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Abstract 

The primary data on pronunciation variation – e.g., dialect atlas data – is often recorded 

incommensurably, i.e. in different ways in different atlases, and even in different ways within the same 

atlas when teams of fieldworkers and transcribers are involved. In particular these data collections 

differ in the detail in which pronunciations are recorded, using between 40 and 100 different basic 

symbols. This study shows that transcription system detail (understood in this sense) increases the 

linguistic distance measured and therefore must be regarded as a source of bias in assessing 

pronunciation differences and comparing them across languages. A method is therefore introduced to 

reduce transcription system complexity, even while retaining faithful assessments of aggregate 

pronunciation differences. The technique introduced is relevant when comparing within sets that have 

been transcribed very differently and also when comparing different dialectological datasets, e.g. with 

respect to the dependence of linguistic difference on geography. 
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1. Introduction and Motivation 

This paper proposes a technique to remove one source of distortion that may confound 

the comparison of phonetic transcriptions, namely the use of different numbers of 

phonetic symbols. We first motivate the work by looking at dialectological theory and 

by demonstrating that the problem genuinely occurs in examining dialect atlases of 

different language areas. In the same section we introduce a second potential 

application for our technique, by noting a single atlas in which different fieldworkers 

used varying numbers of phonetic symbols. Second, we suggest a means of 

identifying pairs of symbols that are then merged. By applying the technique 

iteratively we reduce the size of the phonetic inventory. Third, we examine the result 

of applying this procedure to several datasets, verifying that the resulting 

dialectometrical analyses correlate well with the measures using the original phonetic 

inventory. Fourth, and finally, we examine in the conclusions and discussion section 

one apparent alternative and also discuss potential further confounds.  
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This paper is a contribution to a special issue on perception, production and attitudes 

concerning language variation, and its specific contribution to this topic is a means of 

comparing perceptions of variation (transcripts) even when they have been compiled 

on the basis of different segmental inventories (transcription alphabets). 

 

Our primary motivation for attempting to remove a confound due to phonetic 

inventory size is theoretical, namely the ambition to examine the influence of 

geography on linguistic variation in different language areas, and in fact to quantify 

that influence in commensurable fashion. In this point, we should like to go beyond 

the consensus view that geography influences linguistic variation to a measurement of 

the strength of that relation and to models of the form it takes. Trudgill (1974) 

suggested one such form, namely a “gravity model” in which the tendency of varieties 

to share features decreases as an inverse square of their distance to one another and 

increases as a product of the population size speaking them. Several subsequent 

qualitative studies provide indications that the population size parameter of the model 

was sensible, and many others argued that further parameters were needed. Nerbonne 

and Heeringa (2007) review the literature on the gravity hypothesis in linguistics, and 

go on to develop a quantitative assessment of the gravity model, showing a sublinear 

curve mapping geographical distance to aggregate pronunciation distance in the Dutch 

Low Saxon dialect area, and incidentally finding little effect of population size. They 

note as well that Séguy (1971), in the first paper using dialectometrical techniques, 

examined the relation between lexical distance and geography, and likewise observed 

a sublinear relation. Nerbonne (2010) demonstrates that the sublinear curve of 

aggregate pronunciation distance is found not only for Dutch, but also for German, 

Norwegian, (Gabon) Bantu, Bulgarian, and American English (see Figure 1). This line 

of work suggests that linguistic variation is linked in a law-like fashion to geography, 

but we will need commensurable measures of linguistic distance if the model is to be 

formulated and tested more exactly.  
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Figure 1. Aggregate pronunciation distance increases as a sublinear function of geography (taken from 

Nerbonne, 2010). The x-axes show the geographic distance in kilometers “as the crow flies” and the y-

axes show non-comparable linguistic distance on the basis of pronunciation data. In each case the 

logarithmic curve was drawn. The y-axes in the different graphs are incommensurable because they 

come from different procedures, but, as the text argues, also because they are based on differently sized 

transcription systems. Note that the Norwegian scatter plot is based on 15 varieties and not on the 55 

varieties used in this paper.  
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This paper aims to provide one prerequisite for a more exact formulation of the 

reliance of linguistic variation on geography. We would like to predict not only the 

general abstract form of the relation, but also its more specific parameters. Nerbonne 

