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Abstract

We discuss experiments with neural networks being trained in a phonotactic processing
task. A recurrent network not only learns to predict the next letter given a partial processed
word, but also learns to represent the letters in a manner meaningful to the processing task.
To this end, we use Miikkulainen’s (1993) FGREP, augmented with an algorithm we call
dispersion, to improve distinctness among the set of letter representations.

Our goal is to create a more realistic model of how humans might process natural lan-
guage.

1 Related work

Cleeremans (1993) conducted an important series of experiments on sequence
learning with neural networks. His Simple Recurrent Networks (SRNSs) achieved
perfect learning applied to the Reeber grammar, a formal language which is stan-
dardly used in machine learning. Tjong Kim Sang (1998) compared statistical,
neural and symbolic approaches to computational models of language learning.
He also studied sequence processing, but chose Dutch monosyllables as domain.
Although he improved on Cleeremans’ setup in several respects, his SRNs failed
to learn Dutch phonotactics, and Tjong Kim Sang concluded that neural learning
paradigms were not yet sophisticated enough to compete with others in this do-
main. Stoianov, Nerbonne and Bouma (1997) reported better performance, how-
ever.

We apply a neural network to phonotactic processing in the same way as Tjong
Kim Sang (1998) and Stoianov et al. (1997) did. The network is presented with
(monosyllabic) words, one letter at a time, and the network has to learn to predict
the next letter. When training is completed, the network is tested, measuring how
well it performs its task processing true words, compared to processing random
strings.

Tjong Kim Sang (1998) and Stoianov et al. (1997) use local encodings, focus-
ing on performance from a machine learning perspective. We use FGREP encod-
ing, focusing on realistic modeling of language processing by humans.

2 FGREP

FGREP is short for Forming Globa Representations with Extended back-
Propagation (Miikkulainen and Dyer 1991, Miikkulainen 1993). It was introduced
as a means of communication withina modular system of neural networks, and has
been applied in several linguistic experiments.
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FGREP is about data representation. Usually, a ‘flat” neural network is trained
to process a data set with fixed representations. With FGREP, the representations
in the data set themselves are learned as well. This makes it possible to have
neural networks learn to communicate, having the networks develop their language
interface. The programmer doesn’t have to worry about what features have to be
coded into the data set. FGREP codes for the features needed by the networks.

FGREP uses a global lexicon.! Initially, items are stored with randomized
vector representations. Items are picked from this lexicon to serve both as input
and target vectors to feedforward networks. Standard backpropagation is used to
update the weights in the network, but it is extended back into the input vector, and
this vector is updated as well. The updated vector is stored back into the lexicon.

3 Data sets

Our data set consists of monosyllabic words from the CELEX Lexical Database.
Words were used in their normal spelling. As Tjong Kim Sang (1998) showed,
this representation does not change the problem greatly, and it eases presentation.
Words with one of the letters g, x, or y were removed (17 words). These three
letters are so rare in Dutch that they could focus the attention in the FGREP rep-
resentations too much, thereby blurring the details in the relations between the
common letters. Also removed were foreign/loan words such as bath, brunch and
fohn (232 words).

The remaining set of words was split randomly into a training set T of 3807
words, and a test set P of 424 words. In all experiments, the score distribution of
both sets remained nearly identical, indicating the test set is a good representation
of the training set.

Using frequency information from the CELEX Lexical Database, the training
set was sorted, placing most frequently used words at the top of the list. During
training, there was always a probability P that a word was selected from the top
P3 part of the list. Put in other words, when a word was selected for training, there
was a 50% chance that it would be picked from the 12.5% (= 0.5 x 0.5 x 0.5) of
words most frequent in the CELEX Database. For a set of 3807 words, this means
that the word at the top of the list is used in training about 700 times as often as
the word at the bottom of the list.

As “‘negative’ test data we created three sets. One set R consists of 800 random
strings. It might be easy, even for a non-recurrent network, to distinguish this set
from the training set, just because this random set contains ‘words’ with bigrams
thatare not in the training set. Therefore we created another set of ‘random words’,
in which all words were made up of bigrams that are present in the training data.
This set of 476 words was split into two sets. Set B1 consists of 175 mono-syllabic
words of which we thought they might exist in Dutch. Set BO consists of the
remaining 292 words.

1To avoid confusion, we will reservethe term lexicon for the collection of FGREP vectors.
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Figure 1: Layout of an FGREP network used in our experiments.

4 Network setup

Fig. 1 shows the layout of our network: we use FGREP in an Elman network
(Elman 1990) capable of sequence processing. Before training, the lexicon is ran-
domized with values close to the average output of the activation function (Eg. 1).
Weights are randomized near zero.

