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1. Aggregation and perspectives from the aggregate 

Dialect geographers have viewed the distribution of most individual linguistic features 

(pronunciations, allomorphy, or lexical choice) as complex, and moreover, as non-overlapping. 

Features often overlap very poorly, resulting in isoglosses that do not “bundle”. Nerbonne (2009) 

maps nine features often discussed in German dialectology, showing how poorly they overlap in 

detail, but noting that they mostly distinguish the north from the south.   Bloomfield’s (1933) 

discussion of dialects came to a similar conclusion, leading him to quote Grimm’s (1819: IV) famous 

dictum that “every word has its own history.”  The view has been disputed, as Schirmunksi’s 

(1962:78ff) account of Wenker’s reception among the neo-grammarians documents, but it is now 

accepted. The conclusion that individual features have very noisy geographic distributions has been 

seen to threaten the dialectological enterprise. Gaston Paris concluded on this basis that “there was no 

geography of dialects, only of individual linguistic features” (quoted by Goebl, Ch. 7).  

 

Séguy (1971, 1973) introduced the term ‘dialectometry’ as he took the liberating step of 

AGGREGATING over large sets of features (over 400) to then examine how well geographic neighbors 

agreed; poor aggregate agreements indicated dialect boundaries.  The simple step of examining 

aggregate distributions proved to be enlightening. Goebl (1982) introduced local perspectives on the 

larger dialect space, examining the distribution of linguistic differences (or equivalently, similarities) 

from each site in his (Italian) data collection, pointing out inter alia that sites with skewed 

distributions might be transition zones.  We also refer to differences as distances, noting that the 

measures used in dialectometry generally satisfy the conditions imposed on mathematical distances 

(symmetry, zero between identical elements, and the “triangle inequality”:  d(a,b) ≤ d(a,c)+d(c,b), for 

all c). Seguy (1971) examined the distribution of aggregate differences (in Gascogne) as a function of 

geography, displaying a sub-linear curve, which Nerbonne (2010) argues contradicts Trudgill’s (1974) 

gravity theory of dialect divergence.
1
 These early works motivate the aggregate perspective. 

 

There are various ways of probing linguistic data to obtain a measure of difference between sites (or 

samples, in case we are interested in non-geographic differences as well
2
), e.g. measuring the 

percentage of concepts that is realized in different ways lexically, or by using the percentage of 

syntactic features that are realized differently (see Ch. 20, this volume, for more sophisticated 

methods). Equivalently we may always measure similarities and convert these to differences. In the 

interest of brevity we shall abstract away from the concrete details of how the distances we analyze 

below are obtained. The presentation below proceeds from the assumption that we have a table of 

aggregate differences between pairs of sites in our data.  We will use a small example from Heeringa 

(2004:146): 

 

                                                           
1
 See Chap. 7 (Goebl) and Chap. 20 (Heeringa and Prokić) above for more on the theory and computational 

underpinnings of dialectometry, respectively. 
2
 We emphasize geographical differences in this chapter (but see Sec. 4.2), but aggregating techniques may also 

be applied to social varieties or social dialectology (Boberg 2005). 
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Table 1. An example table of aggregate differences between Dutch sites. The cells in the diagonal are empty, with the 
implicit value zero since there are no differences between a site and itself.  The cells below and to the left of the diagonal 
are blank, because these would be the same as those above and to the right, since the differences between sites a and b 
are the same as those between b and a. This also means that the row for the last site in the table can be empty.  We omit 
this as the example is developed further. 

 Grouw Haarlem Delft Hattem Lochem 

Grouw  42 44 46 47 

Haarlem   16 36 38 

Delft    38 40 

Hattem     21 

Lochem      

 

2. Clustering 

A traditional question in dialect geography is whether there are DIALECT AREAS, i.e. regions within 

which variation is low, but which are relatively distinct with respect to varieties outside the region.  

There are many CLUSTERING techniques that search for groups in data (Kaufmann and Rosseeuw 

2005; Manning et al. 2008:Ch.16-17); we focus here on the ones popular in dialectology. All the 

techniques we examine search for groups in the linguistic data without reference to location.
3
  If, on 

the basis of aggregate differences, a group is identified and confirmed, and if it indeed constitutes a 

geographic region, then this is already a modest success. 

Some clustering algorithms, such as k-means clustering (Manning et al. 2008:515ff ), aim to partition 

the data, i.e., determine groups such that each variety (or sampling point) belongs to exactly one. 

