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Abstract

Simple Recurrent Networks (SRN) are Neural Network (connectionist) models able to process natural language.
Phonotactics concerns the order of symbols in words. We continued an earlier unsuccessful trial to model the
phonotactics of Dutch word corpus with SRNs. In order to overcome the previously reported obstacles, a new
method for network testing was developed - optimal threshold evaluation. This method is based on minimising
the erroneous character prediction of a trained SRN. The network training was improved as well . The training
words were presented to the network according to their frequencies, which emphasises the more frequent
sequences. The achieved results are promising and provide a base for further study.

1. Introduction to connectionist natural language processing.

It is still a challenge to process natural language with connectionist paradigms. Formal language theory provides
more natural methods for exploring complex language phenomena, but if we search for an approach as robust and
fast as the human brain is, we should take inspiration from the brain itself. Artificial neural networks (NN) are
computational models that resemble the brain structure and processing (Rumelhart et al. 1986, Elman 1990,
Dorffner 1991). There are different NN models, not all of them are capable of language processing. Some of them
are designed to process static mappings, as Multil ayered Perceptron (Rumelhart et al. 1986, Haykin 1994), while
other models are endowed with internal memory that enables them to process sequences. The latter NNs can be
utili sed for natural language processing (NLP) because language at all it s levels - phonological, grammatical, etc.
- has a sequential character which requires a mechanism in NNs that keeps information about the past –
phonemes, words, etc.1 Jeffrey Elman’s (1990) Simple Recurrent Networks (SRN) and D. Plaut, J. McClelland,
M. Seidenberg & K. Paterson’s (1996) attractor networks belong to the second class, and they are successfull y
used for different linguistic tasks. The most influential and exploited model is SRNs (Miikkulainen & Dyer 1991,
Shill cock et al. 1993, Reill y 1995, Stoianov 1998). It comprises simplicity and representational power; therefore
we selected this model for our experiments.

The following subsections provide some background information about NNs, phonotactics and note related
publications. Further, we outline the data used. The third section describes SRNs, the new evaluation method and
the results. The fourth one provides an analysis of the learned phonotactics. Conclusions can be found in the last
section. A detailed technical description of SRN is given in appendix one. The second appendix contains a part of
the training corpus.

1.1 Neural Network premises.

The human brain is built up from simple basic elements - neurons, which are organised in complex structures
(Kandel 1991). The speed and robustness of the brain are due to the parallel work of the neurons and the
properties of this highly organised network. The brain is also adaptable: it learns and adjusts to its environment.
The artificial brain analogues – NNs – are aimed firstly at explaining the brain itself and secondly at practical
applications, which benefit from the advantages of brain-like computational models.

From a linguistic perspective, there are two main directions related to connectionist modelli ng. The first
direction is explaining the linguistic phenomena that humans possess. This problem is studied by cogniti ve
science and more specificall y, by Psycholinguistics and Neurolinguistics. Some of the important problems there
are the functional organisation of language processing brain structures (Hirshman and Jackson 1997, Ainsworth-
Darnell et al. 1998), their specific neurobiological locali sation (Stowe et al. 1994), associations to other
modaliti es, etc. The other direction is connectionist natural language processing, including language parsing,
generation and storage. The goal here is to compete with and even outperform existing methods, such as symbolic

                                                       

1 Static NN’s can also process sequences, provided that the input has as many input nodes as the length of
the sequence, times the size of a single input token representation. This extends the network size and
processing time significantly.
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and stochastic approaches. In this area, the modelli ng of neural structures is compromised to obtain simpler, but
computationally more effective models. SRNs belong to this category. Nevertheless, many authors use them to
explain some characteristics of our linguistic capacity.

