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Abstract. Information extraction (IE) culls information from text including relations, our focus here, such 

as head-of(Sergej-Brin, Google).  The Espresso algorithm was developed to do this (Pantel & 

Pennacchiotti 2006), and we extend their work here first by using as input not raw text but rather 

syntactic analyses derived from the text, and second by applying the algorithm to Dutch. This required 

parsing hundreds of millions of words of text, which was regarded as infeasible only ten years ago. 

 
1. Introduction 

It is interesting to extract relations automatically from text to use in inference, to populate 

ontologies and to study the history of ideas (Kizito et al. 2009). Information extraction may be 

seen as an application of work in natural language semantics of the sort pioneered by Frans 

Zwarts (Zwarts 1983). Information extraction systems learn patterns for extracting pairs of 

words or phrases instantiating a given relation from text. For instance, for the relation capital 

of, a system might learn extraction patterns such as `ARG1 is capital of ARG2', or 'The 

ambassador of ARG2 was called back to ARG1'. Lightly supervised information extraction systems 

learn extraction patterns by means of a bootstrapping procedure, where a set of seed pairs is 

used to find patterns associated with the seeds, and where the patterns thus found are used in 

turn to find potential instantiations of the relation. The process then iterates with the (best) 

new instantiations to find more patterns, until some termination criterion is met. 

Bootstrapping procedures like this require large text collections for learning patterns, so it is 

therefore not surprising that most work in this area has used unannotated corpora and has 

been aimed at learning extraction patterns based on surface strings. In learning patterns based 

on surface strings, one encounters a certain amount of morphological and word order variation 

(i.e. present and past tense verbs, singular and plural forms of nouns, presence of adjectival and 

adverbial modifiers) which may hinder identification of the most general extraction patterns. 

Using parsed data can help here, as it allows the use of syntactic patterns instead of surface 

patterns. Xu, Uszkoreit & Li (2007) argue that abstract syntactic patterns, represented as 

attribute-value matrices, may actually be used to learn not just binary relations, but also 

relations with three or four arguments. In this paper, we restrict ourselves to binary relations, 

and we use the shortest path between the two arguments in a dependency graph as extraction 

pattern. Dependency paths abstract over morphological and word order variation, and thus can 

be used to identify relevant patterns more reliably than surface patterns. 

We apply a well-known information extraction algorithm, Espresso (Pantel & Pennacchiotti 

2006), to large, syntactically parsed, Dutch corpora (110M - 700M words). Although the 

experiments in Espresso are based on learning surface patterns, there is nothing in the 



algorithm which requires this, and thus using dependency paths instead of surface strings is 

relatively straightforward, except of course for the amount of additional CPU time required for 

parsing large text collections.  

We show that applying the Espresso-algorithm to a parsed version of Dutch Wikipedia (110M 

words) allows us to obtain state of the art results for learning the part-whole relation. Next, we 

discuss a number of experiments in learning relations between named entities (politician - 

political party, soccer player - club, company owner - company, institute - location) based on a 

large corpus of newspaper text and Wikipedia (700 M words). Accuracies vary from 97% for the 

politicians - political party relation to only 30% for the soccer player - club relation. In the latter 

case, accuracy can be improved significantly by requiring that the arguments of extracted 

instance pairs must be distributionally similar to seeds or previously extracted instance pairs. 

 

2. Corpora and Parser 

Alpino (Van Noord 2006) is a wide-coverage, robust, parser for Dutch.  Its grammar is designed 

following ideas of Head-driven Phrase Structure Grammar (Pollard & Sag 1994).  It uses a 

maximum-entropy model for statistical disambiguation, and coverage has been increased over 

the years by means of semi-automatic extension of the lexicon based on error-mining (Van 

Noord 2004). Efficiency is improved by using a part-of-speech tagger to filter out unlikely POS 

tags before parsing (Prins & Van Noord 2001) , and by means of a technique which filters 

unlikely derivations based on statistics collected from automatically parsed corpora (van Noord 

2009). 