These “flat” algorithms thus assume that there is no hierarchical structure in the grouping, where a 

given variety might be assigned not only to Vologda, but also to North Russian, which is part of 

Russian, which in turn finally belongs to East Slavic (see Zhobov and Alexander, Ch. 31, this 

volume). It is uncontroversial, however, that dialect groups may be hierarchically structured, which 

has leads to a focus on HIERARCHICAL CLUSTERING ALGORITHMS, which we will concentrate on.  A 

cross-cutting distinction separates algorithms which work bottom-up, or agglomeratively, from those 

which work top-down, or divisively.  We focus on agglomerative algorithms, which have enjoyed the 

most dialectological attention, but we will return to divisive algorithms at the end of this section. 

2.1 Hierarchical agglomerative clustering 

Johnson (1967) realized that different hierarchical agglomerative algorithms can be characterized in 

similar ways.  They all begin with a sample × sample table of aggregate differences such as that in 

Table 1 (below).  They all then seek the two (groups of) sites  for which the differences are minimal 

and fuse these two to create a cluster.  The table is then revised so that the two minimally different 

groups are eliminated while the result of fusing them is included. This leaves the table with the 

difference values of several cells unspecified (see Table 2).  

Table 2. The (partial) table after fusing Haarlem and Delft but before determining the differences between the recently 
fused element and the other elements. The missing values are signalled by question marks, and following value is the 
mean of the distances from two components of the fusion to the other site. From Heeringa (2004:147). 

 Grouw Haarlem 

& Delft 

Hattem Lochem 

Grouw  ? (43) 46 47 

Haarlem & Delft   ? (37) ? (39)  

Hattem    21 

                                                           
3
 See Chap. 25 (Grieve) for geo-statistical techniques that include a bias for geographically coherent areas. 
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Once we have obtained a filled-in table, we are in a position to iterate, again choosing the closest 

(groups of) sites, fusing them, and assign the necessary distance to the new elements (and eliminating 

the components of the fusion). Johnson (1967) showed that several sorts of hierarchical agglomerative 

clustering approaches could be characterized by the function used to determine the new distances in 

the step immediately following the fusion. One may use the arithmetic mean between the two 

components (and shown in parentheses in Table 2), which is referred to as the ‘Unweighted Pair-

Group Method using Arithmetic averages’ (UPGMA).  Heeringa (2004) also discusses a version 

which uses a mean weighted by group sizes (WPGMA), and a pair of methods ((un-)weighted by 

group size) which determine a centroid in the abstract space of differences.  In addition, one may 

simply assign the new element either the smallest difference value available (among all the pairs with 

one element in the new group and one in the old one), which is referred to as “nearest neighbor 

clustering” or “single-link”, or assign the new element the largest distance, which is referred to as 

“furthest neighbor” or “complete-link”.  Finally, Ward’s method proceeds from the insight that 

assigning a single distance to the elements newly fused introduces a kind of “error” in treating the 

fused elements as the same.  It then is designed to minimize the error. Prokić and Nerbonne (2008) 

review other popular techniques,. 

Figure 1 shows the output of clustering, a dendrogram, i.e., a tree with the varieties as leaves, which 

are joined to form more substantial branches reflecting the fusion process.  Dendrograms are popular 

not only for illustrating groups, but also for showing COPHENETIC DISTANCES. The cophenetic distance 

between any two sites is their common distance to the first encompassing node.  In Fig.1 the 

cophenetic distance between Hattem and Lochem is 21. 

 

Figure 1. A dendrogram displaying the results of UPGMA clustering on the distance matrix in Table 1.  From Heeringa 
(2004:147). The horizontal distance from the leaves on the left to a branching point shows the cophenetic distance. 

2.2 Stochastic clustering 

All the popular hierarchical agglomerative algorithms suffer from instability, meaning that small 

differences in the input table can sometimes lead to large differences in the output dendrogram, 

occasionally very large (Prokić and Nerbonne 2008).  

In order to overcome the inherent instability in clustering, two approaches have been used, bootstrap 

clustering and noisy clustering (Nerbonne et al. 2008), both of which add a STOCHASTIC element.
4
  In 

bootstrap clustering, clustering is repeated a fixed number of times, usually 100 or 1000 times, while 

the choice of elements in the aggregate sample is allowed to vary.  A common choice is to fix the 

number of elements in the aggregate at the total number available, and then to choose the elements 

randomly with replacement.  If one begins with 200 words, then sample size is fixed at 200.  When 

                                                           
4
 The rest of the presentation assumes the discussion of statistics in the introduction to this section of the 

handbook.  
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selecting elements with replacement, one may select the same element more than once, which will 

then forces other elements to be omitted.  Another option is to repeat clustering adding different small 

amounts of noise (e.g., 0.3 standard deviations) to the distance matrix at each iteration.  In either case 

the result is a dendrogram where each internal node is associated with a percentage indicating how 

often the sites below the node (its leaves) emerged during the stochastic process. One may be fairly 

confident of clusters that emerge 90% or more of the time. 

