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History

Much early work in variationist linguistics focused on investigating
single features of dialects

e.g., lenition of /k/ to /ch/ in the word ik

Goal: characterizing dialects and languages

Isoglosses were used to visualize feature differences:
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Why aggregation?

Problem: which feature to select (highly subjective!)

Different features show different patterns

Taking together many features (aggregation) enables us to detect
reliable relations (Nerbonne, 2009)

The aggregative approach is very suitable for computational
linguistics!
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What data to aggregate over?

We use pronunciation data (coded as IPA text) of many different
words

Corresponds to what we hear
A large amount of this type of data is available

But note that other types of data could also be used (e.g.,
morphological or phonological data)

Focus of this talk on Dutch dialect pronunciations
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Dutch dialect material

Dutch dialect data source: the Goeman-Taeldeman-Van
Reenen-Project data (GTRP; Goeman & Taeldeman, 1996)
Transcriptions (IPA) of 1876 items for 613 localities
Most recent Dutch dialect data source: 1980 – 1995
We use a 562-word subset with diacritics removed

Transcriptional differences BEL and NL→ Focus on the
Netherlands in this presentation (424 varieties)
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Geographic distribution

Leeuwarden

Veendam

Aalsmeer

Utrecht
Delft

Urk

Putten

Coevorden

Oldenzaal

Middelburg Goirle

Venlo
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Comparing pronunciations

Levenshtein distance
Number of edit operations to transform one string into the other
Levenshtein distance between [mO@lk@] and [mEl@k] is 4

mO@lk@ subst. O/E 1
mE@lk@ delete @ 1
mElk@ insert @ 1
mEl@k@ delete @ 1
mEl@k

4

m O @ l k @
m E l @ k

1 1 1 1
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Improving the Levenshtein distance

Traditional Levenshtein distance
Linguistic syllabicity constraint
No normalization (Heeringa et al., 2006)

Improved Levenshtein distance
Sound segment distances are estimated from the data itself using
an iterative Pointwise Mutual Information procedure (Wieling et al.,
2009):

PMI(x , y) = log2

(
p(x , y)

p(x) p(y)

)
This improves the following incorrect alignment:

l E I k @ n
l i k h 8 n
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Calculating aggregate dialect distances

To obtain the aggregate distance between each dialect pair, we
simply average the Levenshtein distances of all word pairs (in our
case 562)
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Visualizing aggregate distances

We are comparing pronunciations of different locations
It makes sense to try to project the pronunciation distances onto a
map

There are several visualization options, e.g.:
Cluster map
Fuzzy cluster border map
Line map
Vector map
Multidimensional scaling (MDS) map
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Cluster map
Closest varieties have the same color; not good to use!
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Fuzzy cluster border map
Improvement over (unstable) clustering
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Line map
Darker lines connect closer varieties
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Vector map
Lines pointing to the neighborhood being most similar
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MDS map of the Netherlands
Reduction to 3 dimensions mapped to RGB-color (explained variance: 87.5%)
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External validation of aggregate distances

These maps are nice to look at, but do they give a valid overview
of the dialectal language variation?

Yes! The Levenshtein distance seems to be a valid basis for
determining dialect distances:

Gooskens & Heeringa (2004) found a significant correlation
(r ≈ 0.7) between perceptual linguistic distances and Levenshtein
distances
Beijering et al. (2008) found similar results (r ≈ 0.6)

Additionally, the dialect areas we find are also identified by experts
on Dutch dialectology to be distinct areas

Martijn Wieling 17/37
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Comparing different sets of aggregate distances

As a comparison method we use LOCAL INCOHERENCE which
assigns a score to a set of distances based on the idea that closer
varieties should have more similar pronunciations (lower is better)
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Extensions of the previous approach

Two different extensions will be discussed next:
The first extension is based on intuitions from psycholinguistic work
on spoken word recognition and modifies the Levenshtein algorithm
to obtain a new set of pairwise distances

The second extension uses the aligned sound correspondences to
simultaneously cluster varieties and obtain a linguistic basis for this
clustering
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Using intuitions from spoken word recognition

Previously discussed Levenshtein algorithm: location of edit
operation does not influence cost

Psycholinguistic work on spoken word recognition:
Start of the word is more important than end of the word
(Cohort Model; Marslen-Wilson, 1987)
Stressed syllable is important for word recognition
(Altman & Carter, 1989)
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Cohort based approach

Adaptation of Levenshtein algorithm
Edit operation cost highest at the start and reduces gradually

m O @ l k @
m E l @ k
0 2.4 2.2 0 1.6 0 1
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Stress based approach

Not all stressed syllables clearly marked in GTRP
Almost all words have initial stress
Approximation→ Edit operation costs higher at first three
positions
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Results
LOCAL INCOHERENCE (lower is better)

Slightly increased performance for adapted algorithms

LOCAL INCOHERENCE

start (log.) 1.91
stress 1.89
regular 1.94

However, in practice highly comparable results...

