Report STL-88-11
30 June 1987

The HP-NL System

John Nerbonne
Derek Proudian

. Copyright © 1988, Hewlett-Packard Company

The HP-NL System

John Nerbonne and Derek Proudian
Hewlett-Packard Laboratories,
Palo Alto, CA

June 30, 1987

The following individuals have all contributed to the development of the HP-NL
system in one way or another: Barry Arons, Susan Brennan, Lew Creary, Marilyn
Friedman, Dan Flickinger, Mark Gawron, Dave Goddeau, Brett Kessler, John Ner-
bonne, Katrina Peirce, Carl Pollard, Derek Proudian, Geoff Pullum, Diana Roberts,
Ivan Sag, and Tom Wasow.

Abstract

This paper provides an overview of HP-NL , a natural language understand-
ing system under development at Hewlett-Packard Laboratories. The underly-
ing linguistic theory of HPSG is briefly described together with a brief history
of the HP-NL project. Finally the archictecture of HP-NL is sketched and some
example applications are discussed.’

1 Overview and Introduction

The HP-NL system is a natural language processing program under development
at Hewlett-Packard Laboratories in Palo Alto. The development of the system has
been informed by the grammatical theory Head-driven Phrase Structure Grammar,
(or HPSG) developed by Carl Pollard, Ivan Sag, and others at Stanford University.

1

In very rough summary, the system takes as input typewritten English, and produces
as output a set of logical expressions, each of which corresponds to one possible
interpretation of the English expression. The processing to this point is application-
independent. The system then translates the logical expressions into database queries
in an application-dependent fashion, queries a database, and then articulates the
results using a variety of media. Experimental interfaces to speech input and to

command language output (a mailer) also exist.

Section 2 of this technical report describes the goals of the system and its intended
applications. Section 3 sketches the underlying theory and provides references to
more complete descriptions, while section 4 describes the history of the effort. Sec-
tion 5 outlines the architecture of the application-independent part of the system,
and section 6 describes the applications interface and some database query applica-
tions. A final section provides pointers to further information for those interested in
applications, source code, or documentation.

The current implementation is written in Common Lisp on a UNIX operating system
called HP-UX, running on Hewlett-Packard 9000 series 300 computers, and consists
of some 50,000 lines of code.

2 Goals and Intended Applications

The goal of the Natural Language Project at HP Labs has been to demonstrate the
feasibility of natural language processing. We have consistently based our processing
on the best available theoretical work in Linguistics, and we have built the system
with the goal of providing technology to support as wide a range of applications as
possible.

We have nonetheless concentrated on application areas where we believe a natural
language interface could prove itself best commercially. This should be an application
with a large number of users for whom special training is unattractive—either because
they are occasional users or because they are computer-shy. It should furthermore
be an application where a large variety of information types may have to be accessed
or presented. The sense of this requirement is that a natural language interface is
overkill where a simple range of information needs to be exchanged. A menu or simple
graphic interface is appropriate in such cases. Finally, we prefer application areas with
large markets and well-established standards, so that our own work is marketable and
easily transportable.

Database query fits these requirements perfectly; databases are widespread and users
come to them with a variety of informational needs. There is a large potential market
for simple interfaces to databases, and standards (particularly in the querying of
databases) are emerging. Database query has therefore been our first choice among
applications.

The decision to concentrate on database query doesn’t obviate the need for flexible
design, however, since database query, even if standardized, is still evolving. We
have interfaced both to relational databases (using SQL) and to databases written
in a frame representation language (using a special query langauge, HP-RL). This
flexibility was possible because the system provides an application-independent level
of semantic representation.

We have also built the system to support other applications. We have experimentally
attempted to improve speech recognition through the use of lexical and syntactic
information, which requires points of entry to processing which wouldn’t be needed
in database query applications. We have also interfaced experimentally to a mailing
program.

3 The Theory underlying HP-NL

The theory of Head-driven Phrase Structure Grammar, described in [9], derives its
name from the central role played by grammatical heads and their associated com-
plements. Roughly speaking, heads are linguistic elements (words and phrases) that
determine syntactic and semantic restrictions on the phrases (complements) that
characteristically combine with them to form larger phrases. Verbs are the heads of
verb phrases (and of sentences, in the system described here), nouns are the heads of
noun phrases, and so forth.