The NN structure is similar to the neuron assemblies in the brain. Knowledge and data in the NNs are
represented distributively (Rumelhart et al. 1986, Dorfner 1991). The data is represented sparsely as the current
activation of a set of neurons, usually organised in ‘ layers’. These activations are propagated from layer to layer.
There is always an input layer, whose neurons are activated according to external environment, and an output
layer, whose  activations are the product of the network. The knowledge, or the rules of how to process the data,
is redundantly encoded in the NNs as varying strengths of the connections between the neurons. Each ‘ rule’ is
represented by a large number of neurons and weights, and if small damage occurs, the rest of the neurons may
be capable of producing a correct response. Moreover, they can learn quickly and can adjust their behaviour in
slightly modified configuration. This kind of representation is the basis for the generali sation abiliti es of the NNs,
that is, the abilit y to generate similar output activity for similar input patterns even if they were unseen during the
learning. Most of the NN learning algorithms are also geared to this kind of distributed data representation.
There are learning algorithms that form "rules" observing only input data and other, that may be told the correct
response by a “ teacher" (a check on output). The presence of a teacher corresponds to learning an input/output
mapping. One of the most popular supervised learning algorithms is Backpropagation learning.

Biologicall y motivated NNs are supported further by a number of theoretical analyses. Hornik et al. (1991)
proved that Backpropagation learning can approximate any continuous input / output static mapping to any
degree of accuracy, by a multil ayer neural network, if there are enough hidden neurons. Doya (1993) extended
this result to include temporal patterns using recurrent neural architectures. The more restricted SRNs were
proven by Sperduti (1997) able to simulate any frontier-to-root automaton, while some other recurrent models
such as cascade correlation networks and Neural Trees can not. The latter kind of automaton recognises tree
grammars. The phonotactic structure of language words can easil y be encoded in such a grammar, providing
more reason to choose this recurrent neural network model for our task.

1.2 Phonotactics.

The principles of combination by which linguistic signs (symbols) form messages is called the grammar of the
language. In the course of this research a phonological level of grammar is examined. Basic elements there are
phonemes. Phonotactic analysis considers the principles of their combination (Laver 1994), that is, the valid
combinations of phonemes.

In the experiments we report on here, we used graphemes instead of phonemes, that is, we studied
combinations of letters. Using phonemes does not significantly increase the complexity of the problem - usually
the length of the phonetic representation is shorter than the orthographic representation, while the number of the
phonemes is larger. Tjong Kim Sang (1998) also reports very littl e difference in the learning problems based on
phonemes vs. letters. In spite of studying graphemes instead of phonemes, in the rest of the paper we will not use
the more-specific term graphotactics, but phonotactics. The reader should keep in mind that we experiment with
letters.

We will t ry to encode words from a natural language (Dutch) within a connectionist model - SRNs. The
network will be given all words from a training word corpus.2 As a result, it should learn the phonotactics of
these words. If the corpus size is enough large, then the NN will l earn the phonotactics of the language the words
belong to. Other approaches that might be used for studying phonotactics are N-grams and Hidden Markov
Models.

Usually, the phonotactic rules are known in advance. A NN model trained to remember the phoneme
combinations of a particular language should discover these rules. Therefore, one of the methods to examine
whether this NN has learned the phonotactics of a given language is to check if these rules can be derived from
the weight matrices of the NN. Another approach to examine the training is to verify how well the network
recognises strings, that is, whether it can distinguish words belonging to the language from random strings. In
this case, the corpus containing words from the learning language has to be split i nto training and test
subcorpora. In addition, we make use of a corpus of random strings. After training, we will examine how many
words from the test corpus are not recognised as belonging to the language, and how many words from the
random string corpus are accepted. The average of these two errors will give an estimation of how well the NN
recognises the learning language. This is the approach we implemented.

1.3 Related studies.

There are few previous works that have attempted to learn phonotactics with NNs. The earliest report is by
Shill cock et al. (1993). The attempt there was to model the phonological space with SRNs. The network was

                                                       

2 By using the term corpus, we will mean word list, (extended with word frequencies).



Modelling phonotactic structure with SRNs 3

trained to produce at the output layer, the previous, current and future phoneme, given at the input the current
phoneme. The phonemes were encoded in accordance with the Government Phonology, in particular, using
feature-based representations. They reported unsuccessful prediction of the next phoneme. A follow-up paper by
Cairns et al. (1997) considers phonotactics-based word segmentation and the reported results consider only
segmentation.