Alpino has been used as a crucial component in Joost, a question-answering system for Dutch 

(Bouma et al. 2005). Joost has been used in the CLEF evaluation campaigns, where it achieved 

the best results for Dutch, and it has also been used to develop a QA system for Dutch 

Wikipedia, and as part of an interactive, multimodal, medical QA system (Tjong Kim Sang, 

Bouma & de Rijke 2005; Fahmi 2009). Whereas most QA systems only use parsing to analyze the 

question and sometimes to analyze text snippets returned by the IR component, we used Alpino 

to parse the complete text collections used for all of these systems (80M, 110M, and 2M words, 

respectively). The benefits are that syntactic information can be used to optimize the IR process, 

and that off-line answer extraction can be based on dependency patterns. Jijkoun, Mur & de 

Rijke (2004) show, for instance, that both the recall and the precision of patterns for extracting 

answers off-line improve if patterns are dependency paths, instead of surface strings. Fahmi 

(2009) argues that syntactic information is crucial for identifying the complex noun phrases that 

are the arguments of medical relations (cause, symptom, treatment). 



Although wide-coverage, robust, statistical parsers exist for a number of languages, it is often 

simply taken for granted that these are not fast or robust enough for processing the large 

volumes of text that are required in IE applications. Pantel, Ravichandran & Hovy (2004) observe 

that full parsing of a 15 GB corpus1 would require 54 days of processing by a dependency 

parser, and 5.8 years of processing for an (unidentified) syntactic parser. Given the availability 

of a large cluster of CPU's (for instance by means of a grid or a cloud computing service), this 

objection is beginning to lose its force. The corpora used in the experiments below have all 

been parsed by the Alpino parser. The high-performance cluster of the University of Groningen2 

was used to run large numbers of jobs in parallel, thus making the task practically feasible. 

 

3. The Espresso Algorithm 

We adopted Espresso (Pantel & Pennacchiotti 2006), a lightly supervised algorithm that is 

initialized using a small set of seed pairs as an IE algorithm. Pantel & Pennacchiotti (2006) show 

that their method achieves state-of-the-art performance when initialized with relatively small 

seed sets over the Acquaint corpus (~ 6M words). Recall is improved with web search queries as 

additional source of information. We adopt the Espresso method for computing pattern and 

instance reliability. Instead of working with unannotated data, we apply this method to parsed 

corpora. 

In Espresso, the reliability of a pattern p, rπ(p), given a set of instance pairs I, is computed as the 

average strength of association with each instance pair i, weighted by instance reliability, rι(i):  

 

In this equation, pmi(i,p) is the pointwise mutual information score (Church & Hanks 1990) 

between a pattern, p (e.g., part-of), and an instance pair i (e.g., engine-car), and maxpmi is the 

maximum PMI score between all patterns and instances. The reliability of the seed pairs used to 

initialize the process is set to 1. 

The top-k most reliable patterns are selected to find new instances. The reliability of an 

instance pair i, rι(i) is: 

                                                           
1 Corpus size is usually reported in number of words or sentences. We were not able to determine the 
number of words in this corpus. 
2 Accessible at http://www.rug.nl/cit/hpcv/faciliteiten/HPCCluster.  It takes approximately 1 week to 
parse 100M words of text on this 400-node cluster. Processing times fluctuate strongly, depending on 
the number of scheduled jobs. 

http://www.rug.nl/cit/hpcv/faciliteiten/HPCCluster


 
 
 
The recursive discovery of patterns from instance pairs and instance pairs from patterns is 

repeated until a threshold number of patterns and/or instance pairs been extracted. 

 

3.1 Pattern Creation 

Whereas Pantel & Pennacchiotti (2006) use surface strings as patterns, we used the (shortest) 

dependency path between (the root form of) two nominal words (i.e. nouns or proper names) 

as patterns. Given a dependency tree, we extract the information that two entities are 

connected by means of a dependency pattern. A dependency pattern in our implementation is 

the shortest path through the tree connecting two nodes, where the nodes themselves are 

replaced by placeholders ARG1 and ARG2. 

For example, for the sentences in (3), Alpino produces the dependency trees given in Figures (1) 
and (2).  
 
(3) a. Begin volgend jaar treedt ook het Spaanse Telefónica tot Unisource toe  
          Early next year, the Spanish Telefónica will also join Unisource 
      b. Alle delen van de planten bevatten alkaloïden en zijn daarmee giftig  
          All parts of the plants contain alkaloids and therefore are poisonous 
 

 
 

Figure 1 Dependency tree for (3a). 