As in many other syntactic theories, grammatical categories in HPSG are represented
as complexes of feature specifications (or, as they are often called, attribute-value
pairs). Feature values in HPSG may themselves be categories, or sequences of cat-
egories; features whose values are category sequences are often called stack-valued
features. One use of stack-valued features is for handling subcategorization, i.e., the
specification of what types of complements a given category may combine with. The
formation of a constituent in which the head combines with a complement corresponds
to popping the subcategorization stack. This mechanism permits HPSG to dispense
with the device of “bar-level” that is widely used in other recent syntactic theories.

3

The possibility of recursive structure inherent in allowing features to take categories
as values is a powerful device. It permits all the phonological, syntactic, and semantic
information associated with any word, phrase, or sentence to be encoded in a single
formal object, viz., a category.

Categories can combine into larger categories according to certain specified rules.
Each rule stipulates how the information contained in the constituent categories is
to be combined. A rule may, in principle, make reference to any of the kinds of
information represented in a category. In the implementation under discussion here,
the rules are context-free phrase structure rules; that is, the phonological information
in the constituents is always combined by means of simple concatenation. HPSG
theory does not of itself impose this constraint, but allows for the description of non-
context-free languages. In our work on English so far, however, no grammatical facts
have been observed to necessitate the use of devices going beyond context-free power.

The categories mentioned in rules tend to be highly schematic. That is, they stipulate
values only for a very small subset of the possible features. Categories may combine
according to a grammar rule just in case they are consistent with it. Formally, this is
accomplished through the use of unification: a set of categories may be combined by
means of a given rule if each category unifies with the corresponding category in the
rule. The resulting category is also constructed using unification, as specified in the
rule. Typically, a category serving as a complement to a head is unified with part of
the head’s category; more specifically, it is unified with a category in the list giving
the subcategorization restrictions on the head.

Not all of the information about how categories combine needs to be stipulated in
the rules. There are several general principles governing the feature composition of
derived categories. The two most important are the Head Feature Principle and the
Binding Inheritance Principle.

The Head Feature Principle says, roughly, that a phrase constructed by means of a
grammar rule will have the same values as its head for a certain class of features
(known as head features), unless the rule stipulates otherwise. The head features
include, inter alia, those specifying major category type (e.g. nounhood, verbhood,
etc.), person, and number. Hence, the lexical information about category type, per-
son, and number will be propagated to phrases from their heads. This makes it
possible, among many other things, to treat subject-verb agreement as holding be-
tween the subject and predicate phrases (which are typically contiguous), rather than
between the words on which the agreement markings actually occur (which are often

not contiguous).

The Binding Inheritance Principle’s intuitive content is that a phrase will acquire
a value for a certain feature if any of its constituent categories has that value for
that feature. The features involved here (called binding features) are typically those
needed for the analysis of dependencies between non-contiguous sentence elements.
For example, in a sentence like (1), the information that there is a gap in the position
of the object of the preposition to is passed up through the verb phrases assigned to,
been assigned to, has been assigned to, and the clause equipment has been assigned to
by means of a (category-valued) binding feature called SLASH.

(1) List consultants whom equipment has been assigned to.

This information is needed in order to license the appearance of the objective case
relative pronoun whom. The Binding Inheritance Principle guarantees that this infor-
mation will be propagated through the tree, without requiring any special statement
on the grammar rules themselves.

There are other general principles that govern the operation of the grammar rules, but
these two will suffice for our brief introduction. The advantages of these principles
are that they allow the grammar rules to remain simple, and ensure that additional
rules will automatically reflect the properties expressed in the principles.

One further device that should be mentioned is the lezical rule, which in HPSG has
taken over much work that other theories assign to the grammar. Since most syntactic
and semantic information is stored in lexical entries, some mechanisms are needed to
minimize redundant stipulations in the lexicon (cf. [6] and [5] for an account of
the lexicon). Inheritance is one important mechanism that will be taken up again
below; lexical rules also serve this function by creating new lexical entries out of
already existing ones. This permits us, for example, to enter only the base form of
each (regular) verb into the lexicon, because rules will then create entries for the
various inflected forms (past, present-third-singular, progressive, etc.). This process
can be automated because the syntactic, semantic, and morphological properties of
these inflected forms are (almost) completely predictable from the base forms. More
complex lexical rules, like one for handling the passive voice, are also employed.

