside a prepositional phrase which is a dependent of the verb. Therefore, we

normalize such dependency paths by removing coordinations embedded in a longer

dependency path. After normalization, the dependency pattern for sentence (6a) is identical to

that of (6c). Note that this normalization does not apply to entities that are directly connected

by means of a coordination, such as Telefónica en SITA in (6c). In those cases, we preserve the

pattern ARG1+cnj ← en → cnj+ARG2. We observed that applying this normalization step reduces

the number of unique dependency patterns by over 20%.

Stevenson & Greenwood (2009) compare various methods for using dependency tree

information in pattern creation for IE. Methods extracting only subject-verb-object tuples have

limited coverage, whereas methods extracting the minimal subtree containing both arguments

suffer from lack of generality. Their linked chain method corresponds to our shortest path

pattern extraction method, and performs well in an evaluation using the Wall Street Journal

and biomedical data.

It should be noted that the Espresso algorithm requires that mutual information scores be

known for instance pairs and for dependency patterns connecting these pairs. Thus, for any two

entities (i.e. a noun or proper name) occurring in a given sentence in the corpus, we need to

determine the shortest path connecting the two. For a sentence containing N entity denoting

words, N*(N-1) patterns are extracted. Statistics on the number of instance pairs, dependency

patterns, and the combination of these two are given in Table 1. Wikipedia refers to a parsed

version of a dump of Dutch Wikipedia (from June 2008). Wiki+News is a combination of the

Wikipedia corpus with a large, 600M-word, newspaper corpus (Ordelman et al. 2007).

Table 1 Pairs and patterns extracted, in millions. The last three lines give statistics for the data remaining
after applying a minimum frequency cut-off of 2.

 Wikipedia Wikipedia + News

 all unique all unique

words (approx.) 110 700

pairs 67.7 35.6 299.5 116.5
patterns 67.7 10.8 299.5 47.6
pair-patterns 67.7 51.3 299.5 225.2

pairs (f ≥ 2) 38.7 6.6 211.4 28.3
patterns (f ≥ 2) 59.7 2.9 264.9 12.9
pair-patterns (f ≥ 2) 20.0 3.6 96.6 22.2

As mutual information scores for low frequency events tend to be inaccurate, we only

considered instance pairs, dependency patterns, and combinations of these, with a minimum

frequency of 2. Pantel & Pennacchiotti (2006) use a discounting factor to correct for the

overestimation of infrequent events by PMI. Using a discounting factor did not improve accuracy

over using a frequency cut-off in our experiments.

The amount of data we have at our disposal exceeds the amount of data used by other

researchers who have explored parsed data for related tasks, such as paraphrase learning or

acquisition of taxonomic information. Lin & Pantel (2001), for instance, use 1 Gb of text parsed

with Minipar (Lin 2003) from which they extract 7M dependency paths and 200K unique paths,

for learning paraphrases. Snow, Jurafsky & Ng (2005) use a newswire corpus of 7M sentences,

from which they extract 700K unique noun pairs, for learning hypernyms. McCarthy, Koeling,

Weeds & Carroll (2007) use 90M words from the written portion of the British National Corpus,

parsed with RASP (Briscoe & Carroll 2002) to construct a thesaurus for learning predominant

word senses. Padó & Lapata (2007), finally, use all of the 100M words from the BNC parsed with

Minipar for a range of lexical semantic acquisition tasks.

4. Learning Part-Whole Pairs

In our first experiment, we used the Espresso algorithm to extract pairs instantiating the part-

whole relation from the parsed version of Dutch Wikipedia. Automatic extraction of part-whole

pairs for English is well-studied (Berland & Charniak 1999; Girju, Badulescu & Moldovan 2006),

and is also used by Pantel & Pennacchiotti (2006) for evaluating their algorithm. The part-whole

relation is actually quite heterogeneous (Keet 2006), and covers at least the following subcases:

contained-in, located-in, member-of, structural part-of and subquantity-of. We were particularly

interested in the question how the presence of instance pairs representing the different

subrelations influences the accuracy of results, and more in general, in the question how the

choice of seeds influences results.

The “general” seed list for learning the part-whole relation contains instance pairs representing

each of the subtypes. Examples of the seeds we used are given in Table 2. In addition, we

constructed seed lists where all instance pairs were chosen from one subtype of the part-whole

relation only. All seed lists contained 20 instance pairs.

