Learning the Logic of Simple Phonotactics

Erik F. Tjong Kim Sang! and John Nerbonne?

! CNTS - Language Technology Group, University of Antwerp, Belgium
erikt@Quia.ua.ac.be,
WWW: http://lcg-www.uia.ac.be/"erikt/
2 Alfa-informatica, BCN, University of Groningen, The Netherlands
nerbonne@let.rug.nl
WWW: http://www.let.rug.nl/ nerbonne

Abstract. We report on experiments which demonstrate that by abduc-
tive inference it is possible to learn enough simple phonotactics to distin-
guish words from non-words for a simplified set of Dutch, the monosylla-
bles. The monosyllables are distinguished in input so that segmentation
is not problematic. Frequency information is withheld as is negative da-
ta. The methods are all tested using ten-fold cross-validation as well as a
fixed number of randomly generated strings. Orthographic and phonet-
ic representations are compared. This paper is part of a larger project
comparing different machine learning techniques on linguistic data.

1 Introduction

This paper describes an application of abduction to recognising the structure
of monosyllabic words. It is part of a larger project comparing various learning
methods on language-learning tasks. The learning methods compared in the larg-
er project are taken from three paradigms: stochastic learning (Hidden Markov
Models), connectionist learning (simple recurrent nets using back propagation),
and symbolic learning (abductive inference) In each case we use the methods
to build an acceptor for the monosyllables from positive data only, and we test
it on held-back test data as well as randomly generated (negative data). We
systematically compare results based on orthographic and phonetically encoded
data. The data comes from Dutch but the results are similar for other related
languages (in current experiments).

The study focuses on three questions. First, we ask whether by abductive
inference it is possible to learn the structure of monosyllabic words. Second,
we seek to learn the influence of data representation on the performance of
the learning algorithm and the models it produces. Third, we would like to see
whether the learning process is able to create better models when it is equipped
with basic initial knowledge, so-called innate knowledge.

The phonotactic models that will be produced can be used for suggesting
non-dictionary correction alternatives for words generated by Optical Charac-
ter Recognition (OCR) software. This study on phonotactics is also important

° This paper is a revised compilation of part of the work described in [Tjong Kim
Sang, 1998] and [Tjong Kim Sang and Nerbonne, 1999].

for the Groningen research group because it is our first application of machine
learning techniques to natural language processing. The problem chosen is de-
liberately simple in order to make possible a good understanding of the machine
learning techniques. The results of this study will be the basis of future research
in even more challenging applications of machine learning to natural language
processing.

2 Theoretical background

2.1 Problem description

Why is ‘pand’ a possible English word and why not ‘padn’? Why is ‘mloda’
a possible Polish word but not a possible Dutch word? For answers to these
questions one has to know the syllable structures which are allowed in English,
Polish and Dutch. Native speakers of English can tell you that ‘pand’ is a possible
English word and that ‘padn’ is not. For this judgement they do not need to
have seen the two words before. They use their knowledge of the structure of
English words to make his decision. How did they get this knowledge?

Which words are used depends on the PHONOTACTIC structure of the language—
which sequences basic sound elements may occur in. Certain languages, such as
Polish, allow ml onsets of words but others, such as English and Dutch, do not.
Phonotactics are directly reflected in the phonetic transcriptions of words, and
indirectly in the ORTHOGRAPHY, i.e., the writing system. Different languages
usually have different orthographies.

Some aspects of phonotactics, such as preference for consonant vowel se-
quences, are shared by almost all languages, but phonotactic structure varies
from one language to another. No universal phonotactics exists. Two possibil-
ities exist for entering language-dependent phonotactics into a computer pro-
gram. The first is to examine (by eye or ear) the language and create a list
of rules reflecting phonotactic structure. This is labour-intensive and repetitive
when many languages are involved. The second possibility is to have the ma-
chine learn the phonotactics by providing it with language data. People manage
to learn phonotactic rules which restrict phoneme sequences so it might be pos-
sible to construct an algorithm that can do the same. If we are able to develop a
model capable of learning phonotactics, we can use it to acquire the phonotactic
structure of many languages.