Another connectionist model that learns to produce sequences of phonological features was presented by Dell
(1993). Two recurrent network architectures were used – SRNs and an extension of SRNs with an additional
context layer receiving activation from the input layer. The purpose of this model was not phonotactic analysis,
but producing the sequential phonetic representation of a static lexical term. Once presented a lexical term to the
input, the model activated the features of each segment of the input word, one segment at time. Experiments were
done with a toy size corpus (50 words, each consisting of 3 phonemes) and with a larger corpus (300 – 400
words). Both architectures were reported to perform well , with superiority of the second model. The reported
error rate performance is (5-10%) and is measured as the number of erroneously predicted phonemes.

An attempt to scale up the problem is reported by Tjong Kim Sang (1995). He considered exactly the same
problem we study; moreover it inspired our research. Success was achieved using Hidden Markov Models, but not
using SRNs. It was concluded that the very complex structure of a grammar, describing a large number of words
(3500 monosyllabic Dutch words) is not straightforward for SRNs. The reason for this was conjectured to be the
large number of possible continuations. We propose a method to overcome this problem. The corpus Tjong Kim
Sang used is a part of the monosyllabic corpus we use. He reported experiments with Hidden Markov Model’s as
well , with classification error rate of 3%, which in turn can be suggested as a base-line error rate for stochastic
models. SRNs are also a kind of probabilistic machine.

Another report considering connectionist learning of phonetic regularities in Turkish (Rodd 1997) was
published a few months after our first successful experiments. The NN model was SRNs, but the goal was
different – finding similar phonemes, formed in the hidden layers during the training. The training corpus was
smaller, and no information about the learning and performance was given.

Some other connectionist approaches applied to natural language learning – (Lawrence et al. 1995 & 1996),
(Elman 1990), (Cleeremans et al. 1989), (Servan-Schreiber et al. 1991) among others – considered primaril y
syntax and some toy-sized problems. As pioneering projects in connectionist language processing, most of them
were generall y aimed at comparison between different approaches (including NNs) to language learning. But
usually, the attempts at scaling to larger problems were not successful.

2. Data and encoding.

A word li st – a corpus containing all 4480 monosyllabic Dutch words – was extracted from CELEX corpus.3 The
mean word length was 5 characters. A small part of this corpus can be found in Appendix 2. The CELEX corpus
contains a few hundred thousand words from English, Dutch and German. This corpus is very suitable for
linguistic research, because it has a lot of specific information related to each word, for example, the number of
the syllables in the words, their frequencies, grammatical information, etc. We used orthographic word
representation. As we noted, the complexity of grapheme and phoneme studying is similar. Also, in Dutch, unli ke
English, there is close similarity between orthographic and phonetic representation.

The extracted corpus was split i nto a training corpus (80%) and test corpus (20%). In order to test the
discrimination capabiliti es of a trained SRN, a corpus containing random strings was generated. The length of
the random strings and the symbol distribution in each of them followed the empirical distribution of the word
length and symbol distribution in the training corpus. This improves the quality of the test.

The words were presented to the network, letter by letter. At the end of each word, one extra symbol ‘#’ (read:
“end of word” ) was provided. There were in total 27 symbols: ‘a’..’z’,’#’. All characters were orthogonally
encoded in a vector of size 27. We selected orthogonal representation because it does not implicitl y encode any
significant relations among sounds or letters – which the learning should be required to uncover. Also, any non-
orthogonal random representation can be transformed to this orthogonal one, and this can be computed with an
extra non-recurrent hidden layer in the NN. The vectors are encoded as 0.1 at all positions except the one that
stands for the particular character number, and which is set to 0.9. Using 0.1 instead of 0 and 0.9 instead of 1
increases the effectiveness of the training process.

An important characteristic of a word is its frequency. The word frequency measures how often the word is
used. Therefore it would be better if during the training we provide the network a given word as often as its
frequency. This stresses the more frequent symbol sequences.  As a result, the network will be trained to respond
better to more frequent words, and for instance, if it is used to spell -check a Dutch text, it will make fewer errors

                                                       

3 The CELEX corpus is distributed on CD-ROMs. For more information see http://www.kun.nl/celex/ or
Centre for Lexical Information, Nijmegen, The Netherlands.
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in total. Still, the difference in the frequencies is too large. Certain words as ‘de’ (the) occur millions of times
more often than some rare words. Therefore, the training frequencies used depend logarithmically on the real
frequency. This reduces the range of appearance to maximum 100 times in one training epoch.