2.3 Other clustering techniques 

Since dialectologists often present their results in maps of dialect areas, and since clustering produces 

groups that normally project onto areas, clustering thus facilitates comparison to earlier work. 

 

Before closing this section, we note that there are perhaps hundreds of alternative clustering 

algorithms that have not yet been used on dialect data (see the NIPS conferences, http://nips,cc), 

meaning that there is clearly room for further experimentation.  Divisive algorithms begin with the 

entire set of samples, seeking a split that leaves the subgroups as internally similar as possible. 

Manning et al. (2008:Ch.17.6) claim that divisive algorithms are computationally more effective and 

that they may also be more accurate, since they base their decisions on the entire data set, not just on 

local evidence (pairs of varieties or groups of varieties). Given their potential advantages and the scant 

attention they have received in dialectology, more work on this topic would be desirable. 

 

Two principles are important in further experiments. First the potentially hierarchical structure of 

dialect relations should not be ruled out (as in k-means clustering, see Manning et al. 2008:515ff); and 

second, the algorithm be required to assign a reliability to the clusters it proposes.   

3. Dimension reduction 

3.1 Multidimensional Scaling 

Multi-dimensional scaling (MDS, Kruskal and Wish 1978) was introduced to dialectology by 

Embleton (1993). It inputs an input distance matrix such as Table 1 and assigns coordinates to each 

element in a small number of dimensions.  Given the MDS coordinates we may derive assigned 

distances using the Euclidean formula, and the “dimension reduction” is successful to the degree that 

the derived distances agree with the input distances.  This success is indicated by the STRESS in the 

solution, where less stress is better, or by the correlation of the input distances with the MDS-derived 

distances, where greater correlation coefficients are naturally preferred. MDS analyses must be 

accompanied by one of these two numbers if they are to be published.  One should also attempt to 

interpret the dimensions, and in the case of dialectological applications we prefer to see both 

geographic interpretations (how are the dimensions projected onto a map) and linguistic ones (what 

linguistic features do these sites share).  See Wieling et al. (2007:Fig. 6), , Prokić (2010:§3.5.1) and 

Nerbonne (2010a: Map 2405) for examples. 

We also need to ask how many dimensions to use in a solution.  Each additional dimension will reduce 

stress (but less than all the previous dimensions) and improve the correlation with the input matrix, so 

a common way to determine the optimal number of dimensions to be used is to plot, e.g., stress as a 

function of the number of dimensions in what is called a scree plot.  

Since each additional dimension reduces stress less than previous ones, there will always be a point 

where the curve in the scree plot begins to flatten out, so that additional dimensions in the flat portion 

of the curve no longer account for much variance (Johnson 2008:209), indicating that further 

dimensions may be ignored.  A further question concerns whether one may use metric versions of 

http://nips,cc/
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MDS or whether one should stick to a non-metric version, given the categorical nature of linguistic 

data.  But since it is fine to treat large aggregates as numerical data, i.e. metrically, we have no 

compunction about using the (simpler) metric version. 

Applications of MDS to dialect data typically represent the data well in two or maximally three 

dimensions, and this has led to a popular innovation in dialect mapping where each dimension is 

assigned a color – usually red, green or blue – and each site is assigned a color intensity corresponding 

to its coordinate in the MDS solution (Nerbonne et al.1999), arguably the first representation of dialect 

continua based on exact techniques.
5
   

MDS does not partition dialect sites into non-overlapping dialect areas, and it also does not suffer 

from the instability we noted in non-stochastic clustering routines. Moreover it analyzes the same sort 

of distance matrix which is input to clustering.  This means that it can be used to examine clustering 

results in more detail. 