Both artificial intelligence and psychology offer a wide variety of learning
methods: rote learning, induction, learning by making analogies, explanation
based learning, statistical learning, genetic learning and connectionist learning.
We are not committed to one of these learning methods but we are interested
in finding the one that performs best on the problem we are trying to tackle:
acquiring phonotactic structure. For the experiments in the project reported on
here we have chosen methods from three machine learning paradigms, Hidden
Markov Models (from stochastic learning), abductive inference (from symbol-
ic learning), and simple recurrent networks (from connectionist learning). This
paper focuses on abductive inference.

The problem of distinguishing words from nonwords is not particularly dif-
ficult, as linguistic problems range. One perspective on the complexity of the
task is given by comparison to an appropriate baseline. The simplest learning
algorithm we could think of accepted all and only strings that consist of charac-
ter pairs (bigrams) which appear in the training data. This algorithm accepted
99.3+0.3% of the positive orthographic data and rejected 55.7+0.9% of the neg-
ative orthographic data. For the phonetic data (see below) these scores were
99.0+0.5% and 76.84+0.5% respectively — indicating an easier task. This base-
line algorithm was good in accepting positive data but performed less well in
rejecting negative data.

2.2 Data representation

The importance of knowledge representation is widely acknowledged. The repre-
sentation of input to a problem solving process can make the difference between
the process finding a good result or finding no result. The input for our learning
methods can be represented in two ways. The first one is orthographic: words are
represented by the way they are written down, for example: “the sun is shining”.
The second way of representing the words is phonetic. If we use the phonetic
representation then the sentence ”the sun is shining” will be represented as [do
san 1z Jaynm]. The second representation uses the International Phonetic Al-
phabet (IPA), which enjoys general acceptance among scholars of phonotatics
[Ladefoged, 1993].

We do not know which (if either) of the two representations will enable the
learning process to generate the best word models. Acceptance decisions of words
by humans may be based on the way the words are written, but they may also
be based on the pronounceability of the words. We are interested in finding out
which representation is most suitable for the learning methods. Therefore we per-
form two sets of experiments: one with data in the orthographic representation
and one with the same data in the phonetic representation.

We work with Dutch and since Dutch orthography is fairly transparent, it
turned out that there is less need to distinguish the two problems in Dutch.
The similarity of the orthographic and phonetic problems is also reflected in the
similar baseline performances. A more detailed phonetic representation, in which
common features are directly reflected, might still yield significantly different
results.

Our learning algorithms process character bigrams rather than character uni-
grams. This means that they interpret words as sequences of two characters such
as splash=sp-pl-la-as-sh. By working this way the algorithms are forced to take
the context of a character into account when they consider extensions. Without
this context they would make embarrassing errors.

2.3 Innate knowledge

A recurrent issue in modeling language acquisition is the amount of innate knowl-
edge available or required. Linguists have emphasised that important aspects of

language learning require some innate knowledge [Pinker, 1994]. Debates in the
language acquisition literature have led to a general acceptance of the assump-
tion that children use innate linguistic constraints when they acquire their native
language. [Finch, 1993] describes approaches to language acquisition which as-
sume no innate knowledge. We are interested in what artificial language learning
systems can gain from equipping them with initial linguistic constraints. There-
fore we will perform two versions of our experiments: one version without specific
linguistic constraints and another in which the learning algorithm starts from
general phonotactic knowledge. In the case of other methods we have studied in
the larger project (notably connectionist methods), this required some creativity,
but we believe that reasonable operationalizations were found.

2.4 Positive and negative data

A further perennial question is whether negative information needs to be used—
e.g., the information that ‘mlod’ is NOT a Dutch monosyllable. Early research in
computational learning theory showed the need for negative learning if grammars
are to characterise perfectly [Gold, 1967], but we will be satisfied with good
performance on the task of distinguishing words and nonwords. Research in child
language acquisition has had difficulties with finding negative language input
from parents in conversations with young children, and has noted that children
attend to it poorly. This presents a problem to us: according to computational
learning theory children need negative information for learning (perfectly), while
children do not seem to receive this information even though they manage to
learn natural languages.

We will approach the acquisition of models for monosyllabic words from the
research perspective of child language acquisition. We will supply our learning
methods with positive information only. In some learning experiments it might
be theoretically necessary that negative examples are supplied in order to obtain
a good result. We will assume that in those learning experiments the negative
information is supplied implicitly. One source of implicit information is innate
knowledge. Another is the application of the closed world assumption which
states that non-present information is false (but this would not meet Gold’s
objections).