4 History

HP-NL developed out of the GPSG project, which is described in some detail by
[4]. The GPSG system employed a set of grammar rules (largely generated by means

of a metagrammar), a simple bottom-up parser, and semantic representations based

on the lambda calculus (requiring several levels of reduction and simplification prior
to disambiguation). During the period 1983-1985, these features of the system were
replaced by the current modules serving the same functions. At the same time, the
system was ported from HP Pascal workstations to HP-UX workstations.

For the benefit of those familiar with the GPSG project, we describe the main points
of development from the earlier project. The transition from GPSG to HP-NL princi-
pally involved four components of the system: the grammar, the lexicon, the parser,
and the semantics processor.

The modifications to the grammar and lexicon involved a massive relocation of syn-
tactic information from phrase structure rules to lexical entries. Thus, while the
GPSG system had around 75 basic rules and 10 metarules, yielding a compiled gram-
mar of about 380 rules that the parser actually accessed, the HP-NL system has a
total of fewer than 20 grammar rules. The reduction is possible because the rules
now employed are highly schematic. The lexicon has correspondingly increased in
size, but whereas the GPSG lexicon was an unstructured list of items, each entered
by hand in its entirety, the HP-NL lexicon is hierarchically structured, making use
of inheritance, and employing lezical rules to generate entries whose content is pre-
dictable from details given in other entries. These changes were motivated by several
considerations, the most prominent being: (i) to facilitate the treatment of lexical
exceptions to grammatical rules; (ii) to permit the design of a more sophisticated
parser; and (iii) to simplify the process of adding new words to the lexicon.

The HP-NL parser was developed in conjunction with these changes. Like its prede-
cessor, it operates bottom-up, using the syntactic and semantic information from the
lexical entries corresponding to the words in the string to guide its analysis. Unlike its
predecessor, it has the property we describe as head-driven, finding first the head of a
constituent, then using the information found in the head to direct the construction
of the other members of that constituent, based on structural information found in

the grammar rules. As a result it has the unusual property of working neither left-

to-right nor right-to-left, exclusively; it works rather from the head out for each local

constituent. The construction of syntactic and semantic representations for phrases
and sentences is thus accomplished by means of merging two sets of partial informa-
tion, with one set stored in the lexical entries, and the other set stored in the rules
of the grammar. [11] contains further information on the parser.

The semantic analyses produced by the GPSG parser were highly complex lambda
calculus expressions. These required a great deal of simplification before they could be

=]

passed on to the next module. Such simplification operations were required in every
sentence analysis, since lambda conversion had to remove all lambda expressions from
a formula before it could be passed to the transducer that created the database query
language expressions. Eliminating the lambda calculus from semantic computations
tremendously simplified semantic processing, opening the door to the possibility of
using semantic information to prune the search space of the parser. A more complete
sketch of the the semantic representation language NFLT may be found in [3].

The four principal changes just outlined required numerous auxiliary changes in the
system, so that virtually no element of the old GPSG system remains, apart from the
overall architecture of the system.

Some novel facilities have also been added, most notably a Pragmatics module with
the capability of tracking the course of interaction, and thereby allowing the use of
pronouns. Before this facility was added, each sentence was processed independently,
and no information from previous user questions was retained. With the introduction
of the pragmatics module, the user may interact with the natural language system in
the more efficient and much more natural dialogue mode. [2] describe the processing
of pronouns in discourse in detail.

Finally, while these design changes were underway, significant enhancements were
also made in linguistic coverage. Important extensions include coordinate structures,
described in [10], reflexive and intrasentential anaphora, some comparative construc-
tions, constructions with missing obejcts (“tough movement”), and some indefinite
quantification. .

5 Major Core Components of HP-NL

HP-NL may be divided into an application-independent core and an applications
interface. This section sketches the application-independent core, and the following
section describes the applications interface.

The application-independent core consists of several distinct processing modules and
the data structures they employ. These modules are: (1) a Lexical Analyzer which
transforms a sentence represented as a string of characters into a sequence of data
structures (i.e. parse-nodes) representing words, (2) a Parser which creates syntactic
structures (i.e. parse-trees) from this sequence, (3) a Semantics Processor which as-
signs an initial semantics (i.e. an application independent logic expression) to each

7

parse-tree created, (4) a Pragmatics module which uses discourse information to re-
solve pronoun references, (5) a Disambiguator which maps application independent
logic expressions into application specific ones, (6) a Query Transducer which converts
database specific logic ezpressions into sentences of the application’s query language
(e.g. SQL), and finally (7) a Control Module which orchestrates the flow of informa-
tion among the various modules.