 
 

Figure 2 Dependency tree for (3b) 

The dependency patterns connecting Telefónica and Unisource and alkaloïde and plant, 

respectively, are: 

(4) a. ARG1+su ← treed_toe → pc+tot+obj1+ARG2 
      b. ARG1+obj1 ← bevat → su+deel+mod+van+obj1+ARG2 
 
One advantage of using dependency paths over patterns based on surface strings, is that 

dependency paths are able to deal with word order variation. Note that this is especially 

relevant for languages like Dutch or German, where there is considerable word order freedom, 

as illustrated by the (somewhat abbreviated) grammatical variants of (3a) in (5).  

(5) a. Ook Telefónica treedt  begin volgend jaar tot Unisource toe  
      b. Ook Telefónica treedt  begin volgend jaar toe tot Unisource 
      c. Telefónica treedt  begin volgend jaar ook toe tot Unisource 
      d. Begin volgend jaar treedt Telefónica toe tot Unisource 
 

For surface-based approaches, each word order variant may lead to a separate pattern, 

whereas our method extracts the same dependency path in each case. Another advantage is 

that dependency paths often capture more of the relevant context than surface patterns. Note, 

for instance, that the verb stem in (3a) (treedt) precedes the subject, while a verbal particle 

(toe) follows the object. Surface based pattern extraction methods tend to concentrate on the 

string between the two arguments in a relation, and not always capture enough of the 

preceding or following context to obtain an accurate pattern. Finally, note that the preceding 

context contains an adverb, ook, and the name Telefónica is prefixed with a determiner and a 

modifier (het Spaanse), which most likely are not relevant for formulating an accurate pattern, 

and thus would have to be ignored somehow. 



Although dependency paths are more abstract than surface patterns, some spurious variation 

remains. One important source of variation in dependency patterns is coordination: 

(6) a. Unisource sloot eerder allianties met Telefónica en SITA 

     b. ARG1+su ← sluit → obj1+alliantie+pc+met+obj1+en+cnj+ARG2 

     c. Unisource sloot eerder een alliantie met Telefónica 

     d. ARG1+su ← sluit → obj1+alliantie+pc+met+obj1+ARG2 

 

Note that (6a) and (6c) give rise to two different dependency patterns linking Unisource and 

Telefónica. In many scenarios, it is safe to ignore the fact that in (6a) Telefónica is part of a 

coordination inside a prepositional phrase which is a dependent of the verb. Therefore, we 

normalize such dependency paths by removing coordinations embedded in a longer 

dependency path. After normalization, the dependency pattern for sentence (6a) is identical to 

that of (6c). Note that this normalization does not apply to entities that are directly connected 

by means of a coordination, such as Telefónica en SITA in (6c). In those cases, we preserve the 

pattern ARG1+cnj ← en → cnj+ARG2. We observed that applying this normalization step reduces 

the number of unique dependency patterns by over 20%.  

Stevenson & Greenwood (2009) compare various methods for using dependency tree 

information in pattern creation for IE. Methods extracting only subject-verb-object tuples have 

limited coverage, whereas methods extracting the minimal subtree containing both arguments 

suffer from lack of generality. Their linked chain method corresponds to our shortest path 

pattern extraction method, and performs well in an evaluation using the Wall Street Journal 

and biomedical data. 

It should be noted that the Espresso algorithm requires that mutual information scores be 

known for instance pairs and for dependency patterns connecting these pairs. Thus, for any two 

entities (i.e. a noun or proper name) occurring in a given sentence in the corpus, we need to 

determine the shortest path connecting the two.  For a sentence containing N entity denoting 

words, N*(N-1) patterns are extracted. Statistics on the number of instance pairs, dependency 

patterns, and the combination of these two are given in Table 1. Wikipedia refers to a parsed 

version of a dump of Dutch Wikipedia (from June 2008). Wiki+News is a combination of the 

Wikipedia corpus with a large, 600M-word, newspaper corpus (Ordelman et al. 2007). 

 

 

 



Table 1 Pairs and patterns extracted, in millions. The last three lines give statistics for the data remaining 
after applying a minimum frequency cut-off of 2. 

 Wikipedia Wikipedia + News 

 all unique all unique 

words (approx.) 110            700  

pairs 67.7 35.6 299.5 116.5 
patterns 67.7 10.8 299.5 47.6 
pair-patterns 67.7 51.3 299.5 225.2 

pairs (f ≥ 2) 38.7 6.6 211.4 28.3 
patterns (f ≥ 2) 59.7 2.9 264.9 12.9 
pair-patterns (f ≥ 2) 20.0 3.6 96.6 22.2 

  

As mutual information scores for low frequency events tend to be inaccurate, we only 

considered instance pairs, dependency patterns, and combinations of these, with a minimum 

frequency of 2. Pantel & Pennacchiotti (2006) use a discounting factor to correct for the 

overestimation of infrequent events by PMI. Using a discounting factor did not improve accuracy 

over using a frequency cut-off in our experiments. 