3 Experiment setup

3.1 Evaluating syllable models

We vary experiments by using two initialisation types and two data represen-
tation types. In order to be able to compare the results of the experiments
(especially within the larger project), we perform all experiments with the same
training and test data and use only one linguistic model for all linguistic initial-
isation. We use ten-fold cross-validation which means that we randomly divide
our positive data in ten parts and use nine parts for training and one part for

testing. Each part is used as testing part once. The results presented here are
the average performances over the ten test sets.

A further question is how to evaluate the monosyllabic word models. After a
learning phase the word models are tested with two sets of data. One set contains
unseen positive language data, that is words which occur in the language but
have not been present in the training data. The other data set will contain neg-
ative data: strings which do not occur as words in the language. The algorithm
can make two errors. Firstly, it can classify positive test data as incorrect (false
negatives). Secondly, it can classify negative test data as correct (false positives).
Our goal will be to find a model which makes as few errors as possible.

3.2 The training and test data

The learning algorithms receive training data as input and use this set for build-
ing models of the structure of Dutch monosyllabic words. The models are able
to evaluate arbitrary strings. They can either accept a string as a possible mono-
syllabic Dutch word or reject it. A good phonotactic model will accept almost
all strings of the positive test data and reject almost all strings of the negative
test data.

The data sets were derived from the CELEX cd-rom [Baayen et.al., 1993].
From the Dutch Phonology Wordforms directory (DPW) we have extracted 6218
monosyllabic word representation pairs. The first element of each pair was the
orthographic representation of the word (field Head) and the second the pho-
netic representation of the word (field PhonolCPA). All characters in the ortho-
graphic representation of words were changed to lower case. The list contained
6190 unique orthographic strings and 5695 unique phonetic strings. We used the
character frequencies of the two data sets for generating two sets of 1000 unique
random strings which do not appear in the related data set. We use these lists
of random strings as negative data in the main experiments.

3.3 The linguistic initialisation model

We perform two versions of the learning experiments: one without initial knowl-
edge and one which is equipped with some linguistic constraints. As an initiali-
sation model we have chosen the syllable model which is presented in [Gilbers,
1992] (see Figure 1). This model is a mixture of the syllable models by [Cairn-
s and Feinstein, 1982] and [Van Zonneveld, 1988]. Hence it will be called the
Cairns and Feinstein model.

The Cairns and Feinstein model is a hierarchical syllable model consisting
of a tree which contains seven leaves. Each leaf can either be empty or con-
tain one phoneme. The leaves are restricted to a class of phonemes: the peak
can only contain vowels and the other leaves may only contain consonants. The
exact phonemes that are allowed in a leaf are language-dependent. In the sylla-
ble model there are vertical lines between nodes and daughter nodes which are
main constituents. A slanted line between two nodes indicates that the daughter

syllable

onset rhyme

M o ”“C'M

premargin - margincore satellite peak satellite coda appendix
Fig. 1. The syllable model of Cairns and Feinstein

node is dependent on the sister node that is a main constituent. A dependen-
t constituent can only be filled if this main constituent is filled. For example,
the margin satellite can only contain a phoneme if the margin core contains a
phoneme.

This syllable model can be used to explain consonant deletion in child lan-
guage. For example, the Dutch word stop fits in the model as s:pre-margin,
t:margin-core, o:peak and p:coda (the ¢ cannot occur in the margin satellite in
Dutch). The model predicts that a child that has difficulty producing consonant
clusters will delete the dependent part in the onset cluster and produce top.
Another example is the word gram which fits in the model as g:margin-core,
rmargin satellite, a:peak and m:coda (the g cannot occur in the pre-margin in
Dutch). In this case the model will predict that the child will produce gam. Both
predictions are correct.

In our experiments with initial knowledge we will supply the learning algo-
rithms with the syllable structure presented in Figure 1. Two extra constraints
will be provided to the algorithms: the peak can only contain vowels while the
other leaves are restricted to consonants. Finally the division of the phonemes in
vowels and consonants will be made explicit for the learning algorithms. Their
task will be to restrict the phonemes in each leaf to those phonemes that are pos-
sible in the language described by the learning examples. By doing this they will
convert the general Cairns and Feinstein model to a language-specific syllable
model.