 

Figure 2 Left a map of the Netherlands showing the largest four clusters obtained using Ward's method. We shall discuss 
the Frisian area in the Northwest, the Lower Saxon area in the Northeast, the West Flemish (including Zealand) area in 

the Southwest, and the large Franconian area in the middle. On the right a projection of the same data into two 
dimensions using MDS (r = 0.76).  The MDS graph shows that there is an “archipelago” of Frisian sites (boxes) that are 
quite similar to Lower Saxon, and that Lower Saxon is otherwise fairly distinct, while the West Flemish and Franconian 

sites are less well distinguished.  The MDS perspective adds to the clustering. From Gabmap,  www.gabmap.nl  

3.2 Principal Component Analysis and Factor Analysis 

PRINCIPAL COMPONENT ANALYSIS (PCA) and FACTOR ANALYSIS (FA) are two related dimension-

reducing techniques, which input not distance matrices, but rather matrices of sites and numeric 

features.  They differ in that PCA attempts to account for all the variance in the matrix, while FA is 

more modest, taking aim only at the variance that is shared among the input variables. This means that 

noise and variables that share no variance with others are ignored in FA.  

 

Following Tabachnik and Fidell (2001:Ch.13), we shall (mostly) discuss PCA and FA together, 

although we will naturally give some examples of each. In particular, we use the term FACTOR to refer 

both to PCA components and FA factors. This eliminates some awkward formulations. 

 

The need to provide numeric features naturally entails representing linguistic data numerically.  This 

may be straightforward, as when Labov (2001: 286ff, 345ff) applies PCA to formant frequencies, but 

Shackleton (2010, Ch.3 & App.B) translates the vowels in The Pronunciation of English in the 

                                                           
5
 We do not show colored maps in this book in order to keep the costs of printing low. 
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Atlantic States (Kurath and McDavid 1961) and The Dialect Structure of Southern England (Kurath 

and Lowman 1970) into numerical values on a set of features in order to apply PCA. This involves 

coding each token of a vowel numerically, so that the vowel in wool was <5,3,2,1>, representing 

maximal height, maximal backness, maximal roundness, and non-rhoticity.  See Shackleton (2010: 

188, Table B.1).  Using FA, on the other hand, Clopper and Paolillo (2006) use formant frequencies 

and vowel duration for fourteen American vowels, while Nerbonne (2006) translates transcribed 

vowels into (numeric) feature vectors somewhat as Shackleton does. Grieve et al. (2011) identify 

lexical alternatives and then use their relative frequencies in an analysis using FA, but see Grieve (this 

volume) as well for several other crucial steps in that analysis. Pickl (2013) also uses relative lexical 

frequencies as input to FA.  

The result of applying the analysis is a set of factors smaller than the original set of variables. The goal 

is to interpret one’s data not on the basis of, say, twenty vowels, or two hundred or more phoneme 

tokens, but rather in terms of a much smaller number of factors in the solution.  We note two further 

interesting outputs of PCA and FA.  On the one hand we obtain for each factor and variable, the 

LOADING, i.e. the degree to which the two correlate, which facilitates in interpreting the variable.  If a 

factor correlates highly with [i,ɪ,e,ɛ] and [æ] (which therefore have high loadings for this factor), but 

not with other vowels, the factor may be interpreted straightforwardly,  giving dimension reduction the 

potential to contribute to the deeper linguistic analysis of aggregate analyses.  Tabachnik and Fidell 

(2001) suggest the loadings should have values greater than 0.32 if one is to interpret them.  On the 

other hand, PCA and FA also provide SCORES for each factor and site in the input matrix, contributing 

to the geographical interpretation.  

Turning to the question of  how many factors to retain in analyses, several considerations may play a 

role.  First, just as in MDS, we want to interpret the factors we decide to retain in the solution. The 

geographic or social interpretation is important, but given that we analyze individual variables jointly 

in PCA and FA (via factor loadings), it is most intriguing to seek linguistic interpretation, especially 

when it suggests that a more abstract level of linguistic structure might be influential.  Second, each 

factor in PCA and FA is associated with an EIGENVALUE derived from the input matrix which 

represents variance, in particular where an eigenvalue of 1.0 is roughly the variance associated with a 

single case (site or speaker).  This is the source of a common rule of thumb to disregard eigenvalues 

less than 1.0.
6
  Scree plots are used for PCA and FA, just as in MDS, and in a similar way.  Since 

factors are ordered in importance, one uses the scree plot to determine which initial sequence of 

factors is to be used by examining the decreasing sequence of eigenvalues in a given solution 

(Tabachnik and Fidell 2001:621). A third desideratum in choosing which factors to retain is the wish 

to explain a good deal of the variance, where the rule of thumb is to strive for 70% explained variance.  

But this can clash with the wish to identify and interpret the factors and the total variance explained. 

Clopper and Paolillo (2006) show that two factors account for 73% of the variance in their vowel 

pronunciation data, while Nerbonne (2006), using hundreds of vowel tokens as variables, was able to 

explain only 35% of variance using three factors.  Leinonen (2010:109) can account for 60.1% of the 

variance using ten factors, and Pickl (2013) retains twenty factors in order to reach 59.3% explained 

variance.   