(2010) conjectures that the dependence is logarithmic in the aggregate because the 

dynamic of diffusion is linear in its effect on individual linguistic features. But the 

logarithmic function that might describe this relation, ling(x) = m log(geo(x)) + b has 

two parameters, m, the slope of the logarithmic curve, and b, the y-intercept. While b 

is presumably the degree of sub-dialectal variation, the slope m is a separate 

population parameter about which we would like to develop more exact hypotheses. 

Different populations may differ in the degree to which linguistic variation depends 

on geography, depending on the population density, the mobility of the population, 

the strictness of its social stratification, the length of time for which language 

standardizations of some sort exist, the length of time since the population became 

demographically (or politically) stable, or perhaps on other factors. To move beyond 

speculation about these factors, we need commensurable measurements across data 

sets from different languages. 

 

Another motivation to improve commensurability in phonetic transcription is the 

problem of “field worker isoglosses” (Trudgill, 1982:241ff), the situation in which the 

analysis of a data collection reveals systematic differences which appear due to the 

field workers’ preferences – or, worse, their errors. While many such cases are 

irreparable, perhaps even undetectable, one common sort of problem may be 

addressed, namely one in which phonetic transcription systems differ in the size of the 

phonetic inventory, or, put differently, the number of distinctions they express. In fact, 

the large-scale Goeman-Taeldeman-van-Reenen-Project (Goeman and Taeldeman, 

1996) suffered precisely from this problem, as the dialectal pronunciations in the 

Netherlands were transcribed in more detail (using 82 sound segments) than the 

pronunciations in Flanders (using a subset of only 56 segments) and were therefore 

analyzed separately (Wieling et al., 2007). By applying the reduction method to this 

dataset, a single analysis of all data is possible. 

 

In the following, we show that the measure of linguistic distance depends on the size 

of the segment inventory with which the pronunciation data is transcribed. Some data 

sets distinguish one hundred phonetic segments, others only forty. Given the 
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demonstration that the size of the segment inventory can be influential, the main 

contribution of the paper is the development of a technique to reduce phonetic 

inventory size in a way that results in measures that still correlate highly with the 

original measures. We then report on the success of this technique, which we believe 

allows us to compare pronunciation distances between different languages validly.  

2. Material 

To illustrate the effectiveness of our reduction method with respect to investigating 

the influence of geography on linguistic variation language, we largely use the same 

linguistic material as used and discussed by Nerbonne (2010). The Bantu data set 

consists of phonetic transcriptions of 160 words in 53 locations which were collected 

in Gabon by researchers from the Dynamique du Langue lab (http://www.ddl.ish-

lyon.cnrs.fr). The data set is described in detail and analyzed by Alewijnse et al. 

(2007). The Bulgarian data set contains phonetic transcriptions of 156 words in 197 

locations and is part of the project Buldialect – measuring linguistic unity and 

diversity in Europe (http://www.sfs.uni-tuebingen.de/dialectometry). Houtzagers et al. 

(2010) offer a detailed overview and analysis of the data set. The German data set 

contains phonetic transcriptions of 186 words in 201 locations from the Kleiner 

Deutscher Lautatlas – Phonetik (http://www.uni-marburg.de/fb09/dsa). The data set is 

analyzed and discussed in detail by Nerbonne and Siedle (2005). The Dutch data set 

contains phonetic transcriptions of 562 words in 424 locations in the Netherlands. 