4 Abductive Reasoning

4.1 Introduction

We use a version of abductive inference which is related to Inductive Logic
Programming (ILP). This is a logic programming approach to machine learning
[Muggleton, 1992]. The term induction denotes a reasoning technique which can
be seen as the inverse of deduction. In ILP, one makes a distinction between
three types of knowledge namely background knowledge, observations and the
hypothesis [Muggleton, 1992]. Background knowledge is the knowledge that a
learner already has about the domain of the learning problem. Observations
are the input patterns for the learning method with their classifications. The
hypothesis contains the model of the domain that ILP should build. The relation
between these three knowledge types can be described with two rules:

DRBAHFO
IR BAO+— H

These rules contain three symbols: A stands for ”and”, F stands for ”leads
deductively to” and — stands for ”leads inductively to”. DR represents the
deductive rule which states that the observations (O) are derivable from the
background knowledge (B) and the hypothesis (H) [Muggleton, 1992]. The in-
ductive rule IR represents the inductive step that we want to make: derive a
hypothesis from the background knowledge and the observations.

In ILP, the hypothesis that is derived consists of rules which contain variables.
We will specify the rule formats in advance and restrict the derivation to variable-
free instances of these rules. Hence we perform abduction rather than induction.
We will regard word production as a process of adding prefix and suffix characters
to words!. The possibility of adding a prefix (suffix) character to a word will
depend on the first (last) character of the word. Our models will consist of
prefix clauses PC(A,B) and suffix clauses SC(A,B) which state in which context
certain characters can be added and of basic word clauses BWC(A) which state
which basic words are correct?.

These clauses are made more concrete in the following three rules:

SUFFIX RULE

Suppose there exists a suffix clause SC(P,F) and a word W such that F
is the final character of W and P is the penultimate character of W and
word W less F (W - F) is W without its final character F.

In that case the fact that W is a valid word will imply that W - F is a
valid word and vice versa.

PREFIX RULE

Suppose there exists a prefix clause PC(I,S) and a word W such that I is
the initial character of W and S is the second character of W and word
W - Tis W less its initial character I (W - I).

In that case the fact that W is a valid word implies that W - I is a valid
word and vice versa.

Basic WORD RULE
The existence of a basic word clause BWC(W) implies that word W is
a valid word and vice versa.

The suffix and the prefix rules can be written in Prolog as

bwc (WminF) : -bwc (W) ,sc(P,F) ,append (R, [P,F],W) ,append (R, [P],WminF).
bwc (W) : -bwc (WminF) ,sc(P,F) ,append (R, [P,F],W) ,append (R, [P],WminF).
bwe ([S|R]) : -bwc([I,S[R]) ,pc(I,S).
bwe ([I,S|R]) :-bwec([I[R]),pc(I,S).

where bwc (W), pc(I,S) and sc(P,F) are the three clauses that can be derived
by the abduction process. The words are represented as lists of characters. Two

! See [Kazakov and Manandhar, 1998] for a related approach to word segmentation.
2 The three clauses can be proven to be equivalent to regular grammars.

standard Prolog functions are used to put characters in front of a list and behind
a list.

Another important issue that we should take a look at is deciding how we are
going to generate monosyllabic word models in practice. We will use a deriva-
tion scheme which is based on the three clauses used in our word models. The
derivation scheme consists of three rules: one for prefix clauses, one for suffix
clauses and one for basic word clauses:

BASIC WORD CLAUSE INFERENCE RULE
If word W is a valid word then we will derive the basic word clause
BWC(W). All observed words are valid words.

PREFIX CLAUSE INFERENCE RULE

If W with initial character I and second character S is a valid word and
W - I, which is W less its initial character I, is a valid word as well then
we will derive the prefix clause PC(I,S).

SUFFIX CLAUSE INFERENCE RULE

If W with final character F and penultimate character P is a valid word
and W - F, which is W less its final character F, is a valid word as well
then we will derive the suffix clause SC(P,F).