The amount of data we have at our disposal exceeds the amount of data used by other 

researchers who have explored parsed data for related tasks, such as paraphrase learning or 

acquisition of taxonomic information. Lin & Pantel (2001), for instance, use 1 Gb of text parsed 

with Minipar (Lin 2003) from which they extract 7M dependency paths and 200K unique paths, 

for learning paraphrases. Snow, Jurafsky & Ng (2005) use a newswire corpus of 7M sentences, 

from which they extract 700K unique noun pairs, for learning hypernyms. McCarthy, Koeling, 

Weeds & Carroll (2007) use 90M words from the written portion of the British National Corpus, 

parsed with RASP (Briscoe & Carroll 2002) to construct a thesaurus for learning predominant 

word senses. Padó & Lapata (2007), finally, use all of the 100M words from the BNC parsed with 

Minipar for a range of lexical semantic acquisition tasks. 

 

4. Learning Part-Whole Pairs  
 

In our first experiment, we used the Espresso algorithm to extract pairs instantiating the part-

whole relation from the parsed version of Dutch Wikipedia. Automatic extraction of part-whole 

pairs for English is well-studied (Berland & Charniak 1999; Girju, Badulescu & Moldovan 2006), 

and is also used by Pantel & Pennacchiotti (2006) for evaluating their algorithm. The part-whole 

relation is actually quite heterogeneous (Keet 2006), and covers at least the following subcases: 

contained-in, located-in, member-of, structural part-of and subquantity-of. We were particularly 

interested in the question how the presence of instance pairs representing the  different 



subrelations influences the accuracy of results, and more in general, in the question how the 

choice of seeds influences results. 

The “general” seed list for learning the part-whole relation contains instance pairs representing 

each of the subtypes. Examples of the seeds we used are given in Table 2. In addition, we 

constructed seed lists where all instance pairs were chosen from one subtype of the part-whole 

relation only. All seed lists contained 20 instance pairs. 

Table 2 Sample seeds used for learning the part-whole relation, and their frequency in the corpus 

Part Whole Frequency Type 

beeld ‘statue’ kerk ‘church’   120 contain 
abdij ‘abbey’ gemeente ‘community’ 36 located 
club  ‘club’ voetbal_bond  ‘soccer league’ 178 member 
geheugen ‘memory’ computer ‘computer’ 14 structural 
alcohol  ‘alcohol’ bier ‘beer’ 28 subquantity 

 

The results of learning the part-whole relation on the Wikipedia corpus are given in Table 3. 

Espresso parameters were set as in Pantel & Pennacchiotti (2006), i.e. initially, the 10 most 

reliable patterns are selected, and one pattern is added per iteration. The instance threshold 

(i.e. the number of instances preserved for the next round) is incremented by 100 in each 

round. We evaluated after each iteration, until the 5th round (i.e. approximately 500 instances). 

Table 3 Accuracy (per iteration) for learning the part-whole relation using a seed list composed of all 
types (general), and seed lists representing each of the subtypes. 

 general member subquantity contains structural location 

1 0.705 0.627 0.571 0.645 0.598 0.723 
2 0.758 0.623 0.608 0.624 0.608 0.752 
3 0.739 0.650 0.632 0.635 0.633 0.739 
4 0.723 0.662 0.621 0.623 0.624 0.722 
5 0.710 0.680 0.601 0.602 0.600 0.704 

 

Some examples (translated to English) of instance pairs found by the general seeds are: island - 

lake, protein - membrane, recommendation - report, actor - movie, picture - cover, descendant - 

family, altar - chapel, bacteria - digestive system, base player - band and batallion - brigade. 

The results in Table 3 suggest that the highest accuracy is achieved when the seed list is mixed, 

but also that the member-of and located-in seeds give rise to almost equally high accuracy 

figures. Note that for evaluating the results obtained by using a specialized seed list, all part-

whole instances where counted as correct, not only instances corresponding to the relation 

represented by the seed list. In fact, all seed lists lead to results in which all subtypes are 

represented, although sometimes there is a strong bias towards specific subtypes.  



