Finite State Language Processing

Gertjan van Noord

some parts based on joint work with:
Jan Daciuk
Dale Gerdemann

Motivation

e Efficiency
e Compactness

e Closure Properties

Sobering remark

e Not always applicable

e But if they are:

Practical
Elegant

Overview

Finite State Automata
Dictionary Construction; Perfect Hash; Tuple Dictionaries
Regular Expressions

Finite State Optimality Phonology

PART 1: Finite State Automata

e Finite State Acceptors
e Finite State Transducers

e Weighted Finite State Automata

Example

Definition

A finite state acceptor M = (Q, X, E, S, F):
e () is a finite set of states
e X is a set of symbols
e S C () is a set of start states
e ' C (is a set of final states

e F is a finite set of edges Q) x (X U {e}) x Q.

Definition (2)

Paths:

AN

1. forall g € Q,(q,¢,q) € F)

AN

2. for all (qo,x,q) € E: (qo,x,q) € E

AN

3. if (go,x1,q1) and (q1,x2,q) are both in E then (qo, T172,q) € E

Definition (3)

e [he language accepted by M:

AN

L(M)={w|gs € S,qr € F, (g5, w,qy) € E}

e A language L is regular iff there is a finite state acceptor M such that
L=L(M).

Deterministic Finite State Acceptor

e Deterministic:

Single start state

No epsilon transitions

For each state and each symbol there is at most one applicable
transition

e For every M there is a deterministic automaton M’ such that L(M) =
L(M").

e There is an algorithm which computes M’ for any M.

e Efficiency!

10

Minimal Finite State Acceptor

e For every deterministic M there is a unique equivalent minimal M’
e There is an efficient algorithm which computes M’ for any M.

e Compactness!

11

Some languages are not regular

L = a™b"™ is not a regular language.
suppose L was regular

then there is a finite automaton M for it. Suppose M has m states

then what about the string a™b"™. Since it is twice as long as m, there
must be a state p in M which is traversed at least twice.

now, while recognizing a™b™, at which point do we switch from a’s to
b's? Before the cycle? No. During the cycle? No. After the cycle? No.

L cannot be regular

12

union
concatenation
Kleene-closure
complementation

Intersection

Closure Properties

13

Union

-
OO

15

Concatenation

Kleene Closure

16

17

Intersection

Complement
a b

e Iinput automaton must be deterministic

18

Finite State Transducers

e every third a is mapped to x

19

Finite State Transducers

e identity pair is written as single symbol

20

Finite State Transducers

e question mark to refer to arbitrary symbol

21

o Copy

e Garbage in, garbage out

Distinction

22

Finite State Transducers

e term complement ‘x to refer to an arbitrary symbol not equal to x.

23

Definition

A finite state transducer M = (Q, X4, 2., E, S, F):

e () is a finite set of states

e >, X, are sets of symbols

e S C () is a set of start states
e ' C (is a set of final states

e F is a finite set of edges Q) x (X45U{e}) x 3F x Q.

24

Definition (2)

Paths:

AN

1. for all g € @, (Q, €, ejq) c E)

AN

2. for all (QO7ZIjay7Q) € b (QO,Qj,y,Q) ck

3. if (qo, 1,91, q1) and (q1, 2,Y2,q)
(QOa L1X2,Y1Y2, Q) c b

are

both

N

)

E

then

25

Definition (3)

e [he relation accepted by M:

AN

R(M) ={(x,y)|¢s € S,qs € F, (gs,2,y,q5) € E}

e A relation R is regular iff there is a finite state transducer M such that
R=R(M).

26

Closure

regular relations are closed under concatenation, Kleene-closure, union

same length regular relations are closed under complementation,
Intersection

If R is a regular relation, then its domain and range are regular languages
regular relations are closed under inversion!

regular relations are closed under composition!