An example: suppose we are looking for a model describing the three words
clan, clans and lans. We can use the basic word clause inference rule for de-
riving three basic word clauses for our model: BWC(clan), BWC(clans) and
BWC(lans). The first two in combination with the suffix clause inference rule
enable us to derive suffix clause SC(n,s). The prefix clause PC(c,l) can be de-
rived by using BWC(clans) and BWC(lans) in combination with the prefix clause
rule. This new prefix clause can be used in combination with BWC(clan) and
the prefix clause rule to derive BWC(lan). This new basic word clause makes
the other basic word clauses superfluous. Our final model consists of the clauses
BWC(lan), PC(c,l) and SC(n,s).

4.2 Algorithm

The abductive clause inference algorithm will process the data in the following
way:

1. Convert all observations to basic word clauses.

2. Make a pass through all basic words and process one at a time. We will use
the symbol W for the word being processed and assume that W has initial
character I, second character S, penultimate character P and final character
F. We will perform the following actions:

(a) If W without I (W - I)is a valid word as well then derive the prefix clause
PC(I,S) and remove the basic word clause for W.

(b) If W without F (W - F) is a valid word as well then derive the suffix
clause SC(P,F) and remove the basic word clause for W.

(c) If the prefix clause PC(LS) exists then derive the basic word clause
BWC(W - I) and remove the basic word clause for W.
(d) If the suffix clause SC(P,F) exists then derive the basic word clause
BWC(W - F) and remove the basic word clause for W.
3. Repeat step 2 until no new clauses can be derived.

Steps 1, 2(a) and 2(b) are straightforward applications of the inference rules
for basic words, prefix clauses and suffix clauses which were defined in section
4.1. The steps 2(c) and 2(d) are less intuitive applications of the basic word
clause inference rule in combination with the rules noted above. In the suffix
rule we have defined that W - F will be a valid word whenever W is a valid word
and a suffix clause SC(P,F) exists. This is exactly the case handled by step 2(d)
and because of the fact that W - F is a valid word we may derive BWC(W - F)
by using the basic word clause inference rule. Step 2(c) can be explained in a
similar way.

The steps 2(c) and 2(d) will be used to make the basic words as short as
possible. This is necessary to enable the algorithm to derive all possible prefix
and suffix clauses. Consider for example the following intermediate configuration
clauses set:

BWC(yz)
BWC(yx)
SC(y,2)

By applying step 2(d) we can use SC(y,z) and BWC(yz) to add the basic
word clause BWC(y) and remove BWC(yz). On its turn this new basic word
clause in combination with BWC(yx) can be used for deriving the suffix clause
SC(y,x). In this example shortening a basic word has helped to derive an extra
suffix clause. The abductive clause inference algorithm will repeat step 2 until
no more new clauses can be derived.

4.3 Experiments

In this section we will describe our abduction experiments. The experiments
were performed on the data described above. We have constructed an algorithm
that performed several passes over the data while deriving prefix clauses, suffix
clauses and basic word clauses while removing redundant basic word clauses
whenever possible.

Experiments without linguistic constraints We used abductive inference to
derive a rule-based model for the orthographic training data. The tree rules were
used for generating clauses from the training words, the observations, without
using any background knowledge. We used a ten-fold cross-validation set-up
which means that we ramdomly divided the training data in ten parts and used
each of them as positive test data while using the other nine as training data.
The same negative data set was used in all ten experiments.

10

number of clauses % accepted | % rejected
data type method |basic word| prefix| suffix| positive data| negative data
orthographic|abduction| 27+0 [377+2|377+2| 99.3£0.3 55.7+0.9

orthographic| baseline 99.3£0.3 55.7+0.9
phonetic [abduction| 41+0 [57742[57742] 99.140.4 74.840.2
phonetic baseline 99.0+0.5 76.8+0.5

Fig. 2. Average performance and size of the models generated by abductive inference
without using background knowledge. The algorithm converts the training strings into
models that on average contain 800 orthographic rules and 1200 phonetic rules. The
models perform well on the positive test data (more than 99% were accepted) but poorly
on negative data (rejection rates of 56% and 75%)—roughly the baseline recognition
rate for bigrams.