Closer inspection of these results showed that after 5 iterations, the runs initialized with seeds 

representing the sub-quantity-of, contained-in, and structural part-of relation, respectively, 

were highly similar. That is, 490 pairs were present in all three runs, and were ranked in almost 

the same order (leading to a Spearman rank correlation in the range of ρ = 0.89-0.93 between 

the respective outputs). These three seed lists also led to discovery of a substantial number of 

common and prototypical part-whole dependency patterns such as W bevat P (‘W contains P’), 

W omvat P (‘W comprises P’)} and P is onderdeel van W (‘P is part of W’). The most distinct 

results were obtained by the located-in and member-of seeds, with hardly any overlap in 

instances with the other results. The patterns learned by bootstrapping from the located-in and 

member-of seeds are more or less characteristic for these relations only. Examples of such 

patterns for the located-in relation include: P bevindt zich in W (‘P is located in W’), P ligt in W 

(‘P lies in W’), P staat in W (‘P stands in W’), P bouwt op W ( ‘P builds on W’) and for the 

member-of relation: P is lid van W (‘P is member of W’), P richt W op (‘P founds W’), and P 

verlaat W (‘P leaves W’). 

It has been observed that the results of experiments involving bootstrapping from seeds 

depend heavily on the choice of seeds (McIntosh & Curran 2009).  We therefore also compared 

the output of runs initialized with different general seed lists with the results for specific 

subtypes. To this end, we created five sets of general seed lists for Dutch, each time picking 

four seeds from each of the subtypes. In two cases, the resulting output correlated very 

strongly with that of the run for located-in (Spearman rank correlation of ρ=0.93), in the three 

other cases the output correlated with the output of the three runs for contained-in, 

subquantity-of, and structural part-of (rank correlations of ρ=0.89-0.93).  

We conclude from these findings that member-of and located-in are (linguistically) clearly 

different from the other part-whole relations. Furthermore, when starting from a mixed seed 

list, it is unpredictable in which direction the outcome converges. This could be seen as a subtle 

form of semantic drift, where it is not the case that the accuracy of results decreases strongly, 

but where there nevertheless is a strong bias towards patterns and instances representative for 

only a certain subtype of a given relation.  

 

5. Learning Relations between Named Entities 
 

Frequent question types for QA systems often ask for a named entity in a specific relation to 

some other named entity, i.e. what is the capital of Togo?, for which club does David Beckham 

play?, which company is owned by Ted Turner?, or in which city does one find the Centre 

Pompidou? Some QA systems (Soubbotin & Soubbotin 2002; Fleischman, Hovy & Echihabi 2003; 

Mur 2008) have used techniques for mining all potential instantiations of such relations from a 

corpus beforehand, using hand crafted extraction patterns or IE techniques similar to Espresso. 



In a second experiment, we concentrated on learning a number of such relations between 

named entities. As named entities are more diverse than nouns, and only a few pairs are 

expected to be highly frequent, we used the corpus composed of Wikipedia and a large 

collection of newspaper text described in section 3.1 (above).  

We created seed lists (with 9-14 instance pairs) for the (Dutch) politician - (Dutch) political 

party, soccer player -club, company - owner and institution - city relations. The frequency of 

seed instances varied strongly, from 5 (Carnegie Mellon Universiteit - Pittsburgh) to 672 

(Concertgebouw - Amsterdam). Results for the different relations are given in Table 4. 

Table 4 Accuracy (per iteration) for learning various relationships between named entities: politician-
party, soccer player - club, company - owner, and institute - city. 

 politics soccer owner institute 

1 0.971 0.358 0.355 0.732 
2 1.000 0.299 0.286 0.698 
3 0.977 0.247 0.299 0.698 
4 0.978 0.274 0.315 0.490 
5 0.938 0.325 0.337 0.321 

 

The politics relation leads to very accurate results. The reason for this appears to be that there 

are a number of frequent, and non-ambiguous dependency patterns associated with this 

relation involving function names (i.e. parliamentary group leader,  member of parliament, 

opposition leader, and (vice) minister).  