27

Composition

Rio Ry : {(x1,23)|(21,72) € Ry, (T2, 73) € Ra}

28

Composition: Example

29

Another example (Karttunen 1991)

e Ordered application of context sensitive rules

N ->m / _ p; elsewhere n
p->m/ m_

e kaNpan ==> kampan ==> kamman
kaNton ==> kanton ==> kanton

30

Another example (2)

e N ->m / _ p; elsewhere n

31

ep >m / m

Another example (3)

a9 |
\ @’ {m,p}:m

{m,p}

32

{m,p}:m ‘@

Another example (4)

N:n

33

Cascades (Karttunen 1991)

lexical string

fst 1

intermediate string

fStz

intermediate string

intermediate string

fst,,

surface string

lexical string

T

Single
transducer
derived
from
fStl, fStg,
..., fst,
by
composition

l

surface string

34

Transducers

e functional transducers
e sequential transducers: transducers which are deterministic for input

e subsequential transducers: additional output at final states

35

Example

e Some transducers are functional, but not sequential:

36

Algorithms

e Determine if a given transducer defines a functional relation.
e Determine if a given transducer defines a subsequential relation.

e Construct a subsequential transducer for a given transducer which
defines a subsequential relation. Determinization

e Construct a minimal subsequential transducer for a given subsequential
transducer. Minimization

37

Bi-machines

left-sequential transducer
right-sequential transducer

Every functional regular relation is the composition of a left-sequential
transducer and a right-sequential transducer

There is an algorithm which constructs for a given functional transducer
the corresponding left- and right-sequential transducers.

Efficiency

38

Example

a:pOa

—®

c:plcd:pld

e:p2e

39

Example (2)

Input: a b b b c e
e Apply M;: — pOa plb plb plb plc p2e
e Reverse: — p2e plc plb plb plb pOa
e Apply M,: — e c b b bc

e Reverse: — ¢ b bbce

40

Weighted Finite Automata

e Weighted Finite State Acceptors

e Weighted Finite State Transducers

41

Example

XXXXXXXXXXXXX —> 4

42

Definition

A weighted finite state acceptor M = (Q, >, W, E, S, F, \):
e () is a finite set of states
e X is a set of symbols
e IV is set of weights
e S C () is a set of start states
e ' C (is a set of final states
e F is a finite set of edges @ x (X U {e}) x W x Q.

e)\ is a function which assigns weights to each final state

43

Definition (2)

Paths:

AN

 forall g € Q,(q,¢6,0,q) € F)
. for all (qo, x,w,q) € E: (qo,x,w,q) € E

. if (g0, x1,w1,q1) and (q1, T2, we, q) are both in E then (qo, x122, w1 +
UJQ,Q) €k

44

Definition (3)

e [he weighted language accepted by M:

AN

L(M) — {(ajaw +)‘(Qf))‘% € S, qr € F, (QSaxaquf) S E}

45

Weights (Mohri 1997)

e Various weight structures (semirings)

probabilities
negative logs of probabilities
strings

e Various algorithms and properties of transducers generalize

46

e Dictionaries
e Perfect Hash FSA

e Tuple Dictionaries

PART 2

47

clock
dock
stock
dog
duck
dust
rock
rocker

List of words

48

49

Tries

e Final states can be associated with lexicographic information
e Efficient
e Compact: sharing of identical prefixes

e Can we do better?

50

Minimize trie

e Smaller

e How to associate lexicographic information?

51

Perfect Hash Finite Automaton

e Assign unique number to each word

e Minimize weighted acceptor

52

Weighted Trie

1 o) C k
O—0—0—0—0—

53

Minimized Weighted Trie

C k el
o -@ @ @ —C
o s::1
u::2 ©
® ° w1 O
0«
C
° 1 °

54

Perfect Hash

Elegant way to construct an OPMPHF for a given set of keywords:

Hash Function: map key to integer
Perfect: every key is hashed to unique integer
Minimal: n keys are mapped into range 0...n — 1

Order Preserving: alphabetic order of keys is reflected in numeric order
of integers

55

Advantages

e Efficient (optimal)
e Compact (in typical cases less than 10% of standard hashes)

e Order-preserving: application in suffix array construction on words

56

Incremental Construction

e Construct dictionary from sorted list of words
e Construct dictionary from unsorted list of words

e Add perfect hash weights directly to minimal automaton

57

Tuple Dictionaries

e map tuple of keys to some value
e e.g. Ngram language models

e compact representation using perfect hash automata

58

Motivation

e Collins 1999:

loading hash table of bigram counts takes 8 minutes!