Before a new word is presented to the network, the hidden units are reset to
zero. Words are processed one letter at a time, using a copy of the hidden layer
as additional input. The network has to predict the next letter, or the end-of-word
symbol.

The activation function determines the output of a unit, given the sum of all
inputs multiplied with the respective weights. Several activation functions were
tested. The standard sigmoid did just fine (Eq. 1). An additional input unit, set to
1, served as a bias.

_ 1
T l4e"

f(z) (1)

Standard backpropagation (McClelland and Rumelhart 1988, Werbos 1995) was
used to calculate error values and weight updates, but error values were calculated
for the input layer as well. These error values, d;, were used to update the input
vector, using the update rule in Eq. 2 (» is the learning rate).

zi = f(f7" (%) + ndi) )

Using the inverse of the activation function f(), the network learns as if input
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Figure 2: Clustering of FGREP data. Several interesting clusters are found, shown here in
bold.

comes from a preceding layer with a local encoding. Because f() is a bitwise
1-to-1 mapping from the lexicon to the input, it is uniquely invertible.

5 First results

Several network sizes were tested, from 2 to 10 hidden units, and from 3 to 8 units
for the FGREP vectors. The remaining part of this paper will discuss network
setups with 6 hidden units, and an FGREP vector size of 7.

It was fairly easy to develop a ‘sensible’ set of vectors. Fig. 2 shows an exam-
ple of a dendrogram, created with nearest neighbor clustering, using the Euclidean
distance as a difference measure. (See Aldenderfer and Blashfield (1984) for an
accessible introduction into data clustering.) Sensible clusters appear in the den-
drogram, such as b-p, g-k, I-r, and one cluster of all but one vowel. Other clusters
one might expect, such as perhaps d-t, are missing.

To see how well the network distinguishes valid from invalid words, we need a
method to assign scores to words.

The method we use to assign a word score comes from Tjong Kim Sang and
Nerbonne (1999). The score of a letter ¢ in the context of prefix s is symbolized
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Recurrent FGREP |earning Dutch words (no dispersion)
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Figure 3: Poor network performance. A perfect network would show some word score level
at which nearly all valid strings were accepted, and nearly no invalid ones.

by ||e|s|| and calculated according to Eq. 3.

n

llels|]| =1 — %Z(targeti(s) — output;(s))? (3)

i=1 b
The score of aword ||w||,w = ¢1 .. . ¢, IS the product of the letter scores, Eq. 4.
Jlwll = T lleilen - ci-all 4)
We actually use a word score that is corrected using Eq. 5 and Eq. 6.
new word score = old word score * factor'*"&"" (5)

average score word length 4

(6)

To get some idea of network performance, a score distribution of training and test
sets were compared. Accepting strings as ‘valid words’ if they have a score of
1.3 or above, about 66% of the training set passes and 28% of the set of random
strings, leaving a large margin of error. This network does very badly indeed when
it comes to distinguishing valid from invalid words. Fig. 3 graphs performance at
various score-levels for the five sets of data.

factor =
actor average score word length 5
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Figure 4: Dispersion. 10 vectors drift from their initial positions (open circles) to their final
positions (filled diamonds). The vectors top and top-left have swapped places, but the other
vectors have retained their relative order.

6 Dispersion

FGREP forces items with similar rdles to have similar representations. When these
similarities are too close, it becomes hard for the network to distinguish between
them. To overcome this problem, we introduce an algorithm for dispersion. The
goal is to keep the vectors as different as possible, without destroying the order
that is created by the FGREP algorithm. The algorithm is simple:

1. select a random pointy in vector space
2. pick the vector x from the FGREP lexicon that is closest to y
3. shift x a tiny amount towards y, using Eq. 7

i =z + (Y — %) (7

A learning rate n = 0.00001, applying the algorithm 5 times per trained word,
does the trick. The algorithm is demonstrated for a set of 2D vectors in Fig. 4.
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Figure 5: Performance of a network trained with dispersion.
7 Results

Using dispersion, much improved performance was obtained, as can be seen in
Fig. 5. Setting the score threshold to 0.96, about 87% of the training data is ac-
cepted as valid, and only 13% of the set of random strings.? The score distribution
of the positive test data is nearly identical to the training data. Remarkable is the
lower performance for the set of ‘words that might exist’ (B1). The network seems
to have become sensitive to dependencies between letters which are separated by
one or more other letters. This is in accordance with the design of SRNs. It indi-
cates that the network has a stricter notion of a valid word. It may indicate that the
network is sensitive to actual, not just possible words — which seems eminently
plausible psychologically.

