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Abstract

The present paper compares stochas-
tic learning (Hidden Markov Mod-
els), symbolic learning (Inductive
Logic Programming), and connection-
ist learning (Simple Recurrent Net-
works using backpropagation) on a sin-
gle, linguistically fairly simple task,
that of learning enough phonotactics to
distinguish words from non-words for a
simplified set of Dutch, the monosylla-
bles. The methods are all tested using
10% reserved data as well as a com-
parable number of randomly generated
strings.  Orthographic and phonetic
representations are compared. The re-
sults indicate that while stochastic and
symbolic methods have little difficulty
with the task, connectionist methods
do.

1 Introduction

This paper describes a study of the applica-
tion of various learning methods for recogniz-
ing the structure of monosyllabic words. The
learning methods we compare are taken from
three paradigms: stochastic learning (Hidden
Markov Models), symbolic learning (Inductive
Logic Programming), and connectionist learning
(Simple Recurrent Networks using backpropa-
gation). In each case we shall use the methods
to build an acceptor for the monosyllables from
positive data only, and we shall test it on held-
back test data as well as randomly generated
(negative data). We systematically compare re-
sults based on orthographic and phonetically en-
coded data. The data comes from Dutch but the
results are expected to be similar for other re-
lated languages.
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This study focuses on three questions. First, we
ask which methods are able to learn the struc-
ture of monosyllabic words. Second, we seek
to learn the influence of data representation on
the performance of the learning algorithms and
the models they produce. Third, we would like
to see which the learning processes are able to
create better models when equipped with basic
initial knowledge, so-called innate knowledge.

2 Theoretical background

This section presents some theoretical back-
ground for the main problem of this paper,
learning simple phonotactics.

2.1 Problem description

The phonotactic structure of a language deter-
mines which sequences of basic sounds are al-
lowed in the language. Certain languages, such
as Polish, allow words to start with ml but oth-
ers, such as English and Dutch, do not. Phono-
tactics are directly reflected in the phonetic
transcriptions of words, and indirectly in the
orthography, i.e., the writing system. Different
languages usually have different orthographies.

Some aspects of phonotactics, such as preference
for consonant vowel sequences, are shared by al-
most all languages, but phonotactic structure
varies from one language to another. No uni-
versal phonotactics exists. There are two possi-
bilities for entering language-dependent phono-
tactics into a computer program. The first is to
examine (by eye or ear) the language and cre-
ate a list of rules reflecting phonotactic struc-
ture. This is labour-intensive and repetitive
when many languages are involved. The sec-
ond possibility is to have the machine learn the
phonotactics by providing it with language data.
People manage to learn phonotactic rules which



restrict phoneme sequences so it might be pos-
sible to construct an algorithm that can do the
same. If we are able develop a model capable of
learning phonotactics, we can use it to acquire
the phonotactic structure of many languages.

2.2 Data representation

The input data for our learning methods can be
represented in two ways. The first one is called
the orthographic representation. Here words are
represented by the way they are written down,
for example: “the sun is shining”. The sec-
ond way of representing the words is phonetic.
If we use the phonetic representation then the
sentence ”the sun is shining” is represented as
[0o sAn Tz [elnIr).

We do not know which (if either) of the two rep-
resentations will enable the learning process to
generate the best word models. Acceptance de-
cisions of words by humans may be based on the
way the words are written but they may also be
based on the pronounceability of the words. We
are interested in finding out which representa-
tion way is most suitable for the learning meth-
ods. Therefore we perform two variants of some
experiments: one with data in the orthographic
representation and one with the same data in
the phonetic representation.

2.3 Innate knowledge

A recurrent issue in modeling language acquisi-
tion is the amount of innate knowledge available
or required. Linguists have emphasized that
important aspects of language learning require
some innate knowledge [Pin94]. Debates in the
language acquisition literature have led to a gen-
eral acceptance of the assumption that children
use innate linguistic knowledge when they ac-
quire their native language. Steven Finch’s PhD
thesis [Fin93] describes approaches to languages
acquisition which assume no innate knowledge.
Since we are interested in the influence of innate
knowledge on language acquisition, we perform
experiments with and without assumptions of
(specific) linguistic knowledge. In the case of
connectionist methods, this required some cre-
ativity, but we believe that a reasonable opera-
tionalization was found.

2.4 Positive and negative data

A further perennial question is whether nega-
tive information needs to be used—e.g., the in-

formation that ‘mlod’ is not a Dutch monosyl-
lable. Early research in computational learn-
ing theory showed the need for negative learn-
ing if grammars are to characterize perfectly
[Gol67]. Research in child language acquisi-
tion has had difficulties with finding negative
language input from parents in conversations
with young children, and has noted that chil-
dren attend to it poorly. Here we have a prob-
lem: according to computational learning theory
children need negative information for learning
(perfectly), while children do not seem to re-
ceive this information even though they manage
to learn natural languages.