Martijn Wieling 23/37
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Levenshtein vs. adapted Levenshtein
r = 0.95
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Co-clustering varieties and sound correspondences

Regular clustering does not yield a linguistic basis (only post hoc;
Heeringa, 2004)
New research: Co-clustering to cluster varieties and sound
correspondences simultaneously

Based on the spectrum of a graph
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Generating a bipartite graph from alignments

A bipartite graph is a graph whose vertices can be divided in two
disjoint sets where every edge connects a vertex from one set to a
vertex in another set. Vertices within a set are not connected.

From the alignments, we extract the number of sound
correspondences for each variety (compared to a reference site,
we use Delft)

We generated a bipartite graph of varieties v and sound
correspondences s

There is an edge between vi and sj iff freq(sj in vi) > 0
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Example of a bipartite graph A

[a]/[i] [2]/[i] [r]/[x] [k]/[x] [r]/[ö] [r]/[K]
Appelscha 1 1 1 0 0 0
Oudega 1 1 1 0 0 0
Zoutkamp 0 0 1 1 0 0
Kerkrade 0 0 0 1 1 1
Appelscha 0 0 0 1 1 1
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Co-clustering procedure

Used by Dhillon (2001) to co-cluster words and documents
Based on finding the eigenvectors of the adjacency matrix of a
bipartite graph and subsequently using the k -means algorithm on
the eigenvectors to obtain the two-way clustering

The mathematical details are not covered in this talk (but see
Wieling and Nerbonne, 2009)
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Example of co-clustering a biparte graph (1/3)

Based on the adjacency matrix A:
[a]/[i] [2]/[i] [r]/[x] [k]/[x] [r]/[ö] [r]/[K]

Appelscha 1 1 1 0 0 0
Oudega 1 1 1 0 0 0
Zoutkamp 0 0 1 1 0 0
Kerkrade 0 0 0 1 1 1
Appelscha 0 0 0 1 1 1

We can calculate the eigenvectors (of the Laplacian) of A:
λ2 = .057, xxx = [-.32 -.32 0 .32 .32 -.34 -.34 -.23 .23 .34 .34]T

λ3 = .53, xxx = [.12 .12 -.7 .12 .12 .25 .25 -.33 -.33 .25 .25]T
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Example of co-clustering a biparte graph (2/3)

To cluster in k = 2 groups, we use:
λ2 = .057, xxx = [-.32 -.32 0 .32 .32 -.34 -.34 -.23 .23 .34 .34]T
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Example of co-clustering a biparte graph (2/3)

To cluster in k = 2 groups, we use:
λ2 = .057, xxx = [-.32 -.32 0 .32 .32 -.34 -.34 -.23 .23 .34 .34]T

We obtain the following co-clustering:
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Example of co-clustering a biparte graph (3/3)

To cluster in k = 3 groups, we use:
λ2 = .057, xxx = [-.32 -.32 0 .32 .32 -.34 -.34 -.23 .23 .34 .34]T

λ3 = .53, xxx = [.12 .12 -.7 .12 .12 .25 .25 -.33 -.33 .25 .25]T
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Results using Dutch dialect data

In the following slides the results using the bipartite spectral graph
partitioning method on the Dutch dialect data will be shown.
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Results: {2,3,4} co-clusters in the data
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Results: {2,3,4} clusters of varieties
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Results: {2,3,4} clusters of sound correspondences
Red: objectively determined to be in top-10 of most important sound correspondences

Some sound correspondences specific for the Frisian area

Reference [2] [2] [a] [o] [u] [x] [x] [r]
Frisian [I] [i] [i] [E] [E] [j] [z] [x]

Some sound correspondences specific for the Limburg area
Reference [r] [r] [k] [n] [n] [w]
Limburg [ö] [K] [x] [ö] [K] [f]

Some sound correspondences specific for the Low Saxon area

Reference [@] [@] [@] [-] [a]
Low Saxon [m] [N] [ð] [P] [e]
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Conclusion

A good way to approach language variation is from the aggregate
level

Methods from computational linguistics are highly suitable to
investigate the large amounts of data present at this level

It is easy to adapt and evaluate these methods to test alternative
hypotheses based on, e.g., psycholinguistic research

The discussed graph-theoretic method is a valuable method as it
provides a linguistic basis for the aggregate results
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Thank you for listening!

Any questions?
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