Finite State Language Processing

Gertjan van Noord

some parts based on joint work with:

Jan Daciuk

Dale Gerdemann

Motivation

- Efficiency
- Compactness
- Closure Properties

Sobering remark

- Not always applicable
- But if they are:
 - ⋆ Practical
 - ⋆ Elegant

Overview

- Finite State Automata
- Dictionary Construction; Perfect Hash; Tuple Dictionaries
- Regular Expressions
- Finite State Optimality Phonology

PART 1: Finite State Automata

- Finite State Acceptors
- Finite State Transducers
- Weighted Finite State Automata

Example

Definition

A finite state acceptor $M = (Q, \Sigma, E, S, F)$:

- ullet Q is a finite set of states
- ullet Σ is a set of symbols
- ullet $S\subseteq Q$ is a set of start states
- $F \subseteq Q$ is a set of final states
- E is a finite set of edges $Q \times (\Sigma \cup \{\epsilon\}) \times Q$.

Definition (2)

Paths:

- 1. for all $q \in Q, (q, \epsilon, q) \in \widehat{E}$
- 2. for all $(q_0, x, q) \in E$: $(q_0, x, q) \in \widehat{E}$
- 3. if (q_0, x_1, q_1) and (q_1, x_2, q) are both in \widehat{E} then $(q_0, x_1 x_2, q) \in \widehat{E}$

Definition (3)

• The language accepted by M:

$$L(M) = \{ w | q_s \in S, q_f \in F, (q_s, w, q_f) \in \widehat{E} \}$$

• A language L is $\mathit{regular}$ iff there is a finite state acceptor M such that L = L(M).

Deterministic Finite State Acceptor

- Deterministic:
 - ★ Single start state
 - ⋆ No epsilon transitions
 - For each state and each symbol there is at most one applicable transition
- For every M there is a deterministic automaton M' such that L(M) = L(M').
- ullet There is an algorithm which computes M' for any M.
- Efficiency!

Minimal Finite State Acceptor

- ullet For every deterministic M there is a unique equivalent minimal M'
- There is an efficient algorithm which computes M' for any M.
- Compactness!

Some languages are not regular

 $L = a^n b^n$ is not a regular language.

- ullet suppose L was regular
- ullet then there is a finite automaton M for it. Suppose M has m states
- then what about the string a^mb^m . Since it is twice as long as m, there must be a state p in M which is traversed at least twice.
- now, while recognizing a^mb^m , at which point do we switch from a's to b's? Before the cycle? No. During the cycle? No. After the cycle? No.
- L cannot be regular

Closure Properties

- union
- concatenation
- Kleene-closure
- complementation
- intersection

• . . .

Union

Concatenation

Kleene Closure

Intersection

Complement

• input automaton must be deterministic

• every third a is mapped to x

• identity pair is written as single symbol

question mark to refer to arbitrary symbol

Distinction

Copy

• Garbage in, garbage out

• term complement 'x to refer to an arbitrary symbol not equal to x.

Definition

A finite state transducer $M = (Q, \Sigma_d, \Sigma_r, E, S, F)$:

- ullet Q is a finite set of states
- Σ_d, Σ_r are sets of symbols
- $S \subseteq Q$ is a set of start states
- $F \subseteq Q$ is a set of final states
- E is a finite set of edges $Q \times (\Sigma_d \cup \{\epsilon\}) \times \Sigma_r^* \times Q$.

Definition (2)

Paths:

- 1. for all $q \in Q, (q, \epsilon, \epsilon, q) \in \widehat{E}$
- 2. for all $(q_0, x, y, q) \in E$: $(q_0, x, y, q) \in \widehat{E}$
- 3. if (q_0,x_1,y_1,q_1) and (q_1,x_2,y_2,q) are both in \widehat{E} then $(q_0,x_1x_2,y_1y_2,q)\in\widehat{E}$

Definition (3)

• The relation accepted by M:

$$R(M) = \{(x,y)|q_s \in S, q_f \in F, (q_s, x, y, q_f) \in \widehat{E}\}$$

• A relation R is regular iff there is a finite state transducer M such that R=R(M).