Before closing the discussion of PCA and FA, we note that the factors may be ROTATED in order to 

improve interpretability (Tabachnik and Fidell 2001: Ch.13).  It is most common to use a rotation in 

which the first factor explains a maximum of variance, and each successive factor accounts for a 

                                                           
6
 Although Costello and Osborne (2005) find this one of the least reliable criteria. 
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maximum of remaining variance.  Geometrically, each successive factor is orthogonal to the others in 

this so-called VARIMAX rotation.  Alternatively, one may choose to use OBLIQUE rotations, especially 

when this might facilitate interpretation, in which case there will be overlap in the variance claimed by 

different factors. All of the dialectology studies examined have opted for the varimax rotation. 

FA may also be used in a hypothesis-testing fashion, but since this “confirmatory” FA has not been 

used much in dialectology, it will not be presented here. Due to the opportunity to hypothesize about 

factors, FA is also preferred when there is some theory relating the factors under study (Brown 2009). 

See however, Pickl (2013), who uses confirmatory FA to test whether Bach’s (1950) conjecture that 

the areal extent of the use of a form correlates with its frequency. PCA is always used in an 

exploratory fashion. 

Leinonen (2008) shows the advantage of deciding on PCA and FA on a case-by-case basis: she first 

uses PCA on the band-filtered vowel spectra of 19 vowels of over one thousand Swedish speakers to 

obtain a representation of vowel quality, and found that PC1 and PC2 were readily interpretable as the 

first and second formants.
7
 She ignores the first filter and it turns out that she can compensate for sex 

differences by ignoring the women’s second filter while performing separate PCAs for men and 

women.  In a second step, Leinonen uses FA to uncover more abstract dimensions in Swedish 

geographic and social variation, for example, a factor that could be interpreted as lower vowel height 

for the two long vowels [œ:] and [æ:] in positions before /r/.  Leinonen’s work suggests that one 

should not regard PCA and FA as simple alternatives but rather as techniques for specific purposes. 

3.3 Related techniques 

Cichocki (2006) experiments with correspondence analysis (CA), first developed as a counterpart to 

PCA for categorical data by Benzécri (1992).  Just as in PCA the input is a matrix of sites × data, but 

the data may be categorical in the case of CA. Uiboaed et al. (2013) use CA to analyze the geographic 

distribution of lexically specific constructions (so-called “collostructions”) in Estonian. 

Leino and Hyvönen (2008) experiment with a range of more advanced “components” and conclude 

notably “if in doubt, start with factor analysis” (p.186).   Prokić and Van de Cruys (2010) experiment 

with a three dimensional matrix (site × site × 20 phonetic-correspondences), which they reduce to a set 

of most important correspondences using the tensor-reduction techniques PARAFAC.  The interesting 

technique requires a substantial amount of data.  

Wieling and Nerbonne (2011) report on bipartite spectral graph clustering (BSGC), which, despite its 

name, is less indebted to clustering than to the dimension-reducing techniques reported on in this 

section. It combines dimension reduction with techniques from graph theory to provide a similar sort 

of result to PCA and FA, namely a sketch of the affinities of cases (sites) with one another and also of 

affinities between cases and linguistic features.  Space limitations prevent a longer discussion here, but 

we should note that Wieling and Nerbonne (2011) proposed a numeric evaluation of the features 

identified by BSGC which involves measuring how representative they are within an area and also 

how distinctive they are with respect to other areas.  Prokić et al. (2012) generalize this work to 

include numeric features such as edit distance.  

 

4. Regression models 
 

                                                           
7
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REGRESSION analyses seek to explain or predict a single dependent variable on the basis of one or 

more independent variables.  In textbook cases weight is predicted on the basis of height, or university 

success on the basis of high school success, aptitude and discipline.  In such cases both the 

independent (predictor) variables and the dependent (or response) variable are numeric, but we are free 

to construe potential categorical predictors numerically, e.g. as taking the values zero and one.  

LOGISTIC REGRESSION, in which categorical variables are predicted, is the subject of the previous 

chapter in this handbook. 

As the bulk of dialectological work aims at characterizations of the relations among varieties and 

strives to characterize those both at an aggregate linguistic level and also with respect to the linguistic 

details involved, i.e. the components of the aggregate, it is not surprising that regression, with its focus 

on a single dependent variable, has played a lesser role (than clustering or dimension-reducing 

techniques).  But regression analyses have played a role in characterizing the relation between 

geographic distance and aggregate linguistic differences, and new regression techniques have been 

used in conjunction with aggregate analyses which will be presented in Sec. 4.1 and 4.2. 