Nearest neighbor clustering of the FGREP lexicon created using dispersion
results, however, in no clear clusters (Fig. 6). Is all order lost?

A Kohonen map (Kohonen 1989) is a Self-Organizing Map (SOM) used to
order a set of high-dimensional vectors. It’s working is inspired by topological
neural maps in the brain. The map is trained to ‘respond’ with a single unit for a
particular input vector, and organize itself in a way such that similar input vectors
are mapped to units that are close to each other. So, a Kohonen map can be used

2We got better results by simply using the averaged square letter error: 86% of training data, 8% of
random strings.
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Figure 6: Clustering of FGREP data obtained using dispersion.
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Figure 7: A Kohonen map of FGREP data obtained using dispersion.
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to clarify relations in a complex set of data.

We created a Kohonen map, displayed in Fig. 7. Line darkness indicates in-
creasing difference- between neighboring units (Kleiweg 1998). A minimal span-
ning tree is included to clarify relationships. Close relationships between b-p, g-k
and I-r are still visible. Vowels are not randomly distributed between consonants.

Table 1 lists statistics for the network performance. Note that more than a
standard deviation separates the training data, test data, and “Dutch-like” bigram
combinations (T, P, B1) on the one hand from the invalid non-Dutch-like bigram
combinations and random strings (BO, R) on the other.

Table 2 lists the words from all data sets with the highest scores and the lowest
scores.® We believe that inspection of the “Dutch”-like column of random words
from valid bigrams (B1) confirms our decision to evaluate this set separately. It
is also the position of many linguists that the notion “possible word” is the cogni-
tively more significant one.

The network trained with dispersion was further tested to determine how well
it performed in completing words, given just the first letter. Results are shown in
Table 3 and Table 4.

8 Discussion

Our experiments were not aimed at developing a better algorithm for the machine-
learning of language. In any case, our results were not better than those obtained
by Tjong Kim Sang (1998) or Stoianov et al. (1997).

We intended to capture some aspects of how humans process language. Our
agenda is philosophical, not utilitarian. The focus is on whether FGREP is reliable
in determining appropriate data representations, and in understanding its strength
and weaknesses.

The artificial neural network used in our experiments was not trained to distin-
guish between valid and invalid word patterns. The networks was trained to predict
the next letter in partially processed words. Naturally, the trained network does a
poorer job when processing illegal word patterns. The distinctions the network
draws between valid and invalid word patterns is a by-product.

Likewise, people can distinguish between valid word patterns (either existing
words or non-words that might exist) and invalid word patterns. In this case too,
this ability is probably acquired as a by-product of another sub-function of the
human language processor, but perhaps, a very different one than in our network
experiments.

In language processing by adult humans, there is perhaps no such task as pre-
dicting the next letter. Adult readers don’t process words one letter at a time,
left to right. Human language processing is a problem of segmenting real-time
data, synchronizing different levels of abstraction, such as phonetics, morphology,
and syntax. In our network setup, there is only one level of processing, and in-
put/processing/output are already segmented and synchronized. In spite of these

3Using an aternative error function, such as mentioned in footnote 2, other types of words end up in
the top and bottom of thistable.
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| T | P | Bl | BO | R |
1.408 dracht |1.319 flanst | 1.243 dint | 1.195 laip 1.125 sdiip
1.399 gracht |1.313 spelt |1.231 pelk |1.142 kaid 1.120 fuit
1.398 kracht | 1.307 slecht | 1.227 vank |1.136 luld 1.120 iept
1.393 pracht |1.303 brand | 1.216 gied | 1.116 chigl 1.114 ljef
1.391 tracht 1.285 wacht | 1.165 wirt |1.110 ud 1.112 feet
1.391 bracht |1.255 geep |1.164 ijt 1102 taw 1.106 mojlp
1.388 klacht 1.245 krak | 1.163 kreef | 1.099 ded 1.099 ded
1.375 placht |1.241 vaat |1.153 ijd 1.096 orl 1.097 eft
1.375 hecht 1.241 zeep |1.153 ijp 1.095 teud 1.096 pe
1.374 specht |1.238 slaat | 1.151 ied 1.087 od 1.094 poet