Closure

- regular relations are closed under concatenation, Kleene-closure, union
- same length regular relations are closed under complementation, intersection
- if R is a regular relation, then its domain and range are regular languages
- regular relations are closed under inversion!
- regular relations are closed under composition!

Composition

$$R_1 \circ R_2 : \{(x_1, x_3) | (x_1, x_2) \in R_1, (x_2, x_3) \in R_2\}$$

Composition: Example

Another example (Karttunen 1991)

Ordered application of context sensitive rules

```
N -> m / _ p; elsewhere n
p -> m / m _
```

• kaNpan ==> kampan ==> kamman
kaNton ==> kanton ==> kanton

Another example (2)

• N -> m / _ p; elsewhere n

Another example (3)

• p -> m / m _

Another example (4)

Cascades (Karttunen 1991)

Transducers

- functional transducers
- sequential transducers: transducers which are deterministic for input
- subsequential transducers: additional output at final states

Example

• Some transducers are functional, but not sequential:

Algorithms

- Determine if a given transducer defines a *functional* relation.
- Determine if a given transducer defines a *subsequential* relation.
- Construct a subsequential transducer for a given transducer which defines a subsequential relation. Determinization
- Construct a minimal subsequential transducer for a given subsequential transducer. Minimization

Bi-machines

- left-sequential transducer
- right-sequential transducer
- Every functional regular relation is the composition of a left-sequential transducer and a right-sequential transducer
- There is an algorithm which constructs for a given functional transducer the corresponding left- and right-sequential transducers.
- Efficiency

Example

p1b:b

p1d:d

Example (2)

Input: a b b b c e

- ullet Apply M_l : o p0a p1b p1b p1c p2e
- Reverse: \rightarrow p2e p1c p1b p1b p0a
- ullet Apply M_r : o e c b b c
- ullet Reverse: o c b b c e

Weighted Finite Automata

- Weighted Finite State Acceptors
- Weighted Finite State Transducers

Example

 $xxxxxxxxxxxxxx \implies 4$

Definition

A weighted finite state acceptor $M = (Q, \Sigma, W, E, S, F, \lambda)$:

- Q is a finite set of states
- ullet Σ is a set of symbols
- W is set of weights
- $S \subseteq Q$ is a set of start states
- $F \subseteq Q$ is a set of final states
- E is a finite set of edges $Q \times (\Sigma \cup \{\epsilon\}) \times W \times Q$.
- ullet λ is a function which assigns weights to each final state

Definition (2)

Paths:

- 1. for all $q \in Q, (q, \epsilon, 0, q) \in \widehat{E}$
- 2. for all $(q_0, x, w, q) \in E$: $(q_0, x, w, q) \in \widehat{E}$
- 3. if (q_0, x_1, w_1, q_1) and (q_1, x_2, w_2, q) are both in \widehat{E} then $(q_0, x_1x_2, w_1 + w_2, q) \in \widehat{E}$

Definition (3)

• The weighted language accepted by M:

$$L(M) = \{(x, w + \lambda(q_f)) | q_s \in S, q_f \in F, (q_s, x, w, q_f) \in \widehat{E} \}$$

Weights (Mohri 1997)

- Various weight structures (semirings)
 - ⋆ probabilities
 - ⋆ negative logs of probabilities
 - ★ strings
- Various algorithms and properties of transducers generalize

PART 2

- Dictionaries
- Perfect Hash FSA
- Tuple Dictionaries

List of words

clock

dock

stock

dog

duck

dust

rock

rocker

Trie

Tries

- Final states can be associated with lexicographic information
- Efficient
- Compact: sharing of identical prefixes
- Can we do better?

Minimize trie

- Smaller
- How to associate lexicographic information?