Trudgill (1974) urged more attention for the theoretical question of how geography and demography 

influence linguistic variation, and his paper has sparked a stream of studies in the intervening years.  

Nerbonne and Heeringa (2007) studied the effect of distance and population size on aggregate 

pronunciation differences in Lower Saxon dialects using a regression analysis. Not to anyone’s 

surprise, they found a robust relation, where more distant settlements had more different varieties, but 

they also noted that the response variable (aggregate pronunciation differences) failed to have a linear 

relationship with geographic distance. Instead it was sub-linear, so that they were able to show a linear 

relation between the logarithm of geographic distance and linguistic distance.  Nerbonne (2010) 

showed that the same sub-linear relation holds for pronunciation in six other language areas, namely 

American English on the Eastern seaboard, the entire Dutch area, Germany, Gabon Bantu, Norway 

and Bulgaria.  Spruit et al. (2009) show that the same sub-linear relation holds for vocabulary, but 

perhaps not for syntax, where a linear model was marginally better. Szmrecanyi (2012) finds 

completely different results using morpho-syntactic frequencies in corpus data. Because Seguy’s 

(1971) paper also graphed the influence of geography sub-linearly, Nerbonne (2010) proposed to call 

this SEGUY’S CURVE.  

4.1 Mixed-effects models 

In standard regression models, we assume that the independent variables are non-random, i.e. fixed.  

The sex or gender of participants in a dialect survey is a clear example of a FIXED EFFECT which is 

normally controlled for in survey design. Only two sexes are polled and any future work would use 

exactly these two, so that they are repeatable. In contrast, the words in a data set are assumed to be a 

random sample from a much larger population of potential words. If we repeated the survey, we might 

use new words. The choice of words is therefore a RANDOM EFFECT. Taking into account the structural 

variability associated with these random effects allows for generalizable results with p-values which 

are not over-confident (Baayen et al. 2008). Regression models using both fixed and random effects 

are known as MIXED-EFFECTS MODELS (Pinheiro and Bates 2000).
8
 

Keune et al. (2005) presented a very early use of mixed-effects models for language variation, in 

which the authors contrast the use of Dutch adjectives and adverbs using the suffix -lijk and its 

reduction in speech, and they treat the choice of words as a random variable.  In one of the studies 

                                                           
8
 Clark (1973) had criticized that language differences were often treated as fixed effects even though the words 

used in studies and experiments were actually a random sample of a larger population of potential words, and 

therefore should be treated as a random effect (as is done in the mixed-effects regression framework).  
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reported, the dependent variable is the lexical frequency with which these words appear in newspapers 

in the Netherlands and Flanders with different registers (“quality”, national or regional). As the 

authors note, the mixed-effects analysis effectively builds a model for each individual word, so that 

one can note not only that there is a general tendency for -lijk to appear more frequently in the 

Netherlands and in more formal newspapers, but also that some words go against the grain, and 

moreover that that there is an interaction between register and country. In the study on phonological 

reduction using the Corpus of Spoken Dutch (http://lands.let.ru.nl/cgn/), it is shown that reduction is 

more common in the Netherlands than in Flanders, more common among men than women, more 

common when the word was predictable, and less common at the end of utterances.  But some words 

go against the grain with respect to reduction as well. Keune and colleagues further note that the 

mixed-effects analysis has the welcome consequence that sociolinguists no longer need to identify 

alternatives to serve in variable rule analysis of the Varbrul sort (see Paolillo’s chapter, this volume).  

It becomes instead possible to examine a large number of linguistic phenomena simultaneously. 

Tagliamonte and Baayen (2012) examine the was/were alternation in York, where was is often used in 

plural existential sentences.  They analyze 300 tokens from only 40 individuals, and turn to mixed-

effects modeling treating speakers as a random effect, eliminating problems connected with 

imbalanced numbers of tokens per individual. Their re-analysis shows that one influence on the choice 

between was and were, the polarity of the utterance (whether it is used in construction with negation) 

needed to be re-thought due to its interactions with other predictors. 

 

The following section (4.2) discusses further studies in which mixed-effects analysis has been used in 

combination with generalized additive modeling. Baayen (2008:Ch.7) is a step-by-step presentation of 

how to conduct mixed effects analyses in the R lme4 package with several examples.  Jäger (2008) 

presents mixed-effects logistic regression in a general comparison of regression designs vs. categorical 

designs. Johnson (2008) presents Rbrul, a package by the author, and a detailed comparison of how 

mixed-effects analyses compare to the popular logistic regression package, Varbrul (Sankoff and 

Labov 1979). Winter (2013) provides a tutorial in mixed-effects regression modeling for linguists.   