0.781 sinds 0.843 rooms | 0.899 voo |0.618 gdto 0.517 vtmo
0.769 duts 0.841 soort | 0.897 bu 0.608 nsututs | 0.516 fmofmeu
0.767 corps 0.840 doods | 0.883 sijl 0.608 nti 0.515 uskmve
0.767 rams;j 0.827 toorts | 0.873 eups |0.599 mboogs | 0.515 tfibo
0.745 soos 0.819 sol 0.870 afs 0.598 bsemsm | 0.507 pfjpibs
0.744 schmink | 0.819 saus | 0.866 pijs 0.589 trfiks 0.485 vcbfct
0.742 psalm 0.800 koorts | 0.853 wuibs | 0.589 wtoos |0.482 jtifdu
0.722 soeks 0.792 puts |0.851 kods |0.579 Ikijgsj |0.476 hfmso
0.702 soms 0.788 smots | 0.848 seu 0.574 lisimu | 0.473 fupgmmr
0.639 scouts | 0.746 sjeiks | 0.781 sij 0.552 bosso 0.452  fbfnmi

Table 2: Highest and lowest scores for all data sets.

differences, human language processing certainly involves dynamic sequence pro-
cessing at some levels, and it certainly results in an ability to distinguish ill-formed
from well-formed sequences.

There are also other reasons to use FGREP models in experiments.

The human language processor is not a collection of independent networks, but
an integrated collection of networks that has learned to cooperate. This coopera-
tion is not limited to processing data collectively, the data itself is modeled when
used for internal communication between sub-networks. The data representation
must be structured in a manner that facilitates its processing, and relations between
data must be represented by similarities within the data.

For network experiments this means the following: the input and output vec-
tors processed by the network weren’t fixed orthogonal vectors, but random vectors
that change during the learning task to represent items with similar rdles by similar
vectors. In Dutch, the letters | and r perform similar functions within word pat-
terns, so we expect the vector representations developed during FGREP training to
become similar. The main question for these experiments was: will a set of vectors
develop that is ordered in a manner that is intuitively acceptable? We saw it did.

FGREP is intended as a means of communication between networks, as used
by Miikkulainen (1993). Using it in an isolated network, as we did, may be unnec-
essary. Language processing also involves feedback between levels of processing,
which is modeled in work by McClelland and Rumelhart (1981) and Rumelhart
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ane* ip raep*
baep* jaf stin
ch* keep tanp*
deep laep* ue*
ee man vanl*
felp nanp* wee
geep one* ijke*
hee penp* zae*

Table 3: Words generated from a single initial letter, copying output to input (invalid pat-
terns marked*).

an ip ranv*
banv* jaan stan
chl* keep tanv*
de lanv* uep*
eep manv* vanv*
fe* naan weel
gelv* on ijk
hel pel zan

Table 4: Words generated from a single initial letter, output replaced by nearest match from
lexicon before input (invalid patterns marked*).

and McClelland (1982), but absent in our setup. This said, what can we conclude
about the poor prediction results of our network, not using dispersion?

In Miikkulainen and Dyer (1991) and Miikkulainen (1993), either network in-
put or output, or both, are static. In our network, both input and output are tem-
poral.* In basic backpropagation, learning is a task of optimization. In an Elman
network, learning suffers from the moving target problem: network weights are
adjusted by a learning rule that does not take into account that the input from the
context units is faulty. FGREP adds to this problem that &l input s initially faulty.
Despite these inadequacies, in Miikkulainen’s experiments, the learning algorithm
eventually accomplishes its task. We assume that FGREP with both temporal input
and temporal output is too unstable, if used alone.

FGREP is not an optimizing algorithm, such as basic backpropagation. The
learning rule adjusts weights and vectors to the task as it is presenting itself at that
moment. However, as a result of learning, the overall task changes, possibly in a
direction that has a worse possible global solution.

FGREP strives for similar vector representations of items that serve similar

4By ‘static’ we mean that a sequence of symbols is concatenated to a single pattern, and processed
without reference to the sequence. By ‘temporal’ we mean that a sequenceis processed one symbol at
atime.
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rdles, but only in short term processing. In a temporal to temporal EIman network
distinctions with long term effects will get lost.

Adding dispersion overcomes this shortcoming of FGREP. Preliminary exper-
iments indicate that FGREP + dispersion performs better than an Elman network
with randomized, fixed input/output vectors.

We find it useful to evaluate using the more rigorous standards of machine
learning in order to investigate neural networks more precisely. Note that we would
not have been able to appreciate the effect of dispersion without this rigor.

Other improvements of FGREP might be possible. FGREP adjusts vectors
through the input layer only. Target learning could be implemented, using Eq. 7
(page 6), with output vector y and target vector x. Another improvement may be a
more direct feedback between FGREP modules.

9 WWW resources

Data sets and results are available at:
http://www.let.rug-nl/"kleiweg/papers/afiip/

The CELEX Lexical Database is at:
http://www_kun_nl/celex/

Clustering was done with software available at:
http://www.let_rug.nl/"kleiweg/clustering/

The Kohonen map was created with software available at:
http://www. let_rug.nl/"kleiweg/kohonen/
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