Wieling et al. (2007) selected the words from the Goeman-Taeldeman-Van Reenen-

Project and also give a detailed overview and analysis of the data set. Our Norwegian 

data set differs from Nerbonne (2010) since we use all 55 locations as described by 

Heeringa (2004; Chapter 8), instead of the 15 locations used by Nerbonne (2010) and 

shown in Figure 1. The Norwegian data set contains phonetic transcriptions of 58 

words of the fable “The North Wind and the Sun” (http://www.ling.hf.ntnu.no/nos) 

and is analyzed and explained in detail by Heeringa (2004; Chapter 8). In all data sets 

we mostly ignore diacritics and suprasegmentals and focus on the vowels and 

consonants in the pronunciations. As the transcription system in the American-English 

LAMSAS data set (included by Nerbonne, 2010) was highly complex and did not 

allow for straightforward removal of the diacritics, we did not include this data set in 

the current study. Hence, the results will be based on five dialect data sets: Bantu, 

Bulgarian, German, Dutch and Norwegian.  
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To illustrate our reduction method with respect to the “field worker isoglosses”, we 

use the same Dutch dataset as explained above, however now also including the 189 

locations in Flanders (Wieling et al., 2007).  

3. Methods 

In the following we will show how we calculate and calibrate the linguistic distances 

to make them more comparable across different data sets.  

3.1. Calculating linguistic distances 

The linguistic distance between two locations is based on calculating the Levenshtein 

distance (Levenshtein, 1965) which measures the minimum number of insertions, 

deletions and substitutions to transform one string into the other. The following 

example shows that the Levenshtein distance of [bndn] and [bind], two Dutch 

dialectal pronunciations of binden, ‘to bind’, is 3.  

bndn insert  1 

bndn subst. i/ 1 

bindn delete n 1 

bind   

  3 

 

This calculation corresponds with the following alignment: 

b   n d  n 

b  i n d   

 1 1    1 

 

The total linguistic distance of two locations is calculated by averaging the 

Levenshtein distance of all string pairs (i.e. pronunciations) available. Note that in 

general we enforce a syllabicity constraint to make sure vowels only align with 

vowels and consonants only with consonants. Nerbonne and Heeringa (2009) review 

work on measuring language variety differences using inter alia the Levenshtein 

distance. 
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3.2. Calibrating linguistic distances 

Dialect data sets commonly differ in the number of segments (i.e. each is 

representative of an individual sound) which are used to transcribe the pronunciations. 

The size of the segment inventory, or segment set, will certainly influence the 

linguistic distances. To see this, consider the example calculation above. Besides the 

original segment set which includes // and /i/ assume there is a second segment set 

which does not distinguish these two sounds. It is obvious that the distance of the 

alignment above using the second set is reduced with respect to the distance assigned 

by the original set. In general, using fewer segments reduces the distinctions and will 

lower the linguistic distance. However, it is unclear how large the effect is, and if the 

effect is similar for every pair of places, regardless of their distance. To investigate 

the specific effect of the size of the segment inventory on distance measurements, we 

merge the segments of the inventory to obtain a smaller number of segments using 

two different transformation methods, one simple and one more sophisticated.  

3.2.1. Simple transformation 

The first transformation is extremely simple and consists of reducing each segment set 

to only two segments, one vowel and one consonant. All vowels reduce to a single 

vowel and all consonants reduce to a single consonant.  

3.2.2. Advanced transformation 

The second transformation is more sophisticated and aims to retain as much 

information as possible from the original dialect distances by reducing the number of 

segmental distinctions in each data set, but no further than necessary. Intuitively, we 

reduce the segmental inventory iteratively, mimicking the work a field worker might 

do if she were told that the segmental inventory she had used was one element too 

large. Then she would need to consider which distinction is least important among all 

the distinction made in the data set. As the data set with the minimum number of 

distinctions is the Bantu data set, we reduce all other segment sets to its number of 

segments (i.e. 42). We could have attempted this manually, but as defining the most 

similar sounds is highly subjective, we developed an automatic method based on the 

Pointwise Mutual Information (PMI) procedure introduced to dialectometry by 

Wieling et al (2009) to identify the most similar sounds. PMI is a similarity measure 

for categorical data inspired by information theory (Church and Hanks, 1990). The 
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Pointwise Mutual Information procedure determines the distance between every 

segment pair by assessing the relative frequency of every segment pair and comparing 

this to the relative frequency of the individual segments (i.e. the expected frequency 

of the segment pair if they are statistically independent). The method consists of the 

following steps (applied to each dataset having more than the minimum number of 

segments, in our case 42): 

 

1. The Levenshtein algorithm with syllabicity constraint (see Section 3.1) is used to 

obtain the initial alignments; 

2. For every sound segment pair, we calculate the PMI score:  

 

PMI(x,y) = log2( p(x,y) / p(x)p(y) ) 

 

Where: 

• p(x,y): the number of times x and y occur at the same position in two 

aligned strings X and Y, divided by the total number of aligned segments 

(i.e. the relative occurrence of the aligned segments x and y in the whole 

dataset). Either x or y can be a gap, representing an insertion or a deletion. 