Table 2 Sample seeds used for learning the part-whole relation, and their frequency in the corpus

Part Whole Frequency Type

beeld ‘statue’ kerk ‘church’ 120 contain
abdij ‘abbey’ gemeente ‘community’ 36 located
club ‘club’ voetbal_bond ‘soccer league’ 178 member
geheugen ‘memory’ computer ‘computer’ 14 structural
alcohol ‘alcohol’ bier ‘beer’ 28 subquantity

The results of learning the part-whole relation on the Wikipedia corpus are given in Table 3.

Espresso parameters were set as in Pantel & Pennacchiotti (2006), i.e. initially, the 10 most

reliable patterns are selected, and one pattern is added per iteration. The instance threshold

(i.e. the number of instances preserved for the next round) is incremented by 100 in each

round. We evaluated after each iteration, until the 5th round (i.e. approximately 500 instances).

Table 3 Accuracy (per iteration) for learning the part-whole relation using a seed list composed of all
types (general), and seed lists representing each of the subtypes.

 general member subquantity contains structural location

1 0.705 0.627 0.571 0.645 0.598 0.723
2 0.758 0.623 0.608 0.624 0.608 0.752
3 0.739 0.650 0.632 0.635 0.633 0.739
4 0.723 0.662 0.621 0.623 0.624 0.722
5 0.710 0.680 0.601 0.602 0.600 0.704

Some examples (translated to English) of instance pairs found by the general seeds are: island -

lake, protein - membrane, recommendation - report, actor - movie, picture - cover, descendant -

family, altar - chapel, bacteria - digestive system, base player - band and batallion - brigade.

The results in Table 3 suggest that the highest accuracy is achieved when the seed list is mixed,

but also that the member-of and located-in seeds give rise to almost equally high accuracy

figures. Note that for evaluating the results obtained by using a specialized seed list, all part-

whole instances where counted as correct, not only instances corresponding to the relation

represented by the seed list. In fact, all seed lists lead to results in which all subtypes are

represented, although sometimes there is a strong bias towards specific subtypes.

Closer inspection of these results showed that after 5 iterations, the runs initialized with seeds

representing the sub-quantity-of, contained-in, and structural part-of relation, respectively,

were highly similar. That is, 490 pairs were present in all three runs, and were ranked in almost

the same order (leading to a Spearman rank correlation in the range of ρ = 0.89-0.93 between

the respective outputs). These three seed lists also led to discovery of a substantial number of

common and prototypical part-whole dependency patterns such as W bevat P (‘W contains P’),

W omvat P (‘W comprises P’)} and P is onderdeel van W (‘P is part of W’). The most distinct

results were obtained by the located-in and member-of seeds, with hardly any overlap in

instances with the other results. The patterns learned by bootstrapping from the located-in and

member-of seeds are more or less characteristic for these relations only. Examples of such

patterns for the located-in relation include: P bevindt zich in W (‘P is located in W’), P ligt in W

(‘P lies in W’), P staat in W (‘P stands in W’), P bouwt op W (‘P builds on W’) and for the

member-of relation: P is lid van W (‘P is member of W’), P richt W op (‘P founds W’), and P

verlaat W (‘P leaves W’).

It has been observed that the results of experiments involving bootstrapping from seeds

depend heavily on the choice of seeds (McIntosh & Curran 2009). We therefore also compared

the output of runs initialized with different general seed lists with the results for specific

subtypes. To this end, we created five sets of general seed lists for Dutch, each time picking

four seeds from each of the subtypes. In two cases, the resulting output correlated very

strongly with that of the run for located-in (Spearman rank correlation of ρ=0.93), in the three

other cases the output correlated with the output of the three runs for contained-in,

subquantity-of, and structural part-of (rank correlations of ρ=0.89-0.93).

We conclude from these findings that member-of and located-in are (linguistically) clearly

different from the other part-whole relations. Furthermore, when starting from a mixed seed

list, it is unpredictable in which direction the outcome converges. This could be seen as a subtle

form of semantic drift, where it is not the case that the accuracy of results decreases strongly,

but where there nevertheless is a strong bias towards patterns and instances representative for

only a certain subtype of a given relation.