e Foster 2000:

Maxent model with 35,000,000 features; each feature is a word pair

59

Example

the
the

man 23
woman 15

their man 4

60

Tuple Dictionary

e Construct a perfect hash automaton for the keys

e Replace each key with its perfect hash integer

61

Example

the
the

man 23
woman 15

their man 4

4112 2008 23
4112 7023 15
4113 2008 4

62

Tuple Dictionary

Construct a perfect hash automaton for the keys
Replace each key with its perfect hash integer
Determine the maximum integer per column

Use per column minimal number of bytes (typically: 2, 3 or 4)

63

Usage

e For a given tuple: convert keys to integers
e Pack integers into key

e Binary search in tuple dictionary

64

Variants

e Daciuk and van Noord (2003).

20
20
20

15 4
7 50
7 53

15 4

NN N PR W

© 0O

50

©

65

Experiments

Mbytes In out elements

40K sents trigram counts 11.6 3 int 552462
40K sents fourgram counts 173 4 int 644886
POS-tagger bigram 11.9 2 int 350437

40K sents trigram prob 14.8 3 real 552462

Results (Mbytes)

test set hash hash fsa table tree
first el concat concat
Prolog C+4++
trigram counts 60.3 52 11.1 49 4.3
fourgram counts 85.4 04 207 69 74
bigram POS-tagger NA 37 40 42 3.2
fourgram prob 67.1 52 105 NA 8.7

67

Available

e http://www.eti.pg.gda.pl/~ jandac/

68

PART 3: Regular Expressions

e Standard Regular Expressions
e Regular Expressions for Transducers

e Defining Regular Expression Operators

69

Regular Expressions

Notation which describes regular languages
More declarative than automata

Regular expression compiler takes regular expression and computes
corresponding automaton

FSA Utilities

70

Regular Expression Operators (1)

e An atom a defines the language {a}.

e The expression {E1,E2} is the union of L(F1) and L(E?2)

e The expression [E1,E2] is the concatenation of L(E1) and L(E2)
e The expression E1* is the Kleene closure of L(E1)

e Use (and) for grouping

71

Regular Expression Operators (2)

e The expression [] is the language {¢}

e The expression {} is the language ()

o What is:
[a,b, []] _)@/Lx@/b—\
[a,b,{}] —0®
{a,b, 1}
{a.b)

{a:ba{}} _)

72

Regular Expression Operators (3)

e Optionality: E1°

e Intersection: E1 & E2
e Difference: E1 - E2
e Complement: “E1

e Term Complement: ‘E1l is a short-hand for 7 - E1

73

Regular Expression Operators (4)

e Meta-symbol 7: {z|z € X}
e Interval a..z: {a,..., 2}

e What is:

7k

74

[T}, fa, {1}

What is:

75

Operators for Transductions

e cross-product: E1:E2
e composition: E1 o E2

e union, concatenation, Kleene-closure

76

Operators for Transductions (2)

e identity: id(E1)

e coercion

e [a,b,c:[],d] = [id(a),id(b),c:[],id(d)]
e Whatis: 7 : 7

e What is: id(?)

e Compare: [7*,d:e]

7

e domain(E)
e range(E)

e inverse(E)

Operators for Transductions (3)

78

Operators for Transductions (4)

e replace(T)

e replace(T,Left,Right)

79

Replacement

e Apply a given transduction everywhere (in context)

e Many variants possible

e Kaplan & Kay (1994); Karttunen (1995, 1996, 1997); Kempe &
Karttunen (1996); Mohri & Sproat (1996); Gerdemann & van Noord
(1999)

e implementation in FSA by Yael Cohen-Sygal www.cl.haifa.ac.il

80

Replacement (2)

e [a,b,c]:[d,el]

a:d b:e C:E
—@ o o 0
e replace([a,b,c]:[d,el)

a:d a:d

81

Application: Soundex algorithm

e Soundex: algorithm to map proper names to codes
e Intention: similar names map to the same code

e Can be encoded by regular expression (Karttunen)