• p(x) and p(y): the number of times x (or y) occurs, divided by the total 

number of segment occurrences (i.e. the relative occurrence of x or y in the 

whole dataset). Dividing by p(x)p(y) normalizes the empirical frequency, 

p(x,y), with respect to the frequency expected if x and y are statistically 

independent. 

 

The greater the PMI score, the more segments tend to co-occur in 

correspondences. Negative values indicate that segments do not tend to co-occur 

in correspondences, while positive PMI values indicate the opposite. 

 

In contrast to Wieling et al. (2009), we ignore identical sound segment pairs in 

calculating the PMI score, since this improved the quality of the alignments 

(evaluated against the same gold standard as used by Wieling et al., 2009). 

Intuitively this also makes sense, since we are only interested in the distances 
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(based on the PMI scores) of non-identical sound segment pairs relative to each 

other as the distance of identical sound segment pairs is always set to 0.  

 

In order to assign a PMI score to a segment pair which does not occur (i.e. p(x,y) 

equals 0), we add a very small value to p(x,y), p(x) and p(y). This yields a very 

low PMI score for these segments, since the denominator is relatively high 

compared to the numerator. In addition, the effect on the PMI scores of segment 

pairs which do occur is negligible, since the original denominator and numerator 

values are relatively high compared to the small increase;  

3. We convert the PMI score to a distance by subtracting it from 0 and scaling these 

values between a value slightly larger than 0 (only identical segments have a 

distance of 0) and 1. Consequently, a high PMI score yields a low distance and 

vice versa; 

4. The Levenshtein algorithm based on the new segment distances is used to 

generate the new alignments. Thus instead of using a distance of 1 for an unequal 

segment pair (as used in the example alignment in Section 3.1), we use the 

calculated segment distance; 

5. Steps 2, 3 and 4 are repeated until the segment distances (and therefore the 

alignments) remain constant. 

 

After having determined the final segment pair distances, we identify the segment pair 

having the lowest distance and merge these two sounds (note that a gap is never 

merged with a sound). As long as the data set contains more sound segments than the 

desired number of segments (in our case 42), we run the Pointwise Mutual 

Information procedure anew on the simplified data set, to determine the next segment 

pair to be merged (i.e. the pair having the lowest distance). Note that since two 

merged segments are considered as a new individual segment, it is possible that this 

segment is involved in subsequent mergers, effectively merging more than two 

segments together.  

  

As an example, consider the following. We have two Dutch dialects, where in each 

dialect two words are pronounced. The Dutch word binden (to bind) is pronounced as 
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[bndn] in dialect A and [bind] in dialect B. The Dutch word heet (hot) is 

pronounced as [het] in dialect A and [heit] in dialect B.  

 

Initially the alignments are based on the Levenshtein algorithm with the syllabicity 

constraint. Because of this, [bndn] and [bind] align in two ways (both having a 

distance of 3): 

 

b   n d  n 

b  i n d   

 1 1    1 

 

b   n d  n 

b  i n d   

 1 1    1 

 

The words [het] and [heit] align in only one way (having a distance of 1): 

h e  t 

h e i t 

  1  

 

After the initial alignments are generated, the first run of the Pointwise Mutual 

Information procedure determines the distance between [] and [] and the distance 

between [i] and []. It is clear that [] and [] align only once and [i] and [] align 

twice. Since the frequency of [i] (3) is less than twice the frequency of [] (2), the 

increase of the numerator for [i] and [] is not compensated by the increase of the 

denominator (relative to [] and []) and hence the PMI score for [i] and [] will be 

higher than the PMI score for [] and [].1 Consequently, the distance between [i] and 