 

Although mixed-effects models have been clearly gaining in popularity, Paolillo (2013) has criticized 

their use, arguing for including speakers as a fixed effect (rather than a random effect), since “the 

sample of individuals [may be] nonrandom” and modeling it as a random factor would be in error. His 

fixed-effects approach, however, is “limit[ing] the scope of inference” (Bolker et al., 2009), i.e. 

undercutting the ability of the analysis to generalize from sample to population. We therefore 

recommend mixed-effects regression as the appropriate method to analyze linguistic data involving 

participants responding to multiple items. 

4.2 Generalized additive modeling 

In contrast to methods from geo-statistics, which focus mainly on identifying the aggregate 

geographical pattern in the data (see Grieve, this volume), another approach, generalized additive 

modeling (GAM, Hastie & Tibshirani 1990, Wood 2006), is able to simultaneously detect the 

aggregate geographical pattern, while also identifying the importance of other relevant social and 

lexical predictors.  

 

A GAM is an extension of a generalized linear regression model. As noted above, the response 

variable is assumed to have a linear relationship with one or more predictor variables in linear 

regression. The response variable must be numerical (such as pronunciation distance from a certain 

reference variety), whereas the predictor variables can be either numerical (such as the speaker’s age) 
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or categorical (such as the speaker’s gender). The generalized linear regression model is a 

generalization of the linear regression model in such a way that the response variable (transformed via 

a link function) has a linear relationship to the predictor variables. For example, logistic regression is a 

form of a generalized linear regression model which uses the log-odds (logit) link function. Logistic 

regression (see Paolillo, this volume) is the appropriate form to analyze binary data and is frequently 

used in sociolinguistics (e.g., Tagliamonte and Baayen 2012).   

 

A generalized additive model extends the generalized linear regression model by allowing the 

(possibly transformed) response variable to have a non-linear relationship with one or more predictors. 

The non-linear relationships are modeled via smooths which can have different basis functions and 

basis dimensions. The basis function indicates how the smooths are built up. For example, a cubic 

spline basis function is constructed by connecting sections of cubic functions. The basis dimension 

indicates the upper limit for how complex the smooth can be (i.e. how many degrees of freedom are 

invested). The higher this number, the more wiggly the smooth can become. To prevent overfitting 

(i.e. too wiggly curves), GAMs are estimated using penalized likelihood estimation and cross-

validation. The best, computationally feasible, smoothing basis for a single predictor or multiple 

isotropic predictors (i.e. predictors having the same scale) is the thin plate regression spline (Wood 

2003). This basis is constructed by a weighted sum of geometrically simpler curves (or surfaces in the 

multidimensional case). When multiple predictors need to be combined (i.e. interact) which are on a 

different scale, a tensor product can be used combining different smoothing bases. Importantly, a 

mixed-effects regression approach (see Chapter 7 of Baayen 2008; Baayen et al. 2008) which is 

necessary for taking into account the structural variability associated with the random-effect factors 

(such as speakers and words) is also possible within the GAM framework. In that case, random-effect 

factors are modeled as smooths as well (see Chapter 6 of Wood 2006).  

 

Rather than constructing a regression model in which geography is simplified as geographical distance 

(e.g., Nerbonne and Heeringa 2007), a GAM can model complex geographical patterns directly via a 

two-dimensional smooth of longitude and latitude. The first study to use a generalized additive 

modeling approach for the aggregate analysis of dialect variation was conducted by Wieling, 

Nerbonne, and Baayen (2011). They only used a generalized additive model to represent geography 

and used the fitted values of this model as a new predictor in a linear mixed-effects regression model. 

Their dataset consisted of pronunciation distances (compared to standard Dutch) for 562 words in 424 

locations in the Netherlands. Besides finding support for a complex geographical pattern of 

pronunciation distances from standard Dutch with greater pronunciation distances from standard 

Dutch in the peripheral areas (see Figure 3), they simultaneously identified the importance of various 

social and lexical features. For example, larger communities were found to use pronunciations closer 

to standard Dutch, and more frequent words were more different from standard Dutch (indicating 

resistance to standardization).  
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Figure 3. Contour plot obtained with a generalized additive model. The contour plot shows a regression surface of 
pronunciation distance (from standard Dutch) as a function of longitude and latitude obtained with a generalized 
additive model using a thin plate regression spline. The (black) contour lines represent aggregate distance isoglosses, 

darker shades of gray indicate smaller distances closer to the standard Dutch language, lighter shades of gray 

represent greater distances. Note that the empty square indicates the location of the IJsselmeer, a large lake in the  

Netherlands. Reprinted (including caption) from Wieling (2012) with permission. 