We shall approach the acquisition of models for
monosyllabic words from the research perspec-
tive of child language acquisition. We shall sup-
ply our learning methods with positive informa-
tion only. In some learning experiments it might
be theoretically necessary that negative exam-
ples are supplied in order to obtain a good re-
sult. We shall assume that in those learning ex-
periments the negative information is supplied
implicitly. One source of implicit information is
innate knowledge. Another is the application of
the closed world assumption which states that
non-present information is false (but this would
not meet Gold’s objections).

3 Experiments and Results

This section describes the setup of the experi-
ments. It also presents the results of the exper-
iments with the three learning methods.

3.1 General information

Our goal is to perform four experiments with
each learning method. Two experiments with
data in orthographic representation and two
with data in phonetic representation. For each
representation we perform one experiment with
random initialization and one in which the
learning algorithm is supplied with some ba-
sic linguistic knowledge. We use ten-fold cross-
validation which means that we divide our pos-
itive data in ten parts and use nine parts for
training and one part for testing. Each part is
used as testing part once. Additionally we use
a constant test data set with non-words.

The data sets were derived from the CELEX
cd-rom [BPvR93]. From the Dutch Phonology
Wordforms directory (DPW) we extracted all
monosyllabic word representation pairs. The
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Figure 1: The syllable model of Cairns and Feinstein

first element of each pair was the orthographic
representation of the word (field Head) and the
second the phonetic representation of the word
(field PhonolCPA). All characters in the ortho-
graphic representation of words were changed to
lower case. We obtained a list of 6190 unique
orthographic strings and 5695 unique phonetic
strings. This was our positive data. The neg-
ative data sets consist of 1000 unique strings
which do not appear in the positive data. This
data was created by randomly generating strings
with the same length distribution and character
frequencies as the positive data.

In order to determine the complexity of the
data we have subjected it to a baseline exper-
iment. In this experiment we applied the sim-
plest learning algorithm we could think of to
this data. This algorithm accepted all and only
strings that consist of character pairs (bigrams)
which appear in the training data. This algo-
rithm accepted 99.29+0.32% of the positive or-
thographic data and rejected 55.72+0.90% of
the negative orthographic data. We use the
notation [99.2940.32|55.72+0.90] for this per-
formance. For the phonetic data these scores
were [99.00+0.46/76.83+0.49]. This algorithm
was good in accepting positive data but per-
formed less well in rejecting negative data. The
main task of the three learning algorithms is to
improve the performance on negative data.

In the experiments with linguistic information
we use the Cairns and Feinstein model as ba-
sic knowledge [CF82; Gil92]. This is a hierar-
chical syllable model consisting of a tree which
contains seven leaves (see figure 1). Each leaf
can either be empty or contain one phoneme.
The leaves are restricted to a class of phonemes:
the peak can only contain vowels and the other
leaves may only contain consonants. The exact
phonemes that are allowed in a leaf are language
dependent. In the syllable model there are ver-
tical lines between nodes and daughter nodes
which are main constituents. A slanting line
between two nodes indicates that the daughter
node is dependent on the sister node that is a
main constituent. A dependent constituent can
only be filled if its main constituent is filled. For

example, the margin satellite can only contain a
phoneme if the margin core contains a phoneme.

In our experiments with initial knowledge we
supply the learning algorithms with the sylla-
ble structure presented in figure 1. Two extra
constraints are provided to the algorithms: the
fact that the peak can only contain vowels while
the other leaves are restricted to consonants.
Furthermore the division of the phonemes in
vowels and consonants is made explicit for the
learning algorithms. Their task is to restrict
the phonemes in each leaf to those phonemes
that are possible in the language described by
the learning examples. By doing this they con-
vert the general Cairns and Feinstein model to
a language-specific syllable model.

3.2 Hidden Markov Models

A Hidden Markov Model is a finite state au-
tomaton in which the state transitions and the
string productions are probabilistic. Three im-
portant algorithms are associated with HMMs
[Rab90; vA92]. The first one is the forward-
backward algorithm. This algorithm computes
the probability of a HMM production process
that resulted in a specific string. The sec-
ond important algorithm is the Viterbi algo-
rithm. Given an HMM and an output string,
it computes the sequence of the HMM produc-
tion states which is most likely to underlie the
output string. Finally there is the Baum-Welch
algorithm which is able to compute the statisti-
cal HMM parameters that are required to make
the HMM return high string scores for some col-
lection of strings. This algorithm is the learn-
ing algorithm for HMMs, and it works by itera-
tively adjusting the transition and output prob-
abilities in a way that makes the training cor-
pus more probable. It belongs to the class of
algorithms known as estimation maximization
[Rab90], which are regarded as cognitively im-
plausible because of the required iteration.