For the soccer relation, results are much less accurate. Initially, the system acquires patterns 

that appear to be typical for the soccer relation, but which also admit for a good deal of 

ambiguity: C(lub), club of P(layer), P plays for C, P is missing in C, P scores for C, P returns in C, P 

knows, from his period with C but also the very general P (C)  (where C is analyzed as a modifier 

of P). After a number of rounds, patterns are added that are clearly of lower quality: P, trainer 

of C, C, the organisation of P, C, the thinktank of P and very general: P at C, P of C. It should be 

noted that in some settings, even low accuracy results can be useful. Mur (2008), shows, for 

instance, that even an IE system that is tuned only for recall, and which achieves a meager 

accuracy of 1% for learning the soccer player - club relation, can contribute positively to the 

performance of a QA system. The reason for this somewhat surprising outcome is, we think, the 

fact that in a QA system one of the arguments of the relation is always given in the question, 

and second, that a QA system like Joost (Bouma et al. 2005) uses additional heuristics, such as 

the frequency with which an answer is found, to pick the most promising answer. 

For the owner relation, the system learns patterns like O(wner) is owner of C(company), O is the 

mother/holding company of C, O takes over C, and O controls C. Some of the international 

instance pairs found by the system are Stelios Haji-Ioannou - EasyJet, Mohammed Al Fayed - 



Harrods, Charles Saatchi  -  Saatchi & Saatchi, Ted Turner - CNN and Richard Branson - Virgin 

Atlantic. However, the system also finds many pairs in which one of the arguments is a common 

noun, such as Al-Fayed - department store and cable firm - MTV. A similar situation arises with 

institutions. The system finds a reasonable number of correct instances. For the location Paris, 

for instance, no fewer than 37 institutions are found, some of which are:  Opéra Bastille, Musée 

du Louvre, Théâtre de l'Odéon, Centre Pompidou, Jeu de Paume, Palais des Congrès, Institut du 

Monde Arabe} and Maison Européenne de la Photographie. However, many erroneous pairs 

involve a predicate, such as consulate - Rio de Janeiro or cultural heritage - Bonaire.  

We experimented with two methods for improving accuracy. In both cases, we filter the results 

of the Espresso algorithm by imposing additional constraints on what counts as a reliable 

instance pair. For the owner and institutions relation it seems most important to ensure that 

both arguments are proper names. As we did not preserve part of speech tags in our 

dependency patterns (so as to avoid spurious variation), the system has no means to learn that 

patterns apply to proper nouns only. As a simple remedy, we require that both arguments of an 

instance pair must start with an upper case letter.  

For the soccer relation, the problem is that the quality of the learned patterns decreases, which 

leads to more incorrect instance pairs being ranked high, which in turn leads to even lower 

quality patterns.  

McIntosh & Curran (2009) observe a similar problem when trying to learn biomedical terms 

within a given semantic class. They propose to use distributional similarity to reduce the effect 

of semantic drift. New candidates are ranked higher if they are distributionally more similar to 

terms learned early (i.e. terms that are more likely to be correct) than to terms learned later.  

We applied distributional similarity to filter unlikely instance pairs. We used the thesaurus 

described in van der Plas and Bouma (2005) and van der Plas (2008) to find distributionally 

similar terms. The thesaurus was built using the same 700M word parsed corpus we used in our 

IE experiments. For each noun and proper name, the syntactic context (the lexical head on 

which the nominal is dependent, and its syntactic relation) was stored in a feature-vector. 

Counts were weighted using pointwise mutual information (Church & Hanks 1990). Two 

nominals are distributionally similar if the distance between their vectors is small, according to 

the cosine-metric. The twenty most similar terms for keywords Bayern München and David 

Beckham, for instance, are: 

(7) a. Bayern München: Borussia Dortmund, AC Milan, Juventus, Real Madrid, 
Manchester United, Chelsea, Lazio Roma, Celtic, Arsenal, AS Roma, Glasgow Rangers, 
Bayer Leverkusen, Olympique Marseille, Anderlecht, Inter, Lazio, Liverpool, Werder 
Bremen, Galatasaray 



      b. David Beckham: Roy Keane, Zinedine Zidane, Michael Owen, Ryan Giggs, Alan 
Shearer, Paul Scholes, Beckham, Raúl, Luis Figo, Diego Maradona, Andy Cole, Eric 
Cantona, Figo, Zidane, Ronaldo, Raul, Rivaldo, Jaap Stam, Romario 

Van der Plas (2008) reports results for several alternative methods, and shows that combining 

mutual information and cosine gives the best results in terms of coverage and accuracy when 

evaluating against Dutch WordNet (Vossen 1998).  