The performance of the model was similar to the baseline performance (see
Figure 2). For orthographic data it performed well in accepting positive data
(99.3%) but bad in rejecting negative data (55.7%). The false negatives included
loan words like bye, fjord, hadzj and kreml and short words containing an apos-
trophe like ’m and ¢’s. The false positives contained reasonable strings like eep
but also peculiar ones like bsklt and zwsjn.

We discovered that the learning algorithm had difficulty dealing with single
characters that appeared in the training data. These characters were identified
as basic words. Because of this most strings could be analysed with a basic word
clause combined with either only prefix clauses or suffix clauses. For example,
man can be accepted with with the clauses PC(m,a), PC(a,n) and BWC(n).

Because of the absence of single characters in the phonetic data, it is more
difficult to find out what the origin was of the problems of the models for phonec-
tic data. However, the result was the same as for the orthographic models: after
training almost all symbols were identified as basic words. Again many strings
could be accepted by the models in an incorrect way. The acceptance rate for
the positive data was high (99.1%) but the reject rate for negative strings was
not so good (74.8%). Neither for orthographic data nor for phonetic data did we
manage to improve the baseline performance (see table 2).

Adding extra linguistic constraints As noted above, we look to the phonetic
model by [Cairns and Feinstein, 1982] for suggestions about possibly innate
linguistic constraints, and we will use this model in our experiments as well.
One problem we have to solve is the conversion of the Cairns and Feinstein
model to the clause structure. For this purpose we will make use of a model
developed in our stochastic experiments [Tjong Kim Sang, 1998]. This model
is derived from Figure 1 of Section 3.3. It consists of a set of linked states and
the production capabilities of each state have been limited to a subset of all
characters. We will use this model for deriving some extra learning constraints.

The automaton in Figure 3 contains two separate parts with nine states
in total. Each of the states s; to s; corresponds with one of the seven leaves

11

Fig. 3. An initial model for orthographic data, derived from the Cairns and Feinstein
model. States produce characters and arcs denote possible transitions. The model has
been divided in three parts: a part P in which the prefix rules operate, a part B
generated by the basic word clauses and a part S in which the suffix clauses work.
Constraints within each part of the model will be converted to constraints on the
format of the clauses.

of the three in Figure 1 (the left-to-right order is the same). States sg and sg
are duplicates of s which will be used for generating non-vowel strings. States
produce characters and arcs denote the possibility of moving from one state to
another. Arcs without a start state mark initial states and arcs without an end
state mark final states.

We want to divide the model in three parts: one part in which only prefix
clauses operate, one part in which only suffix clauses work and one part that is
generated by basic word clauses. This division is shown in Figure 3: part P is
the part for the prefix clauses, part B is for the basic word clauses and part S
is for the suffix clauses. Each character production by states in the parts P and
S corresponds to a set of prefix or suffix clauses. The states s; and sg have been
put in the basic word clause part because sg is able to produce vowels and we
want to produce all vowels in the basic word clauses. This extension is necessary
to allow the model to cover loan words like creme and shares.

The model of Figure 3 is equivalent to the initial Hidden Markov Model
used in our stochastic experiments with linguistic constraints [Tjong Kim Sang,
1998]. However, for learning purposes there are differences between the two.
Each character produced by a state in the P and the S parts can be modeled
with a prefix or a suffix clause. But we cannot produce every single character
in the B part with a separate basic word clause because basic word clauses
contain character sequences and, analogous with abduction models, we will not
combine basic word clauses in the model. Instead of making each basic word
state produce only one character, we will make them behave as a group of states
and allow them to produce character sequences. This may cause problems when
there are internal parts which repeat themselves an arbitrary number of times.

12

The behaviour invoked by the self-links from the states s4, s¢ and sg cannot
be modeled with the basic word clauses. The learning process will not generate
models with extendible basic word clauses and this means that the generalisation
capabilities of the resulting rule models will be weaker than those of the HMMs
developed in Tjong Kim Sang’s thesis [Tjong Kim Sang, 1998].

Now that we have changed the Cairns and Feinstein initialisation model to
the structure that we are using in this section, we can attempt to derive usable
constraints from this model. The Cairns and Feinstein model imposes constraints
on the characters that can be generated by a particular state. We have defined
the following constraints for our orthographic data: the vowels a, e, i, 0, v and the
quote character ’ can only be generated by the states s4 and sg, the ambiguous
vowel /consonant y can be generated by any state and all other characters are
consonants which can be generated by any state except s4. The new states sg
and sg are consonant states: they can generate any character except the six
characters a, e, i, 0o, u and ’ (we regard the quote character here as a vowel).