 

Wieling et al. (submitted; see also Wieling 2012, Ch. 7) created a single generalized additive mixed-

effects regression model to determine pronunciation distances from standard Catalan. The Catalan 

dataset (Valls, Wieling, and Nerbonne, 2013) consisted of 357 words in 40 dialectal varieties located 

in Catalonia, Andorra and Aragon. In each location 8 speakers (born between 1930 and 1996) were 

interviewed. Similar to the results of Wieling, Nerbonne, and Baayen (2011), geography was found to 

be a highly important, non-linear predictor. Furthermore, a clear border effect was observed between 

Aragon and the other two regions: younger speakers in Catalonia and Andorra (where Catalan is an 

official language), but not in Aragon (where Catalan is not an official language) had pronunciations 

closer to the standard Catalan language than the older speakers. In addition, Wieling et al. (submitted) 

found support for other social and lexical variables, such as word category and the year of birth of the 

speakers.   

 

The generalized additive modeling approach can also be applied to study other types of aggregate 

variation. Wieling et al. (2014) investigated Tuscan lexical variation in a dataset consisting of 170 

concepts for 2060 speakers (in 213 localities). Their response variable was binary, with a 1 indicating 

that the speaker used a non-standard Italian form and a 0 indicating the use of the standard Italian 

form. Consequently, they used a generalized additive mixed-effects logistic regression model for this 

data. They also used a more sophisticated approach to modeling geography: they allowed the 

geographical pattern to vary depending on concept frequency and speaker age. In effect, they used a 

four-dimensional tensor product smooth (longitude × latitude × concept frequency × speaker age). 

Their results highlighted the potential of the generalized additive modeling approach and showed 

distinctive differences in the geographical patterns associated with speaker age and concept frequency. 

For example, whereas younger speakers, especially in the area around Florence, were more likely to 
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use standard Italian lexical forms than older speakers, this did not appear to be the case for the low-

frequency concepts. In that situation the younger speakers used more general definitions which did not 

coincide with the specific (old-fashioned) standard Italian form (e.g., they used ‘swine’ rather than 

‘boar’ to denote a male pig).  

 

As attempting to use a relatively new and complex statistical method might seem daunting, paper 

packages for the studies of Wieling et al. (2011), Wieling et al. (submitted) and Wieling et al. (2014) 

have recently been made available at the Mind Research Repository (http://openscience.uni-

leipzig.de). These paper packages include all data and R commands (using the package ‘mgcv’; Wood 

2006) needed to fit the generalized additive models and replicate the results of these studies.  

 

In sum, the advantage of the generalized additive modeling approach is that it allows one to directly 

incorporate the complex influence of geography on the aggregate patterns, while simultaneously 

considering the importance of other social and lexical variables. Furthermore, the availability of paper 

packages enables other researchers to easily apply these methods to their data as well. 

5. Conclusions and prospects 

Dialectal material is often analyzed today using a variety of multivariate techniques.  This chapter has 

been slanted to methods for the analysis of large aggregates and to techniques that seek to identify 

groups together with their common speech habits.  In the case of geographical data, these might be 

areas and their lexical peculiarities, but we have sketched how more advanced techniques are poised to 

combine the analysis of geographical and social variables, contributing technically to the Chambers-

Trudgill program of understanding variationist linguistics – dialectology and sociolinguistics – in a 

unified way.   

 

We would like to close this chapter by identifying a challenge.  As attractive as the GAMs and mixed-

effects models are, they remain regression models, focused on the prediction of a single criterion 

variable.  This works quite well for research that can be formulated in such a focused way, e.g. on the 

relative proximity of local varieties (including different cross-cutting social distinctions) to a single 

standard language.  By contrast, the techniques in the first part of the chapter, including clustering, 

MDS, but also factor analysis and related techniques, did not require the identification of a single 

criterion variable, but instead could be used fairly directly on a dialectologist’s table of sites and 

linguistic variables (or on the site × site summary of that tables differences). These techniques provide 

a more global picture of the landscape of language varieties, but they are (now) poorly equipped to 

include a range of other variables such as class, education, gender and the like. The challenge thus is to   

find a way to combine the virtues of the two approaches. 
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