                                                 
1 Note that for the sake of clarity this explanation is somewhat simplified as in the actual algorithm 
each word (and not each alignment) is assigned the same importance. The general result, however, 
remains the same.  
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[] will be decreased, and in particular made lower than the distance between [] and 

[] so that in the second run of the PMI procedure the second alignment for binden 

will not be generated anymore (since the Levenshtein algorithm only yields the 

alignment with the minimum distance). After the second run, the PMI scores will not 

change anymore and the calculated segment distances are used to determine the 

segment pair which should be merged. In our example segments [i] and [] will be 

merged, as there is no other segment pair involving non-identical segments present 

(the gap is never merged with a sound).  

 

Note that a slight change to this procedure is necessary when it is used to compensate 

for transcriber differences (e.g., as present in the Dutch dialect dataset). In that case 

not necessarily the two most similar segments are merged, but a segment used only by 

one group of transcribers (but not the other) is merged with the most similar sound 

used by both groups of transcribers. This process is repeated until all segments are 

used by both groups of transcribers. 

3.3. Obtaining the final linguistic distances 

After reducing the segment set, we determine the linguistic distances by applying the 

Levenshtein distance (with syllabicity constraint) to the adapted transcriptions as 

described earlier. Because different data sets do not necessarily use words with similar 

lengths, we normalize the Levenshtein distance between two strings by dividing it by 

the alignment length of the longest transcription (i.e. in the example alignment above, 

the distance would be 3/7 as there are 7 positions in the alignment). 

4. Results 

Figure 2 shows the relation between the geographical distance and the logarithm of 

the linguistic distance (hence the straight lines) (i) based on the original number of 

segments in every data set, (ii) based on the simple transformation (reduction to two 

segments) and (iii) based on the advanced transformation (reduction to 42 segments). 

All slopes were significant (p < 0.001) and the association strength ranged between    

r = 0.13 (Norway, 2 segments) to 0.67 (The Netherlands, 42 segments). We can 

clearly see in Figure 2 that reducing the number of segments decreases both the 

intercept and the slope.  
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Figure 2. Influence of the segment reduction on the sublinear relationship between geographical 

distance “as the crow flies” and linguistic distance. Only the curve is shown, the individual data points 

are omitted for clarity. Note the logarithmic scale of the y-axis in all graphs.  
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To see the effect of the reduction on the original distances, the correlation coefficients 

between the distances measured using the original segment inventory and the 

distances measured using the reduced segment inventories are shown below. All 

correlations are significant (p < 0.001).  

 

 Correlation coefficient r with reduced data sets 

 42 segments 2 segments 

Bantu (42 segments) 1 0.85 

Bulgaria (67 segments) 0.98 0.74 

Germany (77 segments) 0.96 0.80 

Norway (58 segments) 0.995 0.77 

The Netherlands (82 segments) 0.97 0.77 

 

It is clear from the high correlations between the original distances and the distances 

based on 42 segments that most distinctions in the original data set are retained in the 

transformed data set. It is also clear that the reduction is effectively a linear 

transformation. 

 

However, when looking at the reduction to two segments, much more variation is lost. 

To illustrate this effect more precisely, Figure 3 shows a visualization of the similarity 

between Dutch dialects. Darker lines connect locations which are linguistically more 

similar. We clearly see the high similarity between the maps based on the original 

segment set (top-left) and the segment set consisting of 42 segments (middle). 

However, the map in the bottom-right (based on two segments) is less similar since it 

shows darker lines (larger distances) as well as increased contrasts (e.g., the diagonal 

dark line from the northwest to the southeast which divides the map effectively in a 

light top half and a dark bottom half is not so clear in the original map). We therefore 

judge the advanced transformation as the better option. 