When we inspect the model with these character production constraints in
mind we can make two interesting observations. First of all, the prefix clause
states cannot produce the characters a, e, i, 0, u and ’. We will call these charac-
ters PURE VOWELS. Since the characters produced by these states are put before
a word by a prefix clauses, this means that prefix clauses cannot add a pure
vowel prefix to a word. Second, the suffix clause state cannot produce a pure
vowel. A character produced by this state is a character appended to a word by
a suffix clause. This means that suffix clauses cannot append a pure vowel to a
word. We can summarise these two observations in the following two rules:

PREFIX CLAUSE CONSTRAINT
In a prefix clause PC(I,S) the character I that is prepended to a word
cannot be a pure vowel.

SUFFIX CLAUSE CONSTRAINT
In a suffix clause SC(P,F) the character F that is appended to a word
cannot be a pure vowel.

It is not possible to derive a similar constraint for the basic word clauses
because these can contain both vowels and consonants. The derivation presented
here applies only to orthographic data. In a similar fashion one can encode
alternative initial phonetic models, including similar constraints for prefix and
suffix clauses®. Qur phonetic data contains 18 vowels.

We repeated the experiments for deriving rule-based models for our ortho-
graphic and our phonetic data by using the prefix and the suffix clause con-
straints presented in this section. Apart from these extra constraints the exper-
iment setup was the same as described in the previous section. The resulting
models were evaluated in the same way as in the previous experiments. The
results of these tests can be found in Figure 4.

3 An additional constraint can be derived for phonetic data: the basic word clauses
cannot consist of a mixture of vowels and consonants. We did not use this constraint
because we expected it would cause practical problems in the learning phase.

number of clauses % accepted | % rejected

data type | method |basic word| prefix| suffix| positive data| negative data
orthographic|abduction| 197+4 |376+3|194+1| 98.6+0.3 84.94+0.3
phonetic |abduction| 38+1 |674+4|456+2| 99.040.5 91.940.3

Fig. 4. The models generated by abductive inference and their performance after train-
ing with the extra prefix and suffix clause constraints. They perform well in accepting
valid test data (maximally 1.4% error) and reasonable in rejecting negative data (error
rates of 8% and 15%). These models eliminate about two-thirds of the baseline error
rates for negative data.

The added constraints during learning make the abduction process generate
better models. The orthographic model performs worse in accepting positive data
(98.6% versus 99.3%) but remarkedly better in rejecting negative data (84.9%
versus 55.7%). The phonetic model performs about equally well in accepting
positive data (99.1% versus 99.0%) and much better in rejecting negative data
(91.9% versus 74.8%).

4.4 Abductive Reasoning in Language Learning

In this paper we have described experiments considering building models for
monosyllabic words with abductive inference. We have designed an abduction
process which is capable of handling orthographic and phonetic data. We per-
formed two variants of the learning experiments: one that started without back-
ground knowledge and one that was supplied with constraints which were ex-
tracted from the syllable model by Cairns and Feinstein [Cairns and Feinstein,
1982]. The process without background knwoledge produced models which per-
formed well for recognising positive data but they performed poorly in rejecting
negative data (see Figure 2). The linguistically initialised process generated mod-
els that performed well in both cases (see Figure 4).

From the results of the experiments described in this section we may conclude
that abductive inference is a good learning method for building mono-syllabic
orthographic and phonetic models. Abduction in combination with linguistic
constraints generates models that perform much better than the models that
were generated without background knowledge.

It is natural to note that abductive inference not only performs reasonably
well on this learning task, but that it also produces models which are subject to
direct examination and analysis by area specialists, in this case phonologists.

5 Conclusions and Future Directions

The problem of phonotactics as it has been tackled here is basically the problem
of sequencing. The results show that abductive inference perform credibly, if
not perfectly on this task. [Tjong Kim Sang, 1998] and [Tjong Kim Sang and

14

Nerbonne, 1999] compare this work to learning by stochastic automata (Hidden
Markov Models) and biologically and cognitively inspired Neural Networks (so-
called “Simple Recurrent Networks”). These results indicate that rule abduction
performs about as well on the sequence learning task as the popular HMM’s
and also that further advancements in the application of neural networks to
sequencing are needed®.