82

Soundex (2)

e retain the first letter
e drop all occurrences of a, e, h, i, 0, u, w, y

e assign numbers to letters:

b, f,p,v—o1

c, g).k, q,s %x,z—2
dt—3

| — 4

m,n—5

r— 0

e map adjacent identical codes to single code

e convert to letter followed by three digits

83

(7,

Soundex (3)

replace({a,e,h,i,o,u,w,y}: [])

0
replace({ {b,f,p,v}i+
{c,g,j,k,q,s,x,z}+
{d,t}+
1+
{m,n}+
r+
0
[?%, []:0%]
0

[?,7,7,7: []x*]

O O & WOWDND -

A)

A1)

84

Soundex (4)

e Johnson — J525: Johanson — J525: Jackson — J250

e But also: construct automaton recognizing all names that have code
J525!

{a,e,h,i,o,u,w,y} {a,e,h,i,m..o,u,w,y} {a,c,e,g..k,0,q,8,u,w..z} 9.7

85

Defining Regular Expression Operators

e For patterns that occur over and over again, you can define your own
operators.

macro (vowel, {a,e,i,o,ul}).
macro(contains(X), [?*, X, 7*]).
e New operators can be used in the definition of additional operators

macro (free(X), ~“contains(X)).

86

Example: longest (Gerdemann)

e longest(A): the set of longest strings from A

macro(longest(4),

macro (shorter(4),

A - shorter(A)).

range (same_length(A) o shorten_t)).

macro(same_length(A), range(A o 7:7%)).

macro (shorten_t,

[7x, 7:[]+]).

87

Example: longest (2)

e longest({[al, [a,b], [b,a]l,[a,b,c], [c,b,al})

e longest({a,bx*, [c,d], [e,f]})

—®

88

Various Applications

e Bouma: Hyphenation

e Vaillette: Monadic Second Order Logic

e Malouf: Two-level Morphology

e Walther: One-level Morphology

e Malouf: tokenizer for WSJ

e Bouma: Grapheme to Phoneme Conversion

e Kiraz: multi-tape automata for Syriac and Arabic

89

Application

e Set of regular expression operator definitions
e Compile regular expression into automaton

e Compile automaton into efficient program (C, C++, Java, Prolog)

90

Application: Example

% fsa write=c -—aux s2p.pl -r s2p > s2p.c

% cc s2p.c —o s2p
/» echo "ik ga naar de blauwe schuit in leuven" | s2p
Ik xa nar d@ blMw@ sxLt In 1|v@

/.

91

PART 4

e Finite State Optimality Phonology

Prince & Smolensky (1993)
Frank & Satta (1998)

Karttunen (1998)

Gerdemann & van Noord (2000)
Jiger (2001, 2003)

Eisner (1997, 2000, 2002)

92

Optimality Theory

e Prince and Smolensky (1993)
e No rules

e Instead:

1. Universal function Gen
2. Set of ranked universal violable constraints

93

Syllabification: Gen

e /nput: sequences of consonants and vowels

e Gen: assigns structure: sequence of syllables, such that

optional onset, followed by nucleus, followed by optional coda
onset and coda each contain an optional consonant
nucleus contains an optional vowel

e Furthermore, certain consonants and vowels can be unparsed

94

95

Syllabification: Gen (2)

e Gen(a)

N[a]N[.

N[al

N[al

N[IN[a]lD[]
N[1X[a]N[]

O[JN[alD[]
X[a]N[]

N []

N[al

N[a]lD[]
N[IN[a]N[]

X[a]

N[]X[alD[.

O[IN[a]lN[.

O[]X[alN[.

Phonetic Realization

e Unparsed: not phonetically realized (deletion)

e Empty segment: phonetically realized by filling in default featural values
(epenthesis)

96

Constraints

HaveOns Syllables must have onsets
NoCoda Syllables must not have codas
Parse Input segments must be parsed
FillNuc A nucleus position must be filled

FillOns An onset position must be filled

97

e Universal

e Ranked

e Violable

Constraints

98

Constraint Order

HaveOns > NoCoda > FillNuc > Parse > FillOns

99

Candidate

N[a]
N[a]N[]
N[alD[]

N[IX[alN[]
N[]X[alD[]

0L
0[]
i

O[IN[al
[IN[a]N[:
N[a]lD[.