3. Simple Recurrent Networks and Phonotactics Learning.

The basic structure of SRNs as originally described by Elman is given in Fig. 1, which also depicts the
mechanism of sequence processing. The SRNs were developed as an extension of the popular feedforward,
supervised NN model, Multilayered Perceptron (Rumelhart’1986), and it uses the same basic computations. The
only difference is the recurrent connection from the hidden layer to the ‘context’ layer, which can be seen as a
part of the input layer, but fed with internally produced information. This context layer is used to remember the
activation of the hidden layer at the previous moment and it is the temporal memory of SRNs. So, SRN response
at each moment depends both on the current input and on the contextual memory. During the learning process,
SRNs build up an internal representation of the sequential input data, in the context layer.

The network learns the phonotactic rules by studying the possible successors after each left context in the
training corpus. The learning process is organised in epochs. In each epoch, all words are presented to the
network. The frequency of a word’s appearance in an epoch is proportional to (the logarithm of) its frequency in
the language. Before starting a new word, the context is reset. A word is presented to the SRN letter by letter. The
letter following the current input letter is the current successor. This is what the network should predict and
should produce at the output. A training error is defined as the difference between the desired and the current
output activation for each neuron. This error is used by the training algorithm that adjusts the weights so that the
next time the same input is presented, the output is closer to the desired output.

... ...      N | E | T | W | E | R | K | #  ...

  

 ...  N | E | T | W | E | R | K  ...

Fig. 1. A Simple Recurrent Network and the mechanism of sequence processing.  One character is presented as
input to the SRN, and the next one is used for training. In turn, it has to be predicted during the test
phase.

SRNs can be trained by standard Backpropagation algorithm (BP) or Back Propagation Through Time (BPTT)
learning. Both of them allow the network to settle to a good point in the weight space, but the second one is
faster, and allows the network to adjust more precisely to the dependencies between the context, current input and
target letters. The difference is that the weights receive delta- or error-signals not only from the errors in the
previous layer, but also from the propagated error in the context units. Therefore, we recommend that BPTT is
used. In Appendix 1, we provide technical details related to SRNs and BPTT implementation.

Since the task usually is not deterministic, that is, there are many possible successors after a given left context,
the output error can never achieve zero (except where left contexts are unique in the training corpus). Therefore,
as a result of the training, the network tends to learn the distribution of  the allowable successors, that is, the
probability of each letter to follow the current context.

3.1 Evaluation of the learning. Optimal Threshold.

Learning phonotactics means learning symbol order. To check how well a trained SRN has learned the
phonotactics of the training language, we can test its prediction performance. One possible method is to interpret
the NN output as the likelihood that any symbol follows in the current context. That is, for each left context
available in the language, to compute, the proximity between the network response and the empirical distribution
of all symbols - potential successors. This evaluation method is explored in a related paper by Stoianov (1998).
Another method, explored by Cleeremans et al. (1989) and Tjong Kim Sang (1995) among others, is based on the
idea that if the network accepts (almost) all valid sequences and rejects (almost) all invalid ones, then it has
learned the phonotactics. We will pursue this approach further.

SRN

Output Layer: 27 Neurons

Hidden Layer

Input Layer:  27 Neurons Context Layer
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Now, how should we decide whether the joint response of the output layer {on(t0), on(t0+1), ..., on(t0+L-
1)} to a string [c1 c2 .. cL ] accepts it as being a part of the trained language, or not? The first ideas put forward
were the following: Cleeremans’ implementation accepts a sequence if the responses of all designated neurons
standing for the expected symbols in the sequence have an activation level greater than 0.3. Recall that in the
orthogonal representation, there will be exactly one ‘designated’ neuron which represents a given symbol. Tjong
Kim Sang’s SRNs accept a string if the designated neurons are more active than the minimal activation value
encountered in all training words. The problem with the first approach is that it is very task-specific. The value
0.3 is experimentally observed: in Cleeremans’ task, there are no more than two successors and 0.3 is the
threshold that optimally splits grammatical from non-grammatical strings. Applying this method to a task where
the possible successors are  27 would fail, because only few of the neurons would have activation larger than 0.3.
Tjong Kim Sang met this problem and applied the second rule, but it turned out to accept not only the correct
words, but almost all random sequences as well.