Perfect Hash Finite Automaton

- Assign unique number to each word
- Minimize weighted acceptor

Weighted Trie

Minimized Weighted Trie

Perfect Hash

Elegant way to construct an OPMPHF for a given set of keywords:

- Hash Function: map key to integer
- Perfect: every key is hashed to unique integer
- Minimal: n keys are mapped into range $0 \dots n-1$
- Order Preserving: alphabetic order of keys is reflected in numeric order of integers

Advantages

- Efficient (optimal)
- Compact (in typical cases less than 10% of standard hashes)
- Order-preserving: application in suffix array construction on words

Incremental Construction

- Construct dictionary from sorted list of words
- Construct dictionary from *unsorted* list of words
- Add perfect hash weights directly to minimal automaton

Tuple Dictionaries

- map tuple of keys to some value
- e.g. Ngram language models
- compact representation using perfect hash automata

Motivation

- Collins 1999:
 - ★ loading hash table of bigram counts takes 8 minutes!
- Foster 2000:
 - ★ Maxent model with 35,000,000 features; each feature is a word pair

• . . .

Example

```
the man 23
the woman 15
their man 4
```

Tuple Dictionary

- Construct a perfect hash automaton for the keys
- Replace each key with its perfect hash integer

Example

```
the man 23
the woman 15
their man 4
```

```
4112 2008 234112 7023 154113 2008 4...
```

Tuple Dictionary

- Construct a perfect hash automaton for the keys
- Replace each key with its perfect hash integer
- Determine the maximum integer per column
- Use per column minimal number of bytes (typically: 2, 3 or 4)

Usage

- For a given tuple: convert keys to integers
- Pack integers into key
- Binary search in tuple dictionary

Variants

• Daciuk and van Noord (2003).

_		I	1 .
0	2	4	1
0	15	4	3
20	7	50	$\mid 1 \mid$
20	7	53	2
20	15	4	2

Experiments

	Mbytes	in	out	elements
40K sents trigram counts	11.6	3	int	552462
40K sents fourgram counts	17.3	4	int	644886
POS-tagger bigram	11.9	2	int	350437
40K sents trigram prob	14.8	3	real	552462

Results (Mbytes)

test set	hash	hash	fsa	table	tree
	first el	concat	concat		
	Prolog	C++			
trigram counts	60.3	52	11.1	4.9	4.3
fourgram counts	85.4	64	20.7	6.9	7.4
bigram POS-tagger	NA	37	4.0	4.2	3.2
fourgram prob	67.1	52	10.5	NA	8.7

Available

• http://www.eti.pg.gda.pl/~jandac/

PART 3: Regular Expressions

- Standard Regular Expressions
- Regular Expressions for Transducers
- Defining Regular Expression Operators

Regular Expressions

- Notation which describes regular languages
- More declarative than automata
- Regular expression compiler takes regular expression and computes corresponding automaton
- FSA Utilities

Regular Expression Operators (1)

- An atom a defines the language $\{a\}$.
- The expression {E1,E2} is the union of L(E1) and L(E2)
- ullet The expression [E1,E2] is the concatenation of L(E1) and L(E2)
- The expression E1* is the Kleene closure of L(E1)
- Use (and) for grouping

Regular Expression Operators (2)

- The expression [] is the language $\{\epsilon\}$
- The expression $\{\}$ is the language \emptyset
- What is:

Regular Expression Operators (3)

- Optionality: E1[^]
- Intersection: E1 & E2
- Difference: E1 E2
- Complement: "E1
- Term Complement: 'E1 is a short-hand for ? E1

Regular Expression Operators (4)

- Meta-symbol ?: $\{x|x \in \Sigma\}$
- Interval a..z: $\{a,\ldots,z\}$
- What is:

What is:

• ~[~{},'a,~{}]

Operators for Transductions

• cross-product: E1:E2

• composition: E1 o E2

• union, concatenation, Kleene-closure

Operators for Transductions (2)

- identity: id(E1)
- coercion
- $[a,b,c:[],d] \Longrightarrow [id(a),id(b),c:[],id(d)]$
- What is: ? : ?
- What is: id(?)
- Compare: [?*,d:e]

Operators for Transductions (3)

- domain(E)
- range(E)
- inverse(E)

Operators for Transductions (4)

- replace(T)
- replace(T,Left,Right)

Replacement

- Apply a given transduction everywhere (in context)
- Many variants possible
- Kaplan & Kay (1994); Karttunen (1995, 1996, 1997); Kempe & Karttunen (1996); Mohri & Sproat (1996); Gerdemann & van Noord (1999)
- implementation in FSA by Yael Cohen-Sygal www.cl.haifa.ac.il