[1X[alN[:
X[alN[]

OT Tableaux

HaveOns
*|

*1
*
*
*

*|

NoCoda

*|

FillNuc

x|

*|

Parse

FillOns

100

Finite-state Implementation

Karttunen 1998
Gen is a finite state transducer
Each of the constraints is a finite state automaton

Lenient Composition

101

102

Finite-state Implementation (2)

e Rewrite Rules = finite-state transducer
e [Two-level Rules = finite-state transducer
e OT Constraints = finite-state transducer

e Constraint ranking vs. Rule ordering

macro (o_br,
macro (n_br,
macro (d_br,
macro (x_br,
macro (r_br,

’0
'N
’D
’X
’]

Implementing Gen

7).
7).
7).

(7).
}).

1o
1o
1o
/.

onset
nucleus
coda
unparsed

macro(br, {o_br,n_br,d_br,x_br,r_br}).

macro (onset,
macro (nucleus,
macro (coda,
macro (unparsed,

o_br,cons”™ ,r_br
n_br,vowel”™ ,r_br
d_br,cons”™ ,r_br
X_br,letter ,r_br

—_ e —J L
N\ \V
L] L] L] L]

103

Implementing Gen (2)

macro(gen, {cons,vowel }x
o)
insert_each_pos([{o_br,d_br,n_br},r_br]~)
o)
parse
o)
ignore([onset”,nucleus,coda”] ,unparsed) *).

macro(parse, replace([[]:{o_br,d_br,x_br},cons, []:r_brl)
0

replace([[]:{n_br,x_br}, vowel, []:r_brl)).

macro(insert_each_pos(E), [[[1:E, 71x,[]1:E]).

104

105

Implementing Constraints

macro(no_coda, free(d_br)).
macro(parsed, free(x_br)).
macro(fill_nuc, free([n_br, r_br])).
macro(fill_ons, free(lo_br, r_br])).

macro(have_ons, ~[“[?*,onset],nucleus,?*x]).

Merciless Cascade

gen
0
have_ons
0
no_coda
0
fill_nuc
0
parsed
0
fill_ons

106

Lenient Composition!

macro(lenient_composition(I,C),

{TIoC, "domain(I oC) oI }).

I C T oC
acb b:b a:b
b:b e:e b:b
c:d c:e
c:e e:e
d:d

€.

“domain(I o C) o I
d:d

1c
a:b
b:b
c:e
e:e
d:d

107

Putting it Together

gen
1c
have_ons
1lc
no_coda
1lc
fill_nuc
1c
parsed
1lc
fill_ons

108

PO P> X X K O O O

9939353939 %
<< O OO0 == =

Problem: Constraints with Multiple Violations

IN[elX[b]
(e]0[b]IN[o]lX[p]
e]X[b]O[IN[o]X[p]

N
0
X

[e]0[b]N[o]X[p]
e]X[b]O[IN[o]X[p]
[e]X[b]X[o]X[p]
1N [e]0[b]
[IN[elX[b]

(0] X [p]
[IN[o]X [p]

0] X [p]

109

110

Counting: separate constraint for each count
gen
lc
have_ons
lc
no_coda
lc
fill_nuc
lc
parsed?2
lc
parsedl
lc
parsedO
lc
fill_ons

111

Counting (2)

e |s 2 good enough? Only for strings of length < 6
e Is 5 good enough? Only for strings of length < 9

e There is no bound to the length of a word . . .