The solution we propose and use to good effect uses the same principle as in the previous approaches: the

activations of the neurons on(t0+i-1) standing for the expected symbol ci are compared with a threshold ττ. If all

of the relevant neurons have activation greater than or equal to ττ, the string is accepted as being enough close to
the words from the training corpus, that is, as phonotacticall y li ke the words learned by the SRN during training.

In this case, ττ should be between zero and one. In the above notations, the index i stands for the position of the
letter ci  in the tested word, that is, it has temporal meaning. Since all phonemes from the tested word have to be
confirmed by the NN, we can term this rule “all-or-nothing” . Now, the question is how to set this threshold in
order to best distinguish grammatical from ungrammatical input sequences. After a complete training, or after
each training session, when we want to evaluate the training thus far, we can examine the response of the net to
all genuine words and to some randomly generated strings, for different threshold values. The network training is
supposed to adjust the weights so that to improve the response for words from the training corpus, and to
minimise the error in the test set. We test how many words will be accepted and rejected for different values for
the threshold, and select the threshold that minimises the combined error involving acceptance of random strings
and rejection of genuine words. This use of negative data (random strings) departs from Cleeremans’ and Tjong
Kim Sang’s work – Cleeremans uses negative data only to evaluate the SRN learning and Tjong Kim Sang uses
only positive data to find the threshold (which is far from the optimal one).

Fig.2 depicts both  falsely rejected word error(FRE) and falsely accepted random strings error(FAE), where
the x-axis stands for threshold, and y-axis represents the error, dependent on the threshold. We can see that as the
threshold increases, FRE increases too, because more words are rejected, while on the other hand, FAE decreases,
because fewer random strings are accepted. At the point where the two errors are minimal is the threshold which
is most interesting. This minimal threshold will be used for character acceptance. The corresponding error at this
point is used also for evaluating the training.

FAE

FRE

Fig.2. Falsely rejected word error (FRE) and falsely accepted random string error (FAE). The errors are given

against the threshold ττ (0.05 .. 0.15).

The method being proposed here is independent of the number of successors, so it can work well with 26
characters, as well with, for instance, 100 phonemes.
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3.2 Details of the experiments and results.

The model described so far was implemented on C++ for HP-Unix. We experimented with both Back-
Propagation(BP) and Back-Propagation Through Time (BPTT) learning algorithms. BP required fewer
computations and was faster and easier for implementation, but the training was longer. This is because BPTT
propagates back through time temporal dependencies and uses them for training, while BP uses only the context
layer as source for information for the past.

In the course of experiments, we fixed the following SRN parameters: learning coeff icient ηη = 0.3 and
network momentum αα = 0.5. These values were found to be optimal for various tasks. We used one hidden layer,
which was copied to the context layer using the weighting coeff icient ββ = 0.8. The only parameter we allowed to
vary was the number of hidden nodes - from 5 to 30.

The training was organised in epochs, during which each word from the training corpus was selected in
random order and used for training. The probabilit y of a word being selected was equal to its frequency. This
allowed the more frequent words and phoneme combinations to be studied more often than the infrequent ones.

After one training epoch, we estimated the learning by presenting all words to the NN and computing the

error as a function of the threshold ττ. The error function (in percent) depended also on the word frequency
freq(wordi):

Err (ττ) = 100 |Words|-1 ΣΣ i=1 .. |Words| Errττ(wordi) * freq(wordi)

where  |Words| is the corpus size and Errττ(wordi) is the error for word i at a threshold ττ. The same error function

was computed as well for a corpus of random strings. Note, that the error Errττ(wordi) in the latter case is not the
rejection of a random string, but its acceptance as a word belonging to the training language. The frequency of

each random string was assessed as one. Finall y,  as we described in section 3.1, the threshold ττ at which the
combined error is minimal was found and used to evaluate the learning.