This division of labor reflects the different sorts of information which must be pro-
cessed. The Lexical Analyzer, Parser, and Semantics Processor each depend only on
syntactic structure, not on application or context; the Pragmatics module is sensitive
to the context of utterance, but insensitive to the application; the Disambiguator is
sensitive to the fine structure of the database; while the Query Transducer depends
only on the gross structure of the application (e.g. SQL), not on its fine strucure (i.e.
the particular SQL database represented). We note that this division of labor pro-
vides an intermediate representation of the utterance, at the level of initial semantics,
which is completely application independent. It is the existence of this representation
which provides the essential portability of the HP-NL system.

5.1 Control Module

The HP-NL system consists of a number of major components, referred to as mod-
ules, which must work together in order to produce a reasonable output for a given
input. The Control Module of the HP-NL system concerns itself with directing and
coordinating the flow of information among the various modules of the system. It
accomplishes this task by treating the various modules of the HP-NL system (e.g. the -
Parser, the Semantics Processor, etc.) as resources which it may harness to achieve
its stated goal. The control module also serves as the surface of the entire HP-NL
system, thereby encapsulating the functionality provided by HP-NL .

Design Issues The Control Module was designed with three major considerations
in mind: (1) encapsulation, (2) intelligent processing, and (3) profiling. The encap-
sulation issue concerns both internal and external information hiding. Internally, the
Control Module serves to keep the various modules of the HP-NL system ignorant of
each other, so that these modules may be independently developed, and yet still work
together. Externally, the Control Module serves to hide the details of the HP-NL
system from the application programs using it, by providing an interface surface to
HP-NL . This interface was designed to be as simple and stable as possible while still

permitting functional enhancements to HP-NL to be easily folded in.

The Control Module also tries to accomplish its stated goal as efficiently and intelli-
gently as it can. It considers the problem to be one of finding a successful solution
path through its resource space. In other words, given the resources it has available
(e.g. Lexical Analyzer, Parser, etc.) and knowledge of their various input/output
relations, and given state information about the current interaction (e.g. the input
sentence, parses found so far, focusing information, etc.), the Control Module con-
structs a plan which employs these resources to get from the current state to one in
which the desired result has been produced.

Finally, the Control Module gathers statistics about system behavior, collecting both
individual module profiles and an overall HP-NL system profile.

5.2 Lexical Analyzer

The Lexical Analyzer transforms a sentence represented as a string into a sequence
of data structures called lezical parse-nodes. Roughly speaking each such parse-node
corresponds to word in the sentence. We should point out that these lexical parse-
nodes contain both syntactic and semantic information and are the basic elements
used by both the Parser and Semantics Processor.

The Lexical Analyzer performs its task in a number of discrete phases. First it
identifies substrings of the input sentence which are potential words. Second, each
such “word” is morphologically analyzed into root, suffix, prefix, etc. (e.g. worked
= work + ed). Third, the lexicon is searched for lexical entries matching the root
spellings identified, and copies of these entries are returned. Fourth, relevant lexical
rules (e.g. the past-tense rule) are selected based on the suffixes etc. identified, and
these lexical rules are applied to the base lexical entries found in the lexicon. Finally,
the resultant lex-entry object is transduced into the corresponding lexical parse-node
for consumption by the Parser.

As an optimization the parse-nodes created via the procedure described above are
cached for future use. As a result system performance tends to improve with use. We
should mention that in the intended delivery environment (as opposed to the devel-
opment environment in which the current system exists) all such lexical parse-nodes
would be cached, reducing the computational requirements of the Lexical Analyzer
to simple dictionary lookup.

We now briefly describe the major data structures used by the Lexical Analyzer.

Lexicon The lexicon is the collection of words known to the system. It’s organized
hierarchically, so that properties shared by entire classes of lexical items may be
specified and described once, thereby reducing redundancy and keeping the size of
each lexical entry reasonably small. The total number of lexical entries is kept in
check through the use of lexical rules, i.e. rules which produce new lexical items
from existing ones based on inflectional information associated with a a particular
occurrence of a word. Thus the lexicon consists of relatively sparse descriptions of
the base form of words; much of the rich structure of a lexical entry is obtained by
inheritance, while the various inflected forms are derived via lexical rules.

Word Classes A word class is a group of words which share syntactic and semantic
properties. In HP-NL word classes exist independently of the particular words which
they comprise, and it is these word-class objects which represent the common prop-
erties of the word class. Idiosyncratic properties of individual words are represented
directly on the lexical entry itself.