The results further indicate that using linguistic constraints helps the learn-
ing algorithms since this results in improvements in speed and accuracy. Abduc-
tive inference is particularly well-suited to accommodating background knowl-
edge which linguists have developed, typically in the form of rule systems.

Finally, results show that learning from written symbols is only slightly more
difficult than learning from phonetic representation, but this may have to do
with the fairly phonic Dutch orthography.

The models derived in this paper satisfy four of the five properties Mark
Ellison outlined in his thesis [Ellison, 1992]. They are cipher-independent (inde-
pendent of the symbols chosen for the phonemes); language-independent (they
make no assumptions specific for a certain language); accessible (in symbolic
form); and linguistically meaningful. They fail to satisfy Ellison’s first property
(operation in isolation) because they receive specific language input: monosyllab-
ic words. This was deliberate, naturally, since we wished to focus on the single
problem of sequencing. Moreover, the techniques can help a linguist to get a
rough impression of the syllable structure of a language.

There are numerous natural extensions and refinements of the work present-
ed here, not only seeking improved performance in these techniques, extending
the study to other learning techniques, but also refining the task so that it
more closely resembles the human task of language learning. This would involve
incorporating frequency information, noisy input, and (following Ellison’s crite-
rion) coding input for phonetic properties, and naturally extending the task to
multisyllable words and to related tasks in phonological learning.

Acknowledgements

The authors want to thank two reviewers for valuable comments on earlier ver-
sions of this paper. This work was sponsored by the former Dutch Graduate
Network for Language, Logic and Information (currently Dutch Graduate School
in Logic, OZSL).

4 Without background knowledge, the HMMs accepted 99.1% of the positive ortho-
graphic data and rejected 82.2% of the negative orthographic data. Using linguistic
constraints changed these figures to 99.2% and 77.4% respectively. For phonectic
data these numbers were 98.7%, 91.6%, 98.9% and 92.9%. The neural networks per-
formed poorly. They were not able to reject more than 10% of the negative data in
any experiment [Tjong Kim Sang and Nerbonne, 1999].

15

References

10.
11.

12.

13.

. R.H. Baayen, R. Piepenbrock, and H. van Rijn. The Celex Lezical Database (CD-

ROM). Linguistic Data Consortium, University of Pennsylvania, Philadelphia, PA,
1993.

Charles E. Cairns and Mark H. Feinstein. Markedness and the theory of syllable
structure. Linguistic Inquiry, 13(2), 1982.

T. Mark Ellison. The Machine Learning of Phonological Structure. PhD thesis,
University of Western Australia, 1992.

Steven P. Finch. Finding Structure in Language. PhD thesis, University of Edin-
burgh, 1993.

D.G. Gilbers. Phonological Networks. PhD thesis, University of Groningen, 1992.
ISSN 0928-0030.

E.M. Gold. Language identification in the limit. Information and Control, 16:447—
474, 1967.

Dimitar Kazakov and Suresh Manandhar. A hybrid approach to word segmenta-
tion. In David Page, editor, Proceedings of the ILP-98. Springer, 1998. Lectures
Notes in Computer Science, vol. 1446.

Peter Ladefoged. A Course in Linguistic Phonetics. Philadelphia, 3 edition, 1993.
Stephen Muggleton. Inductive logic programming. In Stephen Muggleton, editor,
Inductive Logic Programming, pages 3—27. 1992.

Steven Pinker. The Language Instinct. W. Morrow and Co., New York, 1994.
Erik F. Tjong Kim Sang. Machine Learning of Phonotactic Structure. PhD thesis,
University of Groningen, 1998.

Erik F. Tjong Kim Sang and John Nerbonne. Learning simple phonotactics. In
Neural, Symbolic, and Reinforcement Methods for Sequence Learning, pages 41-46,
1999. Proc. IJCAI workshop.

R.M. van Zonneveld. Two level phonology: Structural stability and segmental vari-
ation in dutch child language. In F. van Besien, editor, First Language Acquisition.
ABLA papers no. 12, University of Antwerpen, 1988.