We train HMMs by presenting them a list of
valid Dutch monosyllabic words and applying



the Baum-Welch algorithm until the scores they
assign to the training words become stable. Here
we define a stable score as a score in some phase
of the training algorithm that do not differ more
than 1% from the same score in the previous
phase of the training algorithm.

When the HMM becomes stable we test it by
applying it to the test data. We define that test
strings that receive a score which is lower than
the minimal score for a training data item are
rejected by the HMM. We assume that all other
strings are accepted by the HMM. OQur HMMs
process character bigrams rather than charac-
ter unigrams. This means that they interpret
words as sequences of two characters such as
splash=sp-plla-as-sh. By working this way the
HMNMs are forced to take the context of a char-
acter in account.

In the experiments without initial knowledge,
the HMMs were initialized with random weights
and the production probabilities were set at
random values. The HMMSs contained seven
states and they were allowed to change ev-
ery weight and every production probability
during the training phase. They performed
well, for orthographic data the scores were
[99.10+0.38|82.19+3.27] and for phonetic data
[98.68+0.54|91.60+1.06]. The scores for the pos-
itive data were not significantly different from
the baseline scores but the negative data fig-
ures were significantly better than the baseline
scores.

The model of Cairns and Feinstein was in-
serted in the HMMs by disabling certain
state connections and production possibilities.
The remaining model parameters were ini-
tialized with random values.  The perfor-
mance of these HMMs did not change a lot:
[99.16+0.34|77.35+0.77] for orthographic data
and [98.93+0.52|92.88+0.27] for phonetic data.
The figures were not significantly different from
the previous figures. For orthographic data
the rejection figure was slightly lower, possi-
bly because the phonetic initialization model
did not fit very well for this representation
type. The HMMs with initial knowledge trained
faster: they needed on average 30.3£12.3 rounds
for orthographic data (was 93.3+36.3 rounds)
and 42.60+ 24.4 rounds for phonetic data (was
57.8424.0, this difference was not significant).

3.3 Inductive Logic Programming

Inductive Logic Programming (ILP) is a logic
programming approach to machine learning

([Mug92]). The term induction in the name is
a reasoning technique which can be seen as the
reverse of deduction. In ILP theory one makes
a distinction between three types of knowl-
edge namely background knowledge, observa-
tions and hypotheses ([Mug92]). Background
knowledge is that knowledge that a learner al-
ready has about the domain of the learning
problem. Observations are the input patterns
for the learning method with their classifica-
tions. The hypotheses contain the model of the
domain that ILP should build.

Our ILP models build words by adding prefix
characters and suffix characters to a nucleus.
They assume that every correct word can be
broken down to a correct nucleus by stripping
of prefix and suffix characters and they assume
that every intermediate word in this break-down
process is correct as well. The models are built
by deriving three type of hypotheses from train-
ing data:

Basic WorD HYPOTHESIS

A basic word hypothesis BWH (w; ...wp,,
s;) defines that the string w;...w, can
be produced in state s;.

SUFFIX HYPOTHESIS

A suffix hypothesis SH(w,,_1,wn,S;)
defines that when a string w;...w,_1
can be produced in a predecessor state
of state s; then the string w; ... wp_1wy,
can be produced in state s;.

PRrREFIX HYPOTHESIS

A prefix hypothesis PH(wy,w2,s;) de-
fines that when a string ws...w, can
be produced in a predecessor state of
state s; then the string wyws...w,, can
be produced in state s;.

For example, if both clan and clans are in the
training data then SH(s;,n,s) might be derived.
The state s; is a processing state which is sim-
ilar to an HMM state. The states are used to
constrain the models that use initial linguistic
knowledge.

In the experiments without initial knowledge the
number of states was limited to one. This state
was connected to itself and it could produce ev-
ery character. The performance of these ILP
models was almost the same as for the base-
line model: [99.33+0.33|55.71+0.90] for ortho-
graphic data and [99.07+0.43|74.80+0.16] for
phonetic data. The only difference with the
baseline figures lies in the rejection of negative
phonetic data: ILP performs worse than the
baseline method (76.83+0.49).



Initial knowledge was inserted to the models by
constraining the links between the states and
restricting the characters that could be pro-
duced in a state. The models contained nine
states: seven representing the Cairns and Fein-
stein model and two extra for producing strings
without vowels. States that correspond with
basic word hypotheses were allowed to produce
strings instead of characters. The performance
of the models improved compared with the pre-
vious experiments: [98.56+0.26|84.86+0.27] for
orthographic data and [99.03+0.48|91.9310.33]
for phonetic data. The acceptance score for or-
thographic data was worse than the baseline in
return the rejection score was better than the
baseline score. For the phonetic data there was
no difference for the acceptance score but the re-
jection score was better than the baseline score.
The two rejection scores also improved the non-
initialized rejection scores.