5. Learning Relations between Named Entities

Frequent question types for QA systems often ask for a named entity in a specific relation to

some other named entity, i.e. what is the capital of Togo?, for which club does David Beckham

play?, which company is owned by Ted Turner?, or in which city does one find the Centre

Pompidou? Some QA systems (Soubbotin & Soubbotin 2002; Fleischman, Hovy & Echihabi 2003;

Mur 2008) have used techniques for mining all potential instantiations of such relations from a

corpus beforehand, using hand crafted extraction patterns or IE techniques similar to Espresso.

In a second experiment, we concentrated on learning a number of such relations between

named entities. As named entities are more diverse than nouns, and only a few pairs are

expected to be highly frequent, we used the corpus composed of Wikipedia and a large

collection of newspaper text described in section 3.1 (above).

We created seed lists (with 9-14 instance pairs) for the (Dutch) politician - (Dutch) political

party, soccer player -club, company - owner and institution - city relations. The frequency of

seed instances varied strongly, from 5 (Carnegie Mellon Universiteit - Pittsburgh) to 672

(Concertgebouw - Amsterdam). Results for the different relations are given in Table 4.

Table 4 Accuracy (per iteration) for learning various relationships between named entities: politician-
party, soccer player - club, company - owner, and institute - city.

 politics soccer owner institute

1 0.971 0.358 0.355 0.732
2 1.000 0.299 0.286 0.698
3 0.977 0.247 0.299 0.698
4 0.978 0.274 0.315 0.490
5 0.938 0.325 0.337 0.321

The politics relation leads to very accurate results. The reason for this appears to be that there

are a number of frequent, and non-ambiguous dependency patterns associated with this

relation involving function names (i.e. parliamentary group leader, member of parliament,

opposition leader, and (vice) minister).

For the soccer relation, results are much less accurate. Initially, the system acquires patterns

that appear to be typical for the soccer relation, but which also admit for a good deal of

ambiguity: C(lub), club of P(layer), P plays for C, P is missing in C, P scores for C, P returns in C, P

knows, from his period with C but also the very general P (C) (where C is analyzed as a modifier

of P). After a number of rounds, patterns are added that are clearly of lower quality: P, trainer

of C, C, the organisation of P, C, the thinktank of P and very general: P at C, P of C. It should be

noted that in some settings, even low accuracy results can be useful. Mur (2008), shows, for

instance, that even an IE system that is tuned only for recall, and which achieves a meager

accuracy of 1% for learning the soccer player - club relation, can contribute positively to the

performance of a QA system. The reason for this somewhat surprising outcome is, we think, the

fact that in a QA system one of the arguments of the relation is always given in the question,

and second, that a QA system like Joost (Bouma et al. 2005) uses additional heuristics, such as

the frequency with which an answer is found, to pick the most promising answer.

For the owner relation, the system learns patterns like O(wner) is owner of C(company), O is the

mother/holding company of C, O takes over C, and O controls C. Some of the international

instance pairs found by the system are Stelios Haji-Ioannou - EasyJet, Mohammed Al Fayed -

Harrods, Charles Saatchi - Saatchi & Saatchi, Ted Turner - CNN and Richard Branson - Virgin

Atlantic. However, the system also finds many pairs in which one of the arguments is a common

noun, such as Al-Fayed - department store and cable firm - MTV. A similar situation arises with

institutions. The system finds a reasonable number of correct instances. For the location Paris,

for instance, no fewer than 37 institutions are found, some of which are: Opéra Bastille, Musée

du Louvre, Théâtre de l'Odéon, Centre Pompidou, Jeu de Paume, Palais des Congrès, Institut du

Monde Arabe} and Maison Européenne de la Photographie. However, many erroneous pairs

involve a predicate, such as consulate - Rio de Janeiro or cultural heritage - Bonaire.

We experimented with two methods for improving accuracy. In both cases, we filter the results

of the Espresso algorithm by imposing additional constraints on what counts as a reliable

instance pair. For the owner and institutions relation it seems most important to ensure that

both arguments are proper names. As we did not preserve part of speech tags in our

dependency patterns (so as to avoid spurious variation), the system has no means to learn that

patterns apply to proper nouns only. As a simple remedy, we require that both arguments of an

instance pair must start with an upper case letter.