For filtering, we used the 100 most similar words for each noun or proper name that was found 

at least 10 times in the corpus. The filter works by accepting only new instance pairs for which 

each argument is distributionally similar to the corresponding argument of at least one of seeds 

or a previously found instance pair. In particular, a pair Figo - Barcelona is only accepted if the 

list of similar names for Figo contains at least one name which is also the first argument of a 

previously seen instance pair, or when the list of similar items for a first argument in a 

previously seen instance pair contains the name Figo, and similarly for the second argument 

Barcelona. Note that if a term T is among the N most similar terms of T’, it is not necessarily the 

case that T’ is among the N most similar terms of T.  

Table 5 Accuracy per iteration for learning the owner and institution relation using the upper case filter, 
and for learning the soccer relation using the distributional similarity filter. 

 Owner Institution Soccer 

 no filter filtered no filtered filtered no filter filtered 
 N Acc N Acc N Acc N Acc N Acc N Acc 

1 107 0.355 45 0.844 112 0.732 93 0.882 109 0.358 40 0.650 
2 210 0.286 70 0.829 212 0.698 168 0.881 211 0.299 74 0.527 
3 311 0.299 108 0.824 311 0.698 242 0.897 312 0.247 88 0.375 
4 409 0.315 150 0.853 412 0.490 278 0.723 412 0.274 176 0.409 
5 501 0.872 195 0.872 514 0.321 291 0.560 511 0.325 290 0.452 

 

Table 5 shows the results for the system with and without filtering. We give both the accuracy 

and the number of instances that remained after filtering (N). The upper case filter leads to an 

increase in accuracy of around 50% for the owner relation and 20% for the institution relation. 

One might argue that this increase in accuracy is only due to the fact that fewer elements are 

acquired per iteration. However, if we compare the accuracy of the second round without 

filtering (210 pairs) with that of the 5th round with filtering (195 pairs),3 we still see that 

accuracy has gone up by almost 60%. The situation is a bit less clear for the institution relation, 

where the third iteration with filtering (242 pairs) is 20% more accurate than the second 

                                                           
3 The number of pairs per iteration in the system without filtering bootstrapped with S seeds is 100N + S. 
We evaluate only on pairs not present in the seed list. This is why the number of instances given per 
iteration does not always go up with 100 exactly. 
 



iteration without filtering (211 pairs), but where the fifth iteration with filtering (291 instances) 

is 13% less accurate than the third iteration without filtering (311 pairs). This suggests that the 

upper case filter by itself may not be sufficient, if the quality of the patterns has deteriorated 

too much. 

For the soccer relation, we used distributional similarity as a filter. Accuracies per iteration 

increase by 13-30%. If we compare the 5th iteration of the system with filter (290 pairs) with 

the 2nd (211 pairs) or 3rd (312 pairs) iteration of the unfiltered results, we still see an increase 

in accuracy of 16 and 21%, respectively.  

 

6. Conclusion 

In this paper, we have shown that the Espresso algorithm can be used to perform IE on parsed 

corpora, using dependency paths instead of surface strings as extraction patterns. In particular, 

we argue that available corpora are large enough to obtain interesting and accurate results. In 

two experiments, we investigated both the possibility of learning a very general, taxonomic, 

relation (part-whole) and the possibility of learning narrowly defined relations between named 

entities. The first type of relation is representative for work that aims at (semi-)automatically 

extending wordnets or other taxonomic resources, while the second type of relation can be 

used as a component in automatic QA systems.  

Except for normalizing patterns involving an embedded conjunction, we extracted dependency 

paths from dependency trees without applying any rules that might be useful for the IE process. 

In our QA system for Dutch, the set of dependency triples (i.e. dependency paths of length 1) for 

a given sentence is automatically expanded with additional triples that deal with appositions, 

coordination, relative clauses, passives (Bouma, Mur & van Noord 2005), adjectival forms of 

geographical names, and compounds such as Fiat-topman (Fiat director) (i.e., where the first 

element is a name) are decomposed. Xu, Uszkoreit & Li (2007) observe that many IE methods 

tend to ignore the information in non-verbal patterns, such as the 2005 Nobel Peace Prize. The 

example above illustrates that for compounding languages such as Dutch and German, one also 

needs to take into account patterns that arise from decompounding to learn, for instance, the 

director - company relation. 

While filtering on the basis of distributional similarity worked well for the soccer player - club 

relation, it turned out to be too restrictive for the other relations between named entities. This 

suggests that other methods for combining distributional similarity and the scores assigned by 

Espresso should be explored. Another option would be to cluster similar names and to filter on 

the basis of (reasonably large) clusters of names.  
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