112

Some OT analyses are not finite state

e Frank and Satta (due to Smolensky, after an idea by Hiller)
e Inputs: [a*,bx*]

e Gen: map all a's to b's and all b’'s to a’s; or map all b's to b's and all
astoa's

e Constraint: no a’s

113

Some OT analyses are not finite state (2)

e maps a™b™ to

{b"a™} if n <m
{a™b™} if n >m
{b"a™,a™b™} if n =m

e if we intersect range of this mapping with [a*x,b*x] then we have
{a™b™} where n > m.

e This language is known to be non-regular

114

Finite State OT: A New Approach

e counting

e matching

1. More Accurate
2. More Compact
3. More Efficient

115

ldea

e Candidates

e Alternatives is the set you can construct by introducing further
constraint violations in Candidates

e Compose Candidates with complement(Alternatives)

116

More specifically

e Introduce a marker for each constrain violation

e Construct a filter which maps marked-up candidates to alternatives
which have at least one marker more

e The range of this mapping is the Alternatives set

e Compose candidates with complement of Alternatives

117

Marking Constraints

e use @ to indicate a constraint violation

e macro(mrk, @).

macro (mark_v(parse), replace(
macro(mark_v(no_coda), replace(
macro(mark_v(fill_nuc), replace(

macro(mark_v(fill_ons), replace([

macro (mark_v(have_ons),

mrk,x_br, [1).
-mrk,d_br, []).
:mrk, [n_br,r_br],[])).
:mrk, [o_br,r_br],[])).

replace([]:mrk,[],n_br) o replace(mrk:[],onset,[])).

e cl:
c2:
c3:

e cl:
c2:
c3:

(@]

o

Ul

O—l

Marking Constraints: Example

=
o
Ul

=

ol
g

=

(@]
O—l
=

P

O O O

118

119

Constructing Alternatives

e lgnore everything except input and marker

b e@b0o Q@ p
b e b o Q@ p
@b @e Db o @ p

e Insert at least one additional marker:
[[7*, []:mrk]+, 7x*]
e Insert brackets arbitrarily:

{[]:br, ‘brkx

120

Alternatives

{@,br} {@,br} {@,br} {@,br} br {@,br}
() () © ® ®
@ @ @
b 0 @ p

br br br br br

121

Filter (2)

e candidates:

cl: 0[b1 N[e] X[@b] X[@o] X[@p]
c2: 0O[bIlIN[e]OL DbI1N[o] X[@p.
c3: XLeb]l X[@e] OL bIlIN[ol]X[@p]

e note: cl and c3 are in Alternatives

122

Optimality Operator

macro(Cands oo Constraint,
Cands
0
mark_v(Constraint)
0
~ range(Cands o mark_v(Constraint) o add_violation)
0

{mrk: [], ‘mrk}x*).

123

Example

macro(gen oo have_ons,
gen
0
mark_v(have_ons)
0
~ range(gen o mark_v(have_ons) o add_violation)
0

{mrk: [], ‘mrk}x*).

124

Add Violation

macro(add_violation,

{br:[], ‘br}x 7, delete brackets
o)

[[?*, []:mrk]+, ?x] % add at least one @
o)

{[]:br, ‘brkr* % reinsert brackets

) .

125

Syllabification again

gen
00
have_ons
00
no_coda
00
fill_nuc
00
parsed
00
fill_ons

126

Result

C

T e

o c 01 \ o
1:01 C/@\

O nxi X

[1:XI

[:]

127

Properties

e 22 states!
e Exact!!

e 1 CPU second to compute

128

Not always exact

Parse > F1llOns > HaveOns > FillNuc > NoCoda

N[a]D[r]O[t]IN[]D[s] (art@s)
N[a]O[rIN[ID[t]O[sIN[] (ar@ts@)

Permutation

Matching works as long as violations ‘line up’
Permutation in the filter to make them line up

macro (permute_marker,
[{[?*,mrk:[],?*,[]:mrk],
(7, []:mrk,?*,mrk: []]}*,?*]).

More permutation for more precision

than ‘counting’

129

130

Optimality Operator (2)

macro(Cands oo Prec :: C),
Cands
0
mark_v(C)

0
~ range(Cands o mark_v(C) o add_violation(Prec))

0

{ mrk:[], ‘mrk }x).