For the soccer relation, the problem is that the quality of the learned patterns decreases, which

leads to more incorrect instance pairs being ranked high, which in turn leads to even lower

quality patterns.

McIntosh & Curran (2009) observe a similar problem when trying to learn biomedical terms

within a given semantic class. They propose to use distributional similarity to reduce the effect

of semantic drift. New candidates are ranked higher if they are distributionally more similar to

terms learned early (i.e. terms that are more likely to be correct) than to terms learned later.

We applied distributional similarity to filter unlikely instance pairs. We used the thesaurus

described in van der Plas and Bouma (2005) and van der Plas (2008) to find distributionally

similar terms. The thesaurus was built using the same 700M word parsed corpus we used in our

IE experiments. For each noun and proper name, the syntactic context (the lexical head on

which the nominal is dependent, and its syntactic relation) was stored in a feature-vector.

Counts were weighted using pointwise mutual information (Church & Hanks 1990). Two

nominals are distributionally similar if the distance between their vectors is small, according to

the cosine-metric. The twenty most similar terms for keywords Bayern München and David

Beckham, for instance, are:

(7) a. Bayern München: Borussia Dortmund, AC Milan, Juventus, Real Madrid,
Manchester United, Chelsea, Lazio Roma, Celtic, Arsenal, AS Roma, Glasgow Rangers,
Bayer Leverkusen, Olympique Marseille, Anderlecht, Inter, Lazio, Liverpool, Werder
Bremen, Galatasaray

 b. David Beckham: Roy Keane, Zinedine Zidane, Michael Owen, Ryan Giggs, Alan
Shearer, Paul Scholes, Beckham, Raúl, Luis Figo, Diego Maradona, Andy Cole, Eric
Cantona, Figo, Zidane, Ronaldo, Raul, Rivaldo, Jaap Stam, Romario

Van der Plas (2008) reports results for several alternative methods, and shows that combining

mutual information and cosine gives the best results in terms of coverage and accuracy when

evaluating against Dutch WordNet (Vossen 1998).

For filtering, we used the 100 most similar words for each noun or proper name that was found

at least 10 times in the corpus. The filter works by accepting only new instance pairs for which

each argument is distributionally similar to the corresponding argument of at least one of seeds

or a previously found instance pair. In particular, a pair Figo - Barcelona is only accepted if the

list of similar names for Figo contains at least one name which is also the first argument of a

previously seen instance pair, or when the list of similar items for a first argument in a

previously seen instance pair contains the name Figo, and similarly for the second argument

Barcelona. Note that if a term T is among the N most similar terms of T’, it is not necessarily the

case that T’ is among the N most similar terms of T.

Table 5 Accuracy per iteration for learning the owner and institution relation using the upper case filter,
and for learning the soccer relation using the distributional similarity filter.

 Owner Institution Soccer

 no filter filtered no filtered filtered no filter filtered
 N Acc N Acc N Acc N Acc N Acc N Acc

1 107 0.355 45 0.844 112 0.732 93 0.882 109 0.358 40 0.650
2 210 0.286 70 0.829 212 0.698 168 0.881 211 0.299 74 0.527
3 311 0.299 108 0.824 311 0.698 242 0.897 312 0.247 88 0.375
4 409 0.315 150 0.853 412 0.490 278 0.723 412 0.274 176 0.409
5 501 0.872 195 0.872 514 0.321 291 0.560 511 0.325 290 0.452

Table 5 shows the results for the system with and without filtering. We give both the accuracy

and the number of instances that remained after filtering (N). The upper case filter leads to an

increase in accuracy of around 50% for the owner relation and 20% for the institution relation.

One might argue that this increase in accuracy is only due to the fact that fewer elements are

acquired per iteration. However, if we compare the accuracy of the second round without

filtering (210 pairs) with that of the 5th round with filtering (195 pairs),3 we still see that

accuracy has gone up by almost 60%. The situation is a bit less clear for the institution relation,

where the third iteration with filtering (242 pairs) is 20% more accurate than the second

3 The number of pairs per iteration in the system without filtering bootstrapped with S seeds is 100N + S.
We evaluate only on pairs not present in the seed list. This is why the number of instances given per
iteration does not always go up with 100 exactly.

iteration without filtering (211 pairs), but where the fifth iteration with filtering (291 instances)

is 13% less accurate than the third iteration without filtering (311 pairs). This suggests that the

upper case filter by itself may not be sufficient, if the quality of the patterns has deteriorated

too much.