The number of the training epochs depended on the epoch error behaviour. The training was terminated either
if the error dropped below some threshold or failed to decrease significantly. On average, 100 to 300 epochs were
enough to reduce the training error satisfactoril y. After the training, a control test with the test corpus was
performed, in order to test the generali sation abiliti es of the network. Usually, the test error was close to the
training error.

A typical error shape after the training is shown on Fig. 2. It was quite surprising for us that a SRN with as
less as 5 to 10 hidden neurons managed to obtain about 7% error. Some other complex tasks, for instance in
vision processing, require many more hidden neurons – more than 100. This means that the phonotactic rules,
found in the language, are not that complex.

4. Static analysis of the learned phonotactics.

In this section we present a brief analysis of the phonotactics that a SRN with five hidden neurons has
learned. The analysis will be based on two static representations of the weight matrixes of a trained SRN – a
Hinton diagram and cluster analysis. The extracted rules will be compared to correspondent phonotactic
transition rules in Dutch, documented in “Fonologie van het Nederlands en het Fries” (Cohen 1972).4

The basic source of analysis is a Hinton diagram of the weight matrices for both hidden to output layer and
input (including the context neurons) to hidden layers (Fig. 4). In this diagram, each circle represents one weight.
The strength and the sign of this weight are represented by the size and the colour of the circle. A white circle
stands for positi ve and a black one stands for negative weights. Recalli ng that a neuronal output is a function of
the product inputs - weights (see formulae (1) and (4) in Appendix 1), we might extract some simple rules.5

The same weights, but analysed with cluster analysis and represented with dendograms are given in Fig.3.
The left dendogram there classifies each input letter with respect to the influence it has to the activation of each
hidden neuron (hN). In turn, the right dendogram classifies the output letters with respect to the incoming from
the hidden layer weights.

                                                       

4 We did not find a proper source with graphotactic rules, so the resemblance can only be approximate.

5 We cannot draw exact rules because there are recurrent connections and biases that complicate the
computations.
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Vowels

Conso
nants

sono
rants+

-

(a)

Vowels

Consonants

(b)

Fig. 3  Cluster analysis of the Input characters (a) and Output characters (b) with respect to the weights
connecting Input-Hidden and Output-Hidden layers. The numbers in (a) represent the context neurons.
What we have labelled ‘sonorants’ in (a) includes voiced continuants (as well as sonorants proper).

First, we can see in Fig. 3 that the weight vectors (and correspondingly the characters) cluster into known
natural classes – vowels and consonants – in both input and output character clustering. The ‘back’ vowels (O,U)
are subclustered from the ‘front’ (I,E,A) vowels. The consonants also are distinguished in the input character
cluster regarding sonority. We will stop here searching for further known phonetic clusters, because the symbols
are not phonemes, but graphemes. In spite of that, since these classes are formed only experiencing the words, we
can conclude that the possible combinations in the natural languages depend on the (phonetic) characteristics of
the symbols.

As a further step, we will look at the possible transitions between two neighbouring symbols in Fig. 4 and how
do they relate to the transition rules in a monosyllabic Dutch word(Cohen 1972), which is of the following form:

σ {onset [[[Cf]Cf]Cf] nucleus V[V] coda [Cb [Cb [Cb [Cb]]]]  }

where C stands for consonants and V for vowels. The general principle is that we can see what can follow what
by tracing from (b) into (a) in Fig. 4 over activated neurons.

a

A B C D E  F G H I  J  K L M N O P  Q R S T U V W X Y Z  #

Bias

Cons.
2nd vow
Cons.
1st vow.
Sonor.

b

 A B C D E F G H  I  Js K LsMsNsO  P Q  RsS T U V WsX Y Z  # 1  2  3 4 
5Bias

Fig. 4. Hinton diagram of trained SRN weights: (a) Hidden to Output Layer. Each column represents one output
neuron. (b) Input Layer (A..Z,#) and Context Layer (1..5) to Hidden Layer. Each row represents one
hidden neuron. Note, e.g., that positive weights (empty circles) on the 2nd  and 4thneuron (row 2,4)
corresponds to vowels. See text for details.