The Word-Class Hierarchy The principle of representing a group of items shar-
ing properties as a class can be applied to word-classes themselves. This gives rise to
a word-class hierarchy which groups instances into classes, classes into super-classes,
etc. An instance of any class inherits properties from all of the classes above it in
the hierarchy (except those overridden by more local information). This hierarchi-
cal organization allows the efficient representation of shared information, provides a
mechanism for default and idiosyncratic information, and supports the use of lexical
rules.

The word-class hierarchy employed by HP-NL isn’t a simple tree. Both instances
(words) and classes may inherit from multiple parents. Ultimately lexical entries
inherit information from one or more of the following four overlapping hierarchies:

o The CONTROL hierarchy which encodes subcategorization information.
o The AUXITY hierarchy which distinguishes main verbs and from auxiliaries.

e The WORD hierarchy which provides part of speech information.

10

o The NUMBER-LEX hierarchy which assigns number (i.e. singular, mass, or
plural).

Lexical Rules As discussed above HP-NL make use of lexical rules to capture
regularity in inflectional morphology. Their use simplifies the task of adding lexical
items and reduces redundancy. For more thorough discussion of the use of lexical
rules, and on hierarchical lexicons, see [6] and [5].

5.3 Grammar

The grammar contains two kinds of objects: initial symbols and grammar rules. To-
gether with the information stored in lexical entries, the grammar provides the parser
with the information needed to analyze the structure and meaning of phrases and
sentences. Both the grammar rules and the initial symbols are quite general, relying
on the lexicon to provide most of the information needed by the parser. This gener-
ality is what enables us to keep the grammar small (about 20 rules at present) while
still providing substantial grammatical coverage.

Initial Symbols Initial symbols characterize the types of phrases that will be ac-
cepted. This is the same notion as that of a start symbol in conventional context-free
grammars. In other words, once a phrase structure tree which covers the input string
has been built using the grammar rules, we check to see whether the type of the root
node of this tree is compatible with at least one member of our set of initial symbols.

The present HP-NL system has initial symbols for five sentence types: Declarative,
Yes-No-Question, Subject- Wh-Question, Non-Subject- Wh-Question and Imperitive.
However, there is nothing built into HP-NL which forces it to be an S parser. We
could make the system into an NP parser by simply replacing the sentential initial
symbols mentioned above with some noun phrase ones.

Grammar Rules The grammar rules used by the HP-NL system are schematic
context-free phrase structure rules. However, instead of using symbols as the rule
elements we use constellations of syntactic features called feature structures. Conse-
quently, the match criterion used when applying these rules is syntactic unification
as rather than symbol identity.

11

Conceptually, a grammar rule consists of a left-hand side (LHS) which is a feature
structure and a right-hand side (RHS) which is a sequence of feature structures. Also
associated with each grammar rule is a semantic operation and a processing agenda.
The semantic operation specifies how to construct a meaning for the LHS based on the
meanings of the elements of the RHS. The processing agenda specifies for the parser
the order in which the elements of the RHS should be constructed. This processing
order is constrained to form a contiguous constituent (or island) during construction.
Note that for many rules, the agenda and semantics may use default values, and thus
need not be specified explicitly. The following example is an actual rule of the system.

Example:(A Grammar Rule)

(define-grammar-rule AUX-NEGATION

Schema = (X -> H X1)
X = (Head-features = ((HFL PLUS)))
H = (Head-features = ((MAJ V) (FORM FIN) (AUX PLUS)
(COORD MINUS MID) (INV MINUS)))
X1 = {(Head-features = ((MAJ NOT))
Bindings = ((QUE NONE) (REL NONE) (SLASH NONE)))
Agenda = (X1 H) '
Semantics = (Negate-Auxiliary H X1)
)

The schema determines the type and number of elements in the rule, as well as
their left-to-right surface order. These symbols are effectively placeholders for feature
structures that we would like to occupy these positions. Following the schema we
assign particular feature structures to each placeholder element defined. This is ac-
complished, as in the example, by using the symbol as key and a keyworded list of the
desired feature structures as value. Finally, default values for semantic operation or
processing agenda are overridden using the keys semantics and agenda respectively.