Replacement (2)

• [a,b,c]:[d,e]

• replace([a,b,c]:[d,e])

Application: Soundex algorithm

- Soundex: algorithm to map proper names to codes
- Intention: similar names map to the same code
- Can be encoded by regular expression (Karttunen)

Soundex (2)

- retain the first letter
- drop all occurrences of a, e, h, i, o, u, w, y
- assign numbers to letters:
 - \star b, f, p, v \rightarrow 1
 - \star c, g, j, k, q, s, x, z \rightarrow 2
 - \star d, t \rightarrow 3
 - ★ I → 4
 - \star m, n \rightarrow 5
 - \star r \rightarrow 6
- map adjacent identical codes to single code
- convert to letter followed by three digits

Soundex (3)

```
[? , replace({a,e,h,i,o,u,w,y}:[])
                 0
     replace({ \{b,f,p,v\}+
                              : 1,
               {c,g,j,k,q,s,x,z}+ : 2,
                     \{d,t\}+
                              : 3,
                                   : 4,
                      1+
                    \{m,n\}+
                                   : 5,
                                   : 6 })
                      r+
             [?*, []:0*]
           [?,?,?,?:[]*]
```

Soundex (4)

- Johnson \rightarrow J525; Johanson \rightarrow J525; Jackson \rightarrow J250
- But also: construct automaton recognizing all names that have code J525!

Defining Regular Expression Operators

 For patterns that occur over and over again, you can define your own operators.

```
macro(vowel, {a,e,i,o,u}).
macro(contains(X), [?*, X, ?*]).
```

New operators can be used in the definition of additional operators

Example: longest (Gerdemann)

longest(A): the set of longest strings from A
 macro(longest(A), A - shorter(A)).
 macro(shorter(A), range(same_length(A) o shorten_t)).
 macro(same_length(A), range(A o ?:?*)).

macro(shorten_t, [?*, ?:[]+]

Example: longest (2)

• longest({[a],[a,b],[b,a],[a,b,c],[c,b,a]})

• longest({a,b*,[c,d],[e,f]})

Various Applications

- Bouma: Hyphenation
- Vaillette: Monadic Second Order Logic
- Malouf: Two-level Morphology
- Walther: One-level Morphology
- Malouf: tokenizer for WSJ
- Bouma: Grapheme to Phoneme Conversion
- Kiraz: multi-tape automata for Syriac and Arabic

Application

- Set of regular expression operator definitions
- Compile regular expression into automaton
- Compile automaton into efficient program (C, C++, Java, Prolog)

Application: Example

```
% fsa write=c -aux s2p.pl -r s2p > s2p.c

% cc s2p.c -o s2p
% echo "ik ga naar de blauwe schuit in leuven" | s2p
Ik xa nar d0 blMw0 sxLt In 1|v0
%
```

PART 4

- Finite State Optimality Phonology
 - ★ Prince & Smolensky (1993)
 - ★ Frank & Satta (1998)
 - ★ Karttunen (1998)
 - ★ Gerdemann & van Noord (2000)
 - ★ Jäger (2001, 2003)
 - ★ Eisner (1997, 2000, 2002)

Optimality Theory

- Prince and Smolensky (1993)
- No rules
- Instead:
 - 1. Universal function Gen
 - 2. Set of ranked universal violable constraints

Syllabification: Gen

- *Input*: sequences of consonants and vowels
- Gen: assigns structure: sequence of syllables, such that
 - * optional onset, followed by nucleus, followed by optional coda
 - * onset and coda each contain an optional consonant
 - nucleus contains an optional vowel
- Furthermore, certain consonants and vowels can be unparsed

Syllabification: Gen (2)

• *Gen(a)*:

 N[a]
 N[a]N[]

 N[a]D[]
 N[N[a]D[]

 N[]X[a]
 N[]X[a]N[]

 N[]X[a]D[]
 O[]N[a]

 O[]N[a]N[]
 O[]N[a]D[]

 O[]X[a]N[]
 X[a]N[]

Phonetic Realization

- Unparsed: not phonetically realized (deletion)
- Empty segment: phonetically realized by filling in default featural values (epenthesis)