 

 

 

 

13 
 



 
Figure 3. Similarity between Dutch dialects. Darker lines connect dialects which are more similar. The 

top-left map shows the distances based on the original segment set (82 segments), the middle map 

shows the distances based on the segment set consisting of 42 segments and the bottom-right map 

shows the distances based on two segments.  
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4.1. Segment mergers 

We manually verified that the advanced transformation mostly merges sound 

segments which are linguistically similar. To illustrate that the automatic segment 

reduction method indeed performs very well, the table below shows the segments 

which are merged for the German data set (the 32 segments which were not merged 

are omitted from the table). We can clearly see that the ten segment groups 

(containing 45 segments) generally consist of similar sounds. For example, the fourth 

group shows the (sensible) merger of several fricatives in the alveolar and alveo-

palatal region.  

 

// /u/ // // 

/l/ // // // 

/t/ /d/ // 

/s/ /z/ // // // // 

/k/ /c/ // /q/ // // 

/x/ // 

// /v/ // // /w/ /f/ // /p/ /b/ 

// // // // 

/h/ // // 

// /r/ // // 

4.2. Reducing transcriber differences in the Dutch dataset 

Applying the reduction method to the Goeman-Taeldeman-Van Reenen-Project data 

gives us the opportunity to analyze the Dutch dialect distances in the complete area, 

instead of separately for the Netherlands and Flanders (Wieling et al., 2007). Figure 4 

visualizes the dialect areas based on the reduced segment set of 56 segments using 

multidimensional scaling (MDS; See Heeringa, 2004:156). While the new dialect 

distances2 correlated highly (r = .99, p < 0.0001) with the original dialect distances, 

we are now more confident that the observed differences between the Dutch and 

                                                 
2 Note that, in contrast to the procedure described in Section 3.3, distances between pronunciations 
were not normalized and based on the PMI distance between the individual segments as this was found 
to be one of the best methods to assess dialect distances in a single dataset (Wieling et al., 2009).  
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Flanders dialects are not caused by transcriber differences due to different-sized 

segment sets. Apart from the observed similarities and differences already described 

by Wieling et al. (2007) in the individual countries, we see some differences between 

neighboring dialects in different countries. In the Limburg area (located in the 

southeast) dialects seem relatively similar, irrespective of the country in which they 

are located. More surprisingly, however, the western part of Flanders (with the 

greenish tint) appears to have some similarities with the northeastern part of the 

Netherlands (Low Saxon).  

Figure 4. MDS plot of Dutch dialect distances based on 56 segments. The legend shows the 

approximate pronunciations of the words moeten (‘must’) and twee (‘two’) in the areas corresponding 

to the colors. Note the similarity between the Low Saxon area (northeast of the Netherlands) and the 

area in the western part of Flanders. 
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5. Conclusions and Discussion 

In the previous sections we showed that the number of segments used for recording 

pronunciation data certainly has an effect on the pronunciation distances measured. 

With respect to the distribution of linguistic distance as a function of geographical 

distance, we see effects on both the intercept and the slope of the sublinear curve. It is 

therefore clear that when attempting to interpret the individual slopes, it is a sine qua 

non that the segment sets are reduced to a comparable size. We examined two 

segment-set transformations, one simple transformation which reduced all phonetic 

distinctions to just vowel versus consonant, and one more elaborate transformation 

which reduced segment inventories iteratively, by repeatedly selecting those two 

segments with the highest similarity as measured by the information-theoretical 

pointwise mutual information score.  

 

The simple transformation resulted in segment sets of the same size (i.e. 2 segments) 

in which obviously a lot of variation got lost. The advanced transformation retained 

more of the variation of the original data set by removing fewer segmental 

distinctions. We concluded therefore that the advanced transformation is more 

suitable for the task of obtaining commensurable measurements of pronunciation 

difference on data sets which have been transcribed using segment inventories of 

different sizes.  

 

Two anonymous reviewers suggested a simpler transformation, normalizing so that 

xnorm = (x-min) / (max-min), for raw score x. In that transformation the sound segment 

set is not reduced, but every aggregate dialect distance in a data set is scaled between 

0 and 1. While this is a sensible approach in some cases when one wishes to scale the 

linguistic distances, it is unsuitable for our purposes. As noted in the introduction, one 

area in which we wished to apply the correction was where we suspected “field-

worker isoglosses”, but the application assumes a minimum and a maximum distance. 