5.4 Feature System

The HP-NL feature system defines the set of syntactic features allowable in specifying
the syntactic shape of words and phrases. We resolve traditionally complex syntactic
categories such as VP or NP into constellations of primitive features such as MAJ,
each of which has a fixed range of possible values such as N or V. Doing this allows us

12

to define a rich set of feature structures from a relatively constrained set of primitive
features and feature values.

Feature Structures and Unification Formally a feature structure is defined as
follows:

(featurestructure) — ((headmatriz) . (bindingmatriz))
(headmatriz) — ({featspec)*)

(bindingmatriz) — ((bindspec)*)

(featspec) — ((headfeat) (featval)*)

(bindspec) — ({bindfeat) . (featurestructure))
(headfeat) — Atom

(featval) — Atom

(bindfeat) — Atom

The unification of two feature structures is obtained by intersecting the values of like
features. By convention we consider the absense of a specification for a feature in
a feature structure to indicate the disjunction of all possible values for that feature
(essentially a don’t care condition). Unification fails if the intersection of any like
features is empty.

This treatment of feature structures and unification, together with the stipulation
that all primitive features and values must be predeclared, permits an extremely effi-
cient implementation of the unification operation. This is fortuitous since unification
makes up the backbone of the syntactic components of HP-NL , putting its efficient
computation at a premium. See [11] for details.

5.5 Parser

The job of the parser is to map well-formed input into corresponding syntactic struc-
tures. Because of the ambiguities inherent in natural language, this mapping is not
necessarily one-to-one. There may be more than one syntactic structure (i.e. parse
tree) which can be produced from a given input, or there may be none at all. The
parser works by applying grammar rules to the given lexical input (i.e.“sentence”),
thereby constructing well-formed phrases (i.e. sub-trees) in the usual way. If the
parser succeeds, it returns a parse; a copy of the initial symbol which licensed the
structure together with the structure produced. Otherwise it returns NIL.

13

The HP-NL parser is basically a chart parser [8,7,12] modified to handle the com-
plexities introduced by the nature of HPSG grammar rules, lexical items, and feature
passing principles. A discussion of issues involved in parsing HPSG grammars may
be found in [11].

5.6 The Semantic Representation Language NFLT

The translation of input sentences into a logical formalism is a common feature of
computer systems for natural-language understanding, and one which is shared by the
HPSG system. A distinctive feature of this system, however, is the particular logical
formalism involved, which is called NFLT (Neo-Fregean Language of Thought))- 3]
sketch the semantic representation language NFLT in more detail.

The formalism is called “neo-Fregean” because it incorporates many of the semantic
ideas of Gottlob Frege, inventor of the predicate calculus; it is called a “language of
thought” because unlike English, which is first and foremost a medium of communica-
tion, NFLT is designed to serve as a medium of reasoning in computer problem-solving
systems. The language is the result of augmenting and partially reinterpreting the
standard predicate calculus formalism in several ways:

e Predicates of Variable Arity. Since argument roles are explicitly marked, pred-
icates can combine with a variable number of arguments without explicit exis-
tential quantification over “missing arguments”.

o Sortally Restricted Quantification. Quantifiers include a sortal restrictor clause
in addition to the usual scope clause, which permits representation of non-first-
order quantifiers, such as most.

e Non-Extensionality. Predicate symbols denote relations (rather than exten-
sions), and sentential formulas denote situations (rather than truth values).
This permits representation of causal relations.

¢ Intentionality and Conceptual Raising. The use of specialized terms denot-
ing concepts and propositions provides a principled framework for representing
beliefs, intentions, etc.

While NFLT is much closer semantically to natural language than is the standard
predicate calculus, and is to some extent inspired by psychological considerations,

14

it is nevertheless a formal logic admitting a mathematically precise semantics. The
intended semantics incorporates a Fregean distinction between sense and denotation,
associated principles of compositionality, and a somewhat non-Fregean theory of sit-
uations or situation-types as the denotations of sentential formulas.

5.7 Semantics Processor

The Semantics Processor transduces syntactic parse trees into trees of semantics
nodes. Essentially its output is a logic expression (i.e. an NFLT formula), but it in-
cludes additional information—pronouns, reference markers, and indefinites—which
are needed for the discourse processing done by the Pragmatics module.

The leaf nodes of the input parse tree correspond to lexical items whose semantic
translations are given. The semantics processor works bottom-up, computing seman-
tic translations as it traverses the parse tree. We emphasize that semantics may
be computed for any parse tree, including trees of subsentential constituents, therby
allowing semantics computations to be performed either in lock step with syntactic
analysis, or as a post process.