Constraints

HaveOns Syllables must have onsets

NoCoda Syllables must not have codas

Parse Input segments must be parsed

FillNuc A nucleus position must be filled

FillOns An onset position must be filled

Constraints

- Universal
- Ranked
- Violable

Constraint Order

 $HaveOns \gg NoCoda \gg FillNuc \gg Parse \gg FillOns$

OT Tableaux

```
Candidate
             HaveOns
                       NoCoda FillNuc Parse
                                                 FillOns
                 *!
   N[a]
                 *!
 N[a]N[]
                 *!
 N[a]D[]
                 *!
N[]X[a]N[]
                 *!
N[]X[a]D[]
                                                   *
 0[]N[a]
                                    *|
0[]N[a]N[]
                          *!
0[]N[a]D[]
                                    *!
0[]X[a]N[]
 X[a]N[]
                 *!
```

Finite-state Implementation

- Karttunen 1998
- Gen is a finite state transducer
- Each of the constraints is a finite state automaton
- Lenient Composition

Finite-state Implementation (2)

- Rewrite Rules ⇒ finite-state transducer
- Two-level Rules ⇒ finite-state transducer
- OT Constraints

 finite-state transducer
- Constraint ranking vs. Rule ordering

Implementing Gen

```
macro(o_br, 'O['). % onset
macro(n_br, 'N['). % nucleus
macro(d_br, 'D['). % coda
macro(x_br, 'X['). % unparsed
macro(r_br, ']').
macro(br, {o_br,n_br,d_br,x_br,r_br}).
macro(onset, [o_br,cons^,r_br]).
macro(nucleus, [n_br,vowel^ ,r_br]).
macro(coda, [d_br,cons^,r_br]).
macro(unparsed,[x_br,letter ,r_br]).
```

Implementing Gen (2)

```
macro(gen,
                {cons, vowel}*
          insert_each_pos([{o_br,d_br,n_br},r_br]^)
                     parse
     ignore([onset^,nucleus,coda^],unparsed)*
macro(parse, replace([[]:{o_br,d_br,x_br},cons, []:r_br])
             replace([[]:{n_br,x_br}, vowel,[]:r_br])).
macro(insert_each_pos(E), [[ []:E, ?]*,[]:E]).
```

Implementing Constraints

```
macro(no_coda, free(d_br)).

macro(parsed, free(x_br)).

macro(fill_nuc, free([n_br, r_br])).

macro(fill_ons, free([o_br, r_br])).

macro(have_ons, ~[~[?*,onset],nucleus,?*]).
```

Merciless Cascade

```
gen
have_ons
no_coda
fill_nuc
parsed
    0
fill_ons
```

Lenient Composition!

```
macro(lenient_composition(I,C),
```

```
{ I o C, ~domain(I o C) o I } ).
```

Ι	C	I o C	~domain(I o C) o I	lc
a:b	b:b	a:b	d:d	a:b
b:b	e:e	b:b		b:b
c:d		c:e		c:e
c:e		e:e		e:e
d:d				d:d
e:e				

Putting it Together

```
gen
   lc
have_ons
   lc
 no_coda
   lc
fill_nuc
   lc
 parsed
   lc
fill_ons
```

Problem: Constraints with Multiple Violations

```
O[b]N[e]O[b]N[o]X[p]
O[b]N[e]X[b]O[]N[o]X[p]
O[b]N[e]X[b]X[o]X[p]
X[b]O[]N[e]O[b]N[o]X[p]
X[b]O[]N[e]X[b]O[]N[o]X[p]
X[b]O[]N[e]X[b]X[o]X[p]
X[b]X[e]O[b]N[o]X[p]
X[b]X[e]O[b]N[o]X[p]
```

Counting: separate constraint for each count

```
gen
   lc
have_ons
   lc
 no_coda
   lc
fill_nuc
   lc
 parsed2
   lc
 parsed1
   lc
 parsed0
   lc
fill_ons
```

Counting (2)

- Is 2 good enough? Only for strings of length ≤ 6
- Is 5 good enough? Only for strings of length ≤ 9
- There is no bound to the length of a word . . .