131

Add Violations with Permutation

macro(add_violation(3),
{br:[1, ‘br}x
o)
[[7*, []:mrk]+, 7]
o)
permute_marker
o)
permute_marker
o
permute_marker
o)

{[]:br, ‘brrx).

ol

© 00 NO 61 b W DN =

Nine Constraint Orderings

constraint order

have_ons > fill_ons > no_coda
have_ons > no_coda > fill_nuc
no_coda > fill nuc > parse >
have_ons > fill_ons > no_coda
have_ons > no_coda > parse >
no_coda > parse > fill_nuc >

> fill_nuc
>> parse >
fill_ons >
> parse >
fill_nuc >
fill _ons >

>> parse
fill_ons
have_ons
fill _nuc
fill_ons
have_ons

have_ons > fill_ons > parse > fill_nuc > no_coda
have_ons > parse > fill_ons > fill_nuc > no_coda
parse > fill_ons > have_ons > fill_nuc > no_coda

132

133

Experiments

e A permutation of at most 1 is required
e Compact automata

e Fast automata construction

Size of Automata

134

Prec Constraint order
1 2 3 4 5 6 7 8 9
match exact | 29 22 20 17 10 3 28 23 20
count <5 05 220 422 167 10 240 1169 2900 4567
count <10 | 280 470 1667 342 10 420 8269 13247 16777
count <15 |465 720 3812 517 10 600 22634 43820 50502

Speed of Construction

Prec Constraint order
1 2 3 4 5 § 7 8 9
match exact | 1.0 09 09 09 08 0.7 1.5 1.3 1.1
count <5 |09 17 48 16 05 19 106 18.0 30.8
count <1028 47 286 40 05 4.2 832 112.7 160.7
count <1568 10.1 999 86 05 8.2 336.1 569.1 757.2

135

136

Determining Exactness

e Assume 7' is a correct implementation of some OT analysis, except
that it fails to distinguish different numbers of constraint violations for
one or more constraints

e \We can check this for each of the constraints

137

Determining Exactness (2)

e If T is not exact wrt to constraint C, then the following must be
ambiguous:

T
0
mark_v(C)
o)
{‘mrk:[], mrk}x*

e there is an algorithm to determine if a given transducer is functional

138

Harmony ordering

e A constraint imposes harmony ordering on the set of candidates
e In classical OT: counting

e Proposal: harmony ordering must be regular relation

Harmony ordering as a regular relation

> is the harmony ordering (partial order)

harmony ordering should only order candidates with identical input
y > v’ indicates that vy is more harmonic than ¢’

we require that there is a regular relation R = {(y,y')|ly > v'}.

if this condition is met, the resulting OT is regular (Jager 2001, 2003;
Eisner 2002)

139

140

Multiple Violations

e Some constraints are violated multiple times, i.e., at multiple locations.
Typically, harmony ordering is regular.

e Some constraints are violated gradiently, i.e., different degrees of
violation.

Gradient constraints

constraints with bounded number of degrees of violation (can be thougt
of as a series of non-gradient constraints)

horizontal gradience: degree of violation proportional to some distance
In strings

McCarthy (2002) claims that the latter type of constraints should not
be in OT

Eisner (1997) and Birot (2003) show that the latter type of constraints
might impose non-regular harmony ordering

141

142

Example: All-Feet-Left (Tesar and Smolensky (2000)

e Context: analysis of metrical stress

some syllables are organized into feet

prosodic word consists of those feet as well as other syllables
each foot has a head syllable

each word has a head foot

head syllable of head foot receives primary stress

other head syllables receive secondary stress

e o(0o2)|olo|o(o2)

143

All-Feet-Left (2)

e various constraints which determine analysis of syllables into feet

o All-Feet-Left: assigns to each foot f as many violation marks as the
number of syllables intervening between the left edge of the word and
the left edge of f.

144

All-Feet-Left (3)

e 0o(oo): 0+2+4 violations
e l0](0)(o)(o)(o)(0): 0+14243+4+5 violations
e In general, can assign a quadratic number of violations

e Birot 2003: such a harmony ordering cannot be described by regular
relation

145

Finite State OT: Summary

e Phonological relations are (mostly) finite-state

e OT phonology is finite state provided:

Gen is regular relation
Each of the constraints is regular
The harmony ordering is regular