For the soccer relation, we used distributional similarity as a filter. Accuracies per iteration

increase by 13-30%. If we compare the 5th iteration of the system with filter (290 pairs) with

the 2nd (211 pairs) or 3rd (312 pairs) iteration of the unfiltered results, we still see an increase

in accuracy of 16 and 21%, respectively.

6. Conclusion

In this paper, we have shown that the Espresso algorithm can be used to perform IE on parsed

corpora, using dependency paths instead of surface strings as extraction patterns. In particular,

we argue that available corpora are large enough to obtain interesting and accurate results. In

two experiments, we investigated both the possibility of learning a very general, taxonomic,

relation (part-whole) and the possibility of learning narrowly defined relations between named

entities. The first type of relation is representative for work that aims at (semi-)automatically

extending wordnets or other taxonomic resources, while the second type of relation can be

used as a component in automatic QA systems.

Except for normalizing patterns involving an embedded conjunction, we extracted dependency

paths from dependency trees without applying any rules that might be useful for the IE process.

In our QA system for Dutch, the set of dependency triples (i.e. dependency paths of length 1) for

a given sentence is automatically expanded with additional triples that deal with appositions,

coordination, relative clauses, passives (Bouma, Mur & van Noord 2005), adjectival forms of

geographical names, and compounds such as Fiat-topman (Fiat director) (i.e., where the first

element is a name) are decomposed. Xu, Uszkoreit & Li (2007) observe that many IE methods

tend to ignore the information in non-verbal patterns, such as the 2005 Nobel Peace Prize. The

example above illustrates that for compounding languages such as Dutch and German, one also

needs to take into account patterns that arise from decompounding to learn, for instance, the

director - company relation.

While filtering on the basis of distributional similarity worked well for the soccer player - club

relation, it turned out to be too restrictive for the other relations between named entities. This

suggests that other methods for combining distributional similarity and the scores assigned by

Espresso should be explored. Another option would be to cluster similar names and to filter on

the basis of (reasonably large) clusters of names.

References

Berland, M., & Charniak, E. (1999). Finding parts in very large corpora. Proceedings of the 37th

annual meeting of the Association for Computational Linguistics on Computational

Linguistics, 57-64.

Bouma, G., Fahmi, I., Mur, J. van Noord, G. van der Plas, L. & Tiedeman, J. (2005). Linguistic

knowledge and question answering. Traitement Automatique des Langues, 46(2), 15-39.

Bouma, G., Mur, J. & van Noord, G. (2005). Reasoning over dependency relations for QA. In: F.

Benamara and P. Saint-Dizier (eds.), Proceedings of the IJCAI workshop on Knowledge

and Reasoning for Answering Questions (KRAQ), Edinburgh, 15-21.

Briscoe, T. & Carroll, J. (2002). Robust accurate statistical annotation of general text.

Proceedings of the 3rd International Conference on Language Resources and Evaluation,

1499-1504.

Church, K. W. & Hanks, P. (1990). Word association norms, mutual information and

lexicography. Computational Linguistics, 16(1), 22-29.

Fahmi, I. (2009). Automatic Term and Relation Extraction for Medical Question Answering

Systems. Ph.D. thesis, University of Groningen.

Fleischman, M., Hovy, E. & Echihabi, A. (2003). Off-line strategies for online question answering:

Answering questions before they are asked. Proc. 41st Annual Meeting of the

Association for Computational Linguistics, 1-7, Sapporo, Japan.

Girju, R., Badulescu, A. & Moldovan, D. (2006). Automatic discovery of part-whole relations.

Computational Linguistics, 32(1), 83-135.

Jijkoun, V., Mur, J. & de Rijke, M. (2004). Information extraction for question answering:

Improving recall through syntactic patterns. Proceedings of the 20th International

Conference on Computational Linguistics, 1284-1290, Geneva.

Keet, C.M. (2006). Part-whole relations in object-role models. In On the Move to Meaningful

Internet Systems 2006: OTM 2006 Workshops, Berlin & Heidelberg: Springer Lecture

Notes in Computer Science. 1118-1127.