Some OT analyses are not finite state

- Frank and Satta (due to Smolensky, after an idea by Hiller)
- Inputs: [a*,b*]
- Gen: map all a's to b's and all b's to a's; or map all b's to b's and all a's to a's
- Constraint: no a's

Some OT analyses are not finite state (2)

- maps a^nb^m to
 - * $\{b^n a^m\}$ if n < m* $\{a^n b^m\}$ if n > m* $\{b^n a^m, a^n b^m\}$ if n = m
- if we intersect range of this mapping with [a*,b*] then we have $\{a^nb^m\}$ where $n \geq m$.
- This language is known to be non-regular

Finite State OT: A New Approach

- counting
- matching
 - 1. More Accurate
 - 2. More Compact
 - 3. More Efficient

Idea

- Candidates
- Alternatives is the set you can construct by introducing further constraint violations in Candidates
- Compose Candidates with complement(Alternatives)

More specifically

- Introduce a marker for each constrain violation
- Construct a filter which maps marked-up candidates to alternatives which have at least one marker more
- The range of this mapping is the Alternatives set
- Compose candidates with complement of Alternatives

Marking Constraints

- use @ to indicate a constraint violation
- macro(mrk, @).

```
macro(mark_v(parse), replace([]:mrk,x_br,[]).
macro(mark_v(no_coda), replace([]:mrk,d_br,[]).
macro(mark_v(fill_nuc), replace([]:mrk,[n_br,r_br],[])).
macro(mark_v(fill_ons), replace([]:mrk,[o_br,r_br],[])).
macro(mark_v(have_ons),
    replace([]:mrk,[],n_br) o replace(mrk:[],onset,[])).
```

Marking Constraints: Example

```
c1: O[b] N[e] X[b] X[o] X[p]
c2: O[b] N[e] O[b] N[o] X[p]
c3: X[b] X[e] O[b] N[o] X[p]
c1: O[b] N[e] X[@b] X[@o] X[@p]
c2: O[b] N[e] O[b] N[o] X[@p]
c3: X[@b] X[@e] O[b] N[o] X[@p]
```

Constructing Alternatives

• Ignore everything except *input* and *marker*

• Insert at least one additional marker:

```
[[?*,[]:mrk ]+, ?*]
```

Insert brackets arbitrarily:

```
{[]:br, 'br}*
```

Alternatives

Filter (2)

• candidates:

```
c1: O[ b] N[ e] X[ @ b] X[ @ o] X[ @ p] c2: O[ b] N[ e] O[ b] N[ o] X[ @ p] c3: X[ @ b] X[ @ e] O[ b] N[ o] X[ @ p]
```

note: c1 and c3 are in Alternatives

Optimality Operator

Example

Add Violation

Syllabification again

```
gen
   00
have_ons
   00
no_coda
   00
fill_nuc
   00
 parsed
   00
fill_ons
```

Result

Properties

- 22 states!
- Exact!!
- 1 CPU second to compute

Not always exact

 $Parse \gg FillOns \gg HaveOns \gg FillNuc \gg NoCoda$

N[a]D[r]O[t]N[]D[s]
N[a]O[r]N[]D[t]O[s]N[]

(art@s)

(ar@ts@)

Permutation

- Matching works as long as violations 'line up'
- Permutation in the filter to make them line up
- More permutation for more precision
- Strictly more powerful than 'counting'

Optimality Operator (2)

Add Violations with Permutation

```
macro(add_violation(3),
                 {br:[], 'br}*
               [[?*,[]:mrk]+, ?*]
                  permute_marker
                  permute_marker
                  permute_marker
                 {[]:br, 'br}* ).
```

Nine Constraint Orderings

```
id
                          constraint order
   have\_ons \gg fill\_ons \gg no\_coda \gg fill\_nuc \gg parse
   have\_ons \gg no\_coda \gg fill\_nuc \gg parse \gg fill\_ons
3
   no_coda ≫ fill_nuc ≫ parse ≫ fill_ons ≫ have_ons
4
   have\_ons \gg fill\_ons \gg no\_coda \gg parse \gg fill\_nuc
5
  	ext{have\_ons} \gg 	ext{no\_coda} \gg 	ext{parse} \gg 	ext{fill\_nuc} \gg 	ext{fill\_ons}
6
   no_coda ≫ parse ≫ fill_nuc ≫ fill_ons ≫ have_ons
   have\_ons \gg fill\_ons \gg parse \gg fill\_nuc \gg no\_coda
8
   have\_ons \gg parse \gg fill\_ons \gg fill\_nuc \gg no\_coda
9
   parse ≫ fill_ons ≫ have_ons ≫ fill_nuc ≫ no_coda
```