In applying the correction one might use the minima and maxima of comparisons in 

the entire set of pairwise comparisons, or one might choose to restrict one’s attention 

to the comparisons between the sites collected by the suspect field worker on the one 

hand and the sites collected by the non-suspect one the other. In many cases there will 

not be enough material to be certain that the minimum and maximum are being 
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chosen representatively. For example, in the set we examined, consisting of the 

Netherlands and Flanders, the set of initially incommensurable pairs of sites are also 

the sites at the greatest distance from one another – for which one would also expect 

the greatest linguistic distances. The simple min-max scaling could never cope with 

this sort of situation. So we are skeptical about applying this technique. 

 

When we turn to scaling for the purpose of investigating a general model, the same 

problems arise, in addition to some others. One additional problem is that all 

languages areas would scale from zero to one, while we suspect that the left end of the 

geography may show interesting differences which we would interpret as different 

levels of subdialectal variation. A second problem becomes obvious when we 

consider specific cases, and in particular the slopes of the logarithmic curve which is 

to be explored further. In Figure 2, the relationship between linguistic and 

geographical distances for Norway is quite flat. Scaling the linguistic distances 

between 0 and 1 would increase the slope enormously (since the geographical 

distances remain the same). In fact we suspect that we would normally obtain a slope 

1/max.-geo.-dist., since linguistic distance normally rises monotonically with respect 

to geographic distance. This would not be a rewarding explicandum! 

 

It is clear that there may be further sources of bias in comparing pronunciation 

transcriptions of different languages. We have introduced a means of controlling for 

different sizes of segment inventories in this paper, but the segment inventories may 

also have radically different constitutions, as well. For example, while Germanic 

languages have complex vowel phoneme systems with twenty or so vowels and 

diphthongs (Roach, 2000), Slavic languages may have as few as five vowels (i.e. /i/, 

/e/, /a/, /o/ and /u/). Slavic languages, however, have more complicated sets of 

consonants, distinguishing two variants of most consonants, one with and one without 

palatalization (Hamilton, 1980:18). We conjecture that using segment inventories of 

the same size but of different composition (in the sense just illustrated) need not skew 

measurements to the same extent as using segment inventories of different sizes does, 

but we concede that this point deserves attention as we proceed to compare dialect 

distances from different language areas. It may be worth noting that, if the 

composition of the segment inventories does indeed bias measurements, then the 

program which seeks to compare measurements across different languages will be 
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faced with a very difficult problem, as most data collections represent phonemic 

distinction reliably, and phonemic inventory size is known to vary a good deal (Hay 

and Bauer, 2007). 

 

Once we are confident that we are in possession of a measure of pronunciation 

distance that yields commensurable scores across different languages, we are in a 

position to remove some “field-worker isoglosses”, as we demonstrate above. We are 

also in a position to address questions about the different factors influencing the 

distribution of varietal differences with respect to geography in different languages. 

These may concern population density, population mobility, the degree of social 

stratification, the length of time since language standardization, the length of time 

since the population has become demographically (or politically) stable, or perhaps 

other factors. In this paper we have attempted to lay the groundwork for investigation 

of such factors that can move beyond speculation, by providing a technique for 

obtaining commensurable measurements across data sets from different languages. 

 

We have not examined the measurement of geographical distances in this paper, but it 

is also clear that this topic deserves careful consideration as we do not imagine that 

distance directly influences the tendency of language varieties to differ, but rather, 

indirectly, in reducing the likelihood of social contact. We have measured 

geographical distance very simply to-date, using the “as-the crow-flies” great circle 

distance on the earth’s surface, with no attention to specific aspects of geography. It is 

clear that the great circle distance is not optimal as it disregards natural barriers 

limiting individuals in their mobility (Handley et al., 2007). A possible improvement 

in this area would be to use travel distances or travel duration (automatically) 

calculated using a travel planner (but this may have limited effectiveness; see 

Gooskens, 2005), or alternatively use friction matrices indicating how difficult it is to 

travel from one location to the next (Handley et al., 2007).  
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