5.8 Pragmatics Processing

The Pragmatics Processor accepts an input from the Semantics Processor consisting
of a logical expression (in NFLT), together with a list of pronouns and a list of avail-
able antecedents. Each pronoun is equipped with a list of syntactically determined
contraindices, with which it may be assumed not to corefer. From this input, prag-
matics constructs a model of the discourse which it maintains and updates after each
user query. The model is designed according to Centering theory, whose use in our
system has been described in [2].

The major task of pragmatics processing is the determination of likely antecedents
for pronouns. To this end, it keeps a list of discourse entities under discussion. The
list is ordered by discourse prominence, and the most prominent element on the list
is called the preferred center of the discourse. The basic idea is that one is likely
to refer to preferrred centers using pronouns, but not using nonpronominal means,
and vice versa for noncenters. Using this principle of Centering theory, contraindices,
and morphologically marked agreement information, a most likely antecedent may be

15

assigned to each pronoun.

5.9 Disambiguator

The Disambiguator solves a problem which arises because of the use of application-
independent predicates in the initial semantics produced by HP-NL . This problem
occurs when a generic NFLT predicate is ambiguous with respect to the set of possible
application specific relations it can be mapped onto. Consider, for example, the
sentences:

1
1

(1) “Does Dan manage Lyn?” = (manages agt:Dan ptnt:Lyn)
(2) “Does Dan manage Nat-Lang?” =—> (manages agt:Dan ptnt:Nat-Lang)

with the initial semantics given. As far as the parser and semantics processor are
concerned, except for the particular constants chosen to fill the :ptnt role, these two
questions are identical. This is because linguistically there is no difference between
“Lyn” and “Nat-Lang”, both are proper noun phrases, and for all these modules know
“Nat-Lang” could be the name of an employee. Consequently the NFLT predicate
chosen is the same in both cases.

Nonetheless, from the applcations’s point of view, these two expressions pick out two
distinct relations: one which holds between a supervisor and an employee, and another
which holds between a supervisor and an organization. It is the disambiguator’s job to
capture this distinction, and to substitute appropriate application-specific predicates
for the generic ones introduced by the semantics processor.

The disambiguator accomplishes its task using a specialized kind of sortal reason-
ing. The system maintains a table of predicate/argument pairs (called a dis-data
file) which tells the disambiguator what specific predicate to substitute for a generic
predicate based on the semantic sort of the generic predicate’s arguments. A sortal
hierarchy is also maintained by the system, allowing the disambiguator to quickly
infer subsumption relations among sorts. Using this information the disambiguator
systematically makes the relevant substitutions, producing what is referred to as a
disambiguated semantics (in contradistinction to the initial semantics it started with).
We should point out that constructing an appropriate dis-data file is one of the major
tasks involved in porting HP-NL to a new domain.

16

5.10 Query Transducer

The Query Transducer converts a logical expression into the query language of the
targetted application. This subsystem is not application-independent in the same
sense as the other modules insofar as there needs to be a distinct transducer for each
query language HP-NL targets. However, each of these transducers is by and large in-
dependent of the details of the application (e.g. the particular database represented).
We briefly describe two transducers which have been written.

The HP-RL Transducer This transducer takes as input a disambiguated logical
formula of NFLT together with an associated literal pragmatic force, and produces
as output an equivalent database query in the query language provided by the frame-
based representation language HP-RL . At present, the HP-NL core system distin-
guishes the pragmatic forces of assertion, question, and imperative, while the HP-RL
Transducer deals only with questions. (A limited class of imperatives is presently
transformed, prior to transduction, into a logical form that will yield an appropriate
query. Extension of the transducer to deal with assertions and commands would be
a relatively straightforward, though substantial, task.) The transducer works in an
essentially compositional fashion, first computing HP-RL query fragments for logical
subformulas, and then composing the fragments into larger ones in a way dependent
on the particular logical superformulas involved. In some cases, the transduction
process involves a certain amount of domain-specific inference, as, for example, when
an existential quantifier over positive quantities is replaced by a query fragment that
tests the results of subtracting one given quantity from another in an appropriate
way.

The SQL Transducer This transducer is similar to the one above, but produces
output in the database query language SQL . The basic architecture and method of
the module are the same as for the HP-RL transducer, with the compositional con-
struction of embedded SELECT statements of SQL replacing construction of embed-
ded quantifiers in the HP-RL query language. Here again, the transduction process
sometimes involves a limited amount of domain-specific inference.