Kizito, J., Fahmi, I., Tjong Kim Sang, E., Nerbonne, J. & Bouma, G. (2009) Computational

Linguistics and History of Science. In: Dibattista, L. (ed.) Storia della Scienza e Linguistica

Computationale (History of Science and Computational Linguistics), Milan: FrancoAngeli,

55-73

Lin, D. (2003). Dependency-based evaluation of MINIPAR. In: Abeille, A. (ed.) Treebanks:

building and using parsed corpora, 317-329.

Lin, D. & Pantel, P. (2001). Discovery of inference rules for question answering. Natural

Language Engineering, 7, 343-360.

McCarthy, D., Koeling, R., Weeds, J. & Carroll, J. (2007). Unsupervised acquisition of

predominant word senses. Computational Linguistics, 33(4), 553-590.

McIntosh, T. & Curran, J.R. (2009). Reducing semantic drift with bagging and distributional

similarity. Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL

and the 4th International Joint Conference on Natural Language Processing of the

AFNLP. 396-404.

Mur, J. (2008). Off-line Answer Extraction for Question Answering. Ph.D. thesis, University of

Groningen.

Ordelman, R., deJong, F., van Hessen, A. & Hondorp, H. (2007). TWNC: a multifaceted Dutch

news corpus. ELRA Newsletter, 12(3/4), 4-7.

Padó, S., & Lapata, M. (2007). Dependency-based construction of semantic space

models. Computational Linguistics 33(2), 161-199.

Pantel, P., Ravichandran, D., & Hovy, E. (2004). Towards terascale knowledge acquisition.

Proceedings of the 20th international conference on Computational Linguistics, 771-777.

Pantel, P., & Pennacchiotti, M. (2006). Espresso: Leveraging generic patterns for automatically

harvesting semantic relations. Proceedings of the 21st International Conference on

Computational Linguistics and the 44th annual meeting of the Association for

Computational Linguistics, 113-120.

Pollard, C. & Sag, I.A. (1994). Head-driven phrase structure grammar. Stanford, USA: Center for

the Study of Language and Information.

Prins, R., & Van Noord, G. (2001). Unsupervised POS-Tagging Improves Parsing Accuracy and

Parsing Efficiency. In IWPT: International Workshop on Parsing Technologies.

Snow, R., Jurafsky, D. & Ng., A.Y. (2005). Learning syntactic patterns for automatic hypernym

discovery. Proc. of the 17th Annual Conference on Neutral Information Processing

Systems. 1297-1304.

Soubbotin, M. M., & Soubbotin, S. M. (2002). Use of Patterns for Detection of Likely Answer

Strings: A Systematic Approach. TREC 11.

Stevenson, M., & Greenwood, M. A. (2009). Dependency pattern models for information

extraction. Research on Language and Computation 7(1), 13-39.

Tjong Kim Sang, E., Bouma, G., & de Rijke, M. (2005). Developing offline strategies for

answering medical questions. Proceedings of the AAAI-05 Workshop on Question

Answering in Restricted Domains, Pittsburgh, PA, USA. 41-45.

Van der Plas, L. (2008). Automatic lexico-semantic acquisition for question answering. Ph.D.

thesis, University of Groningen.

Van Der Plas, L., & Bouma, G. (2005). Automatic acquisition of lexico-semantic knowledge for

QA. Proceedings of the IJCNLP workshop on Ontologies and Lexical Resources, 76-84.

Van Noord, G. (2004). Error mining for wide-coverage grammar engineering. In Proceedings of

the 42nd Annual Meeting on Association for Computational Linguistics, 446-453.

Van Noord, G. (2006). At last parsing is now operational. TALN ‘06. Verbum Ex Machina. Actes

de la 13e conference sur le traitement automatique des langues naturelles, 20-42.

Van Noord, G. (2009). Learning efficient parsing. In Proceedings of the 12th Conference of the

European Chapter of the Association for Computational Linguistics, 817-825.

Vossen, P. (1998). A multilingual database with lexical semantic networks. Dordrecht: Kluwer.

Xu, F., Uszkoreit, H. & Li, H. (2007). A seed-driven bottom-up machine learning framework for

extracting relations of various complexity. Proceedings of the 45th Annual Meeting of

the Association for Computational Linguistics, 584-591.

Zwarts, F. (1983). Determiners: a relational perspective. Studies in model-theoretic semantics,

37-62.