3.4 Simple Recurrent Networks

In 1990 Jeffrey Elman introduced Simple Recur-
rent Networks (SRNs) as an extension of stan-
dard backpropagation networks [EIm90]. The
basic version of such a network contains three
layers of cells: an input layer, an output layer
and a hidden layer. It is able to process time-
dependent patterns because of the extra back-
ward connections from the hidden layer to the
input layer.

In experiments described in [CSSM89],
[SSCMO1] and [Cle93], Axel Cleeremans, David
Servan-Schreiber and James McClelland trained
a network to recognize strings which were gen-
erated using a small grammar that was origi-
nally used by [Reb76]. They trained an SRN
to predict the next character in a sequence of
60,000 strings which were randomly generated
by the grammar. This prediction task is non-
deterministic, and the size of the network was
too small to memorize the complete sequence,
so some error was to be expected. The learning
was deemed successful when it could distinguish
which characters are valid successors. Cleere-
mans, Servan-Schreiber and McClelland tested
their network using both positive and negative
data and obtained effectively perfect results. We
replicated their results: SRNs learn the Reber
grammar perfectly.

In an earlier study we have applied SRNs to a
related data set of Dutch monosyllabic words
in orthographic representation [Tjo98]. The re-
sults were discouraging. The SRN without ini-
tial knowledge accepted all positive test data but

it was only able to reject 8.3% of the negative
data. Linguistic knowledge was added to the
experiments by supply data in order of increas-
ing phonotactic complexity. The resulting SRNs
did not perform better than the previous ones.
They accepted all positive test data but rejected
only 4.8% of the negative data (baseline scores
for this data set were: [99.2]60.2]). The experi-
ments with our main data set show similar fig-
ures: trained SRNs accept all positive test data
and a large part of the negative data.

The complexity of our data sets is larger than
the complexity of the data sets used by Cleere-
mans et.al. In the valid strings processed by
their networks, characters could only be fol-
lowed by two characters. In Dutch monosyllabic
words, this number is larger. We tested the per-
formance of SRNs on increasingly complex data
and discovered a relation between data complex-
ity and performance [Tjo95; Tjo98]. When char-
acters in valid strings can have two successors,
a trained SRN accepts all positive data and re-
jects all negative data [100.0/100.0]. However
the performance degrades for three successors
[100.0|92.2] and becomes even worse for four suc-
cessors [100.0/80.0]. Many characters in words
in Dutch phonotactic data can have more than
four successors. SRN seem to be unable to han-
dle such complex data and therefore we conclude
that SRNs are unfit for processing our data set.

4 Concluding remarks

The problem of phonotactics as it has been tack-
led here is basically the problem of sequencing.
The results show that both stochastic and sym-
bolic machine learning techniques which per-
form credibly, if not perfectly on this task. They
also indicate that further advancements in the
application of neural networks to sequencing are
needed, and this is indeed the subject of ongoing
work. The results further indicate that linguistic
knowledge is a useful starting point for learning
algorithms since this turns up in speed and ac-
curacy. Finally, results show that learning from
written symbols is more difficult (or less easy)
than learning from phonetic representation.

There are numerous natural extensions and re-
finements of the work presented here, not only
seeking improved performance in these tech-
niques, extending the study to other learning
techniques, but also refining the task so that it
more closely resembles the human task of lan-
guage learning. This would involve incorporat-
ing frequency information, noisy input, and cod-
ing input for phonetic properties, and naturally



orthographic data

without initial

knowledge

with initial knowledge

learning % accepted % rejected % accepted % rejected
algorithm positive data | negative data | positive data | negative data
HMM 99.10£0.38 82.19+3.27 99.16+0.34 77.35+0.77
ILP 99.33+0.33 55.71+£0.90 98.56+0.26 84.86+0.27
baseline 99.294+0.32 55.724+0.90

phonetic data without initial knowledge with initial knowledge

learning % accepted % rejected % accepted % rejected
algorithm positive data | negative data | positive data | negative data
HMM 98.68+0.54 91.60+1.06 98.93+0.52 92.88+0.27
ILP 99.07+0.43 74.80+0.16 99.03+0.48 91.93+0.33
baseline 99.00+0.46 76.83+0.49

Figure 2: A summary of the performance of the stochastic and the symbolic methods on learning the
phonotactic structure of Dutch monosyllabic words. HMMs perform better for phonetic data but
initial knowledge does not help them. ILP performs better for phonetic data and initial knowledge
aids its performance. In the knowledge-aided experiments both HMMs and ILP outperform the
baseline method with respect to negative data rejection. SRNs tend to accept nearly all positive

data and most of the negative data (see [Tjo95] and [Tjo98]).

extending the task to multisyllable words and to
related tasks in phonological learning.
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