17

6 Accommeodating Applications

The process of interfacing HP-NL to a new database query application requires that
application-specific vocabulary be added to the lexicon, and that atomic semantic
representations be given application-specific interpretations. The process of adding
to the lexicon is partially automated by a facility that scans the database for objects,
classes etc. that might be mentioned in users’ queries. Providing application-specific
interpretations for semantic representations amounts to providing a “disambiguation-
data” file described in the section above on disambiguation.

Articulation The Artficulation module of HP-NL displays system responses to user
queries, and its level of sophistication depends on some application support. The
databases currently accessed allow answers in the form of English replies, tables,
videodisc images, and synthesized speech.

6.1 Examples of Applications

The Organization Database A small database constructed in the frame represen-
tation language HP-RL exists solely to demonstrate the natural language system. It
contains information about the organizational structure of the Knowledge Technology
Lab at Hewlett-Packard. The lexicon, consequently, contains language appropriate
to describe the relationships among the people who work in the Lab where job titles
include: consultants, managers, technical staff, and clerical staff. The organization
is subdivided into divisions, centers, labs, departments, and projects. Managers are
specified at all levels. Technical staff is not further subdivided. Clerical staff currently
only includes secretaries. Places such as offices, conference rooms, and bathrooms ex-
ist. People have telephone numbers, and equipment items such as computers and
displays.

As the database is loaded, procedures execute to extract vocabulary items. Class
names correspond to common nouns, and instance names to proper names.

The Van Gogh Database A somewhat larger Oracle relational database contain-
ing information about portraits by Vincent Van Gogh was constructed especially for
the purpose of demonstrating a natural language front end to a relational database

18

via the SQL database query language. The database contains information about
the paintings, especially their media, date of creation, present place of exhibition,
influence, and subject matter.

7 For Further Information

The HP-NL natural language system is under development at

The Natural Language Project
Hewlett-Packard Laboratories
1501 Page Mill Road
Palo Alto CA, 94303

We are also accessible via email: hplnls@hplabs.hp.com.

The software and a complete documentation packet has been made available to se-
lected university affiliates of Hewlett-Packard Laboratories.

Acknowledgements We would like to acknowledge the valuable assistance of all
the members of the HP-NL project, each of whom, in one way or another, has con-
tributed to the preparation of this document. Special thanks go to Thomas Wasow
and Lew Creary for their careful proof reading and suggestions for improvement.

19

References

[1]

o
12]

3]

[7]

(8]

[9]

[10]

[11]

[12]

HP-NL User’s Guide. Hewlett-Packard Laboratories, 1986.

Susan E. Brennan, Marilyn W. Friedman, and Carl J. Pollard. A centering ap-
proach to pronouns. In Proceedings of the 25th Annual Meeting of the Association
for Computational Linguistics, 1987.

Lewis G. Creary and Carl J. Pollard. A computational semantics for natural
language. In Proceedings of the 25th Annual Meeting of the Association for
Computational Linguistics, 1985.

Mark Gawron et al. The GPSG Demo System. Technical Report, Hewlett-
Packard Laboratories, 1982.

Daniel Flickinger. Lezical Rules in the Hierarchical Lezicon. PhD thesis, Stan-
ford University, 1987.

Daniel Flickinger, Carl Pollard, and Thomas Wasow. Structure-sharing in lexical
representation. In Proceedings of the 25th Annual Meeting of the Association for
Computational Linguistics, 1985.

Ron Kaplan. A general syntactic processor. In Rustin, editor, Natural Language
Processing, Algorithmics Press, 1973.

Martin Kay. The mind system. In Rustin, editor, Natural Language Processing,
Algorithmics Press, 1973.

Carl Pollard and Ivan Sag. An Information-Based Theory of Syntazr and Seman-
tics. University of Chicago Press, 1987.

Derek Proudian and David Goddeau. Constituent Coordination in HPSG. Tech-
nical Report 97, Center for the Study of Language and Information, Stanford
University, 1987.

Derek Proudian and Carl Pollard. Parsing head-driven phrase structure gram-
mar. In Proceedings of the 25th Annual Meeting of the Association for Compu-

tational Linguistics, 1985.

Terry Winograd. Language as a Cognitive Process. Volume 1:Syntax, Addison-
Wesley, 1980.

20