Experiments

- A permutation of at most 1 is required
- Compact automata
- Fast automata construction

Size of Automata

	Prec	Constraint order								
		1	2	3	4	5	6	7	8	9
match	exact	29	22	20	17	10	8	28	23	20
count	≤ 5	95	220	422	167	10	240	1169	2900	4567
count	≤ 10	280	470	1667	342	10	420	8269	13247	16777
count	≤ 15	465	720	3812	517	10	600	22634	43820	50502

Speed of Construction

	Prec	Constraint order									
		1	2	3	4	5	6	7	8	9	
match	exact	1.0	0.9	0.9	0.9	0.8	0.7	1.5	1.3	1.1	
count	≤ 5	0.9	1.7	4.8	1.6	0.5	1.9	10.6	18.0	30.8	
count	≤ 10	2.8	4.7	28.6	4.0	0.5	4.2	83.2	112.7	160.7	
count	≤ 15	6.8	10.1	99.9	8.6	0.5	8.2	336.1	569.1	757.2	

Determining Exactness

- ullet Assume T is a correct implementation of some OT analysis, except that it fails to distinguish different numbers of constraint violations for one or more constraints
- We can check this for each of the constraints

Determining Exactness (2)

ullet If T is not exact wrt to constraint C, then the following must be ambiguous:

```
T
o
mark_v(C)
o
{'mrk:[], mrk}*
```

• there is an algorithm to determine if a given transducer is functional

Harmony ordering

- A constraint imposes harmony ordering on the set of candidates
- In classical OT: counting
- Proposal: harmony ordering must be regular relation

Harmony ordering as a regular relation

- > is the harmony ordering (partial order)
- harmony ordering should only order candidates with identical input
- y > y' indicates that y is more harmonic than y'
- we require that there is a regular relation $R = \{(y, y')|y > y'\}$.
- if this condition is met, the resulting OT is regular (Jäger 2001, 2003; Eisner 2002)

Multiple Violations

- Some constraints are violated multiple times, i.e., at multiple locations.
 Typically, harmony ordering is regular.
- Some constraints are violated gradiently, i.e., different degrees of violation.

Gradient constraints

- constraints with bounded number of degrees of violation (can be thougt of as a series of non-gradient constraints)
- horizontal gradience: degree of violation proportional to some distance in strings
- McCarthy (2002) claims that the latter type of constraints should not be in OT
- Eisner (1997) and Birot (2003) show that the latter type of constraints might impose non-regular harmony ordering

Example: All-Feet-Left (Tesar and Smolensky (2000)

- Context: analysis of metrical stress
 - * some syllables are organized into *feet*
 - * prosodic word consists of those feet as well as other syllables
 - ★ each foot has a head syllable
 - * each word has a head foot
 - ★ head syllable of head foot receives primary stress
 - ★ other head syllables receive secondary stress
- $\sigma(\sigma\sigma 2)[\sigma 1\sigma]\sigma(\sigma 2)$

All-Feet-Left (2)

- various constraints which determine analysis of syllables into feet
- All-Feet-Left: assigns to each foot f as many violation marks as the number of syllables intervening between the left edge of the word and the left edge of f.

All-Feet-Left (3)

- $\sigma\sigma(\sigma\sigma)$: 0+2+4 violations
- $\sigma(\sigma)(\sigma)(\sigma)$: 0+1+2+3+4+5 violations
- In general, can assign a quadratic number of violations
- Birot 2003: such a harmony ordering cannot be described by regular relation

Finite State OT: Summary

- Phonological relations are (mostly) finite-state
- OT phonology is finite state provided:
 - ★ Gen is regular relation
 - ★ Each of the constraints is regular
 - ★ The harmony ordering is regular