According to Fig.4b, consonants and some context neurons activate the 1st,  3rd and 5th hNs. At the same time, the
2nd and 4th hNs are activated by vowels and context neurons. Now, if we look at Fig.4a, we see that the 2nd hN
activates consonants and end-of-word, while the 4th hN activates vowels and consonants. Our interpretation of
this is that the 2nd hN stands for an optional second vowel, while the 4th hN stands for the first vowel in the
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nucleus. Also, this should mean that one vowel can not end a syllable, while two vowels can. Now, if we turn to
the phonotactics, there is a rule in Dutch that a short vowel cannot end syllables, only a long vowel. In
monosyllabic words, the short vowels are represented mostly by a single letter, while the long vowels have two-
character orthographic representations. We can see that the two rules match nicely.

With regard to the consonants, note that according to Dutch phonotactics, there cannot be an obstruent that
intervenes between a sonorant in the onset or coda and the nucleus (syllable peak). What the SRN found is
exactly the same: the sonorants (J,L,M,N,R,W) activate only the 5th hN, which in turn activates only vowels, ‘R’
and end-of-word. As for the obstruents, they activate the 1st and 3rd  hNs at the input layer (Fig.4b), which in turn
allows consonants and vowels to be activated at the output layer (Fig.4a). Another rule that can be found in Dutch
is that the last consonant in a [CCCC]-coda can only be ‘T’. This phenomenon is reflected in Fig. 4a, where the
only consonant activated by the 3rd hidden neuron is ‘T’, and this neuron itself is activated only by consonants,
and context neurons including itself.

Finally, we would like to note again that the rules discovered by the SRN apply to orthography and due to the
close relation between Dutch orthography and phonology, we might compare them to the real phonotactic rules.

5. Conclusions:

Looking for a connectionist architecture capable of modelling the phonotactics of natural language words, we
have explored Simple Recurrent Networks. In spite of some earlier unsuccessful experiments with SRN
phonotactics modelling, the promising SRN theoretical research encouraged us to continue the search for
effective modelling. The temporal information in the context layer is enough for the network to produce correct
predictions. This is expected, since the SRNs can simulate any frontier-to-root automata as some recent
theoretical research shows.

The experiments we made confirmed our expectations. A sufficiently trained network predicted the possible
successors after a given left context with reasonable error. That is, reading a word symbol by symbol, the network
predicted correctly which symbols can follow the sub-word presented so far.

The success of the experiments was due to a modified interpretation of the output neurons, which was not well
developed until now. In order to judge if a given character is a possible successor, we compared its activation with
a threshold which we set after training. Consequently, a word was accepted as belonging to the training language
if all its letters were recognised as possible successors. Another mechanism that improved the learning was to
stress more frequent combinations, that is, more frequent words. Finally, the use of some negative data seems to
have helped as well in setting the threshold optimally.

In the present study orthographic word representation was used, but similar results would be expected if
phonetic representation had been studied. The difference would be the number of the basic tokens, which would
be larger in the second case. In spite of this, the method should be able to study the phonetic patterns, which are
simpler and better understood than these  based on orthographic representation.

Since we achieved successful learning with a small SRN, we did not pay too much attention to learning time –
a network of size 5 to 10 hidden neurons achieved an acceptable error rate. However, similar applications may
require larger networks. In that case we suggest further improvement of the learning algorithm. There are
number of techniques that accelerate the learning of BP and BPTT learning algorithms. The topology might be
changed dynamically as well. Evolutionary programming techniques provide interesting methods of optimal
topology selecting. There are other methods that increase or decrease the hidden layer size during the training
(Haykin 1994, Stoianov 1994).

The successful learning of a large natural language word corpus in SRNs – the main contribution of the work
presented here – evidently confirms that parallel distributed processes can attack large-sized problems in NLP, a
claim that could be made earlier primarily for symbolic and stochastic approaches.
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8. APPENDIXES

A1. Simple Recurrent Networks.

In order to facilitate the reader interested in implementing a connectionist natural language processing system,
we provide a technical description of SRNs and backpropagation through time learning algorithm (BPTT).

The forward pass for the hidden layer is computed in accordance with (1,2):
(1) netH

i (t) = ΣΣ j= 1 .. |InputLayer| wH
ij inj(t)  + ΣΣk= 1 .. |ContextLayer|  wH

ik cnk(t)
(2) hni (t) = f (netH

i(t))
where netH

i(t) is a sum of the activity provided to the inputs of the i-th hidden neuron (i=1.. |HiddenLayer|) at time
t. inj(t), cnk(t) and hni(t) are the activation of the j-th input, k-th context, and i-th hidden  neurons at time t. wH

ij

and wH
ik are the weights of the connections between j-th input neurons, and i-th hidden neurons, and k-th con-

text neurons and i-th hidden neurons. For convenience, the bias is encoded as an extra input neuron with constant
activation 1. The activation function f(.) is of sigmoidal type - logistic or hyperbolic tangent. After the activation
of the hidden neurons, their activity is copied to the context neurons in accordance with (3):
(3) cni (t) =  (1-ββ) cni (t-1)  + ββ hni(t-1)
The transfer coefficient ββ is advised to be between 0.2 and 1.
The activation of the output layer depends only on the hidden layer (4,5):
(4) netO

i (t) = ΣΣj= 1 .. |HiddenLayer| wO
ij inj (t)

(5) oni (t) = f (netO
i (t))

for all output neurons i (i= 1 .. |OutputLayer|).
Backpropagation Trough Time learning algorithm starts with computing the error and deltas at the output

layer and the updates of the weights connecting the hidden layer to output layer (6,7): 
(6) δδi

O(t) = f′′ (netO
i (t)) ( Ci (t) - oni (t)  )

(7) ∆∆wO
ij= ηη. ΣΣt=(t0+1) .. (t0+|word|) δδi

O(t) hnj(t)
where Ci (t) stands for the desired activation of the output neuron i (i=1..|OutputLayer|) at time t (see section 3 for
details). Index j stands for the hidden neurons (j = 1 .. |HiddenLayer|). Provided that activation function f(x) is
the logistic function f(x) = (1+e(-x))-1, the derivative f′′(x) = x(1-x). The deltas and updates of the weights
connecting hidden layer to input layer and the context layer are computed in accordance to (8,9):
(8) δδi

H(t) = f′′(netH
i (t))[ΣΣj= 1..|OutputLayer|wO

ji  δδj
O(t) + ΣΣk=1..|ContextLayer|wH

ikδδk
H(t+1)]

(9) ∆∆wH
ij= ηη  ΣΣt=(t0+1) .. (t0+|word|) δδi

H(t) inj(t-1)   
where i = 1 .. |HiddenLayer|, j  = 1 .. (|InputLayer|+|ContextLayer|) and n(t) is the joined vector containing both
in(t) and cn(t). The second sum in (8) represents the  context layer delta-term δδk

C(t+1), computed by back-
propagating the delta δδi

H(t+1) through the weights connecting the context neurons to the hidden neurons.
We note that (6) and (8) has to be computed for an earlier time cycle. Also, the weight updating (7) and (9) is

performed after presenting all characters from a given word and computing the deltas for each time step at which
a given word was processed.
To speed-up the training, a momentum-term also can be applied with (7) and (9). This term helps the net to
escape local minima, which the net can meet quite often running over the error surface. For further reading about
SRN, BP and BPTT one can refer to Haykin (1994) and Wan (1996); an optimization of the learning process is
given in Stoianov (1994).

A2. A part of the Dutch corpus.

Word   Frequency Word   Frequency Word   Frequency
de 100
het 52
van 49
en 47
een 46
in 35
dat 26
te 22
ik 20
hij 20

die 19
niet 17
is 17
met 16
was 13
voor 12
maar 11
als 11
aan 11
er 10

je 9
om 8
haar 8
naar 8
ook 7
dan 7
door 7
of 7
had 7


