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Motivation Regression Introduction Examples Summary

An example data set
We are interested in speech rate of phrases in three contexts
(labeled A, B and C). We recorded participants (or subjects) where
they utter a set of phrases (or items) in all three contexts. The
data looks like this:

index subject time item context speech rate

1 subject1 10 item1 A 3.755
2 subject1 7 item1 B 4.150
3 subject1 15 item1 C 3.060
4 subject1 11 item2 A 3.719

. . .
135 subjectN 15 item1 A 5.210
136 subjectN 2 item1 B 5.670
137 subjectN 3 item1 C 5.005
138 subjectN 14 item2 A 5.037
. . .

*Note: based on a real research, but data is simplified and randomly generated.
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How to analyze it?

I The typical analysis would be ‘within-subject’ repeated
measures ANOVA.

I This method accounts for the variation due to subject.

I We compare:

sbj1, ctxA, item1 sbj1, ctxB, item1 sbj1, ctxC, item1

sbj1, ctxA, item2 vs sbj1, ctxB, item2 vs sbj1, ctxC, item2

sbj1, ctxA, item3 sbj1, ctxB, item3 sbj1, ctxC, item3

I Effectively, we are comparing means over items.
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Language-as-a-fixed-effect fallacy

I With RM ANOVA analysis, we account for the variation
between subjects: our results are generalizable to the
population at large.

I However, we do not account for variation due to items (words
or phrases): our results do not generalize for the ‘language’,
and we are loosing power.

I This problem is called ‘language-as-a-fixed-effect fallacy’
(Clark 1973; Raaijmakers et al. 1999).

I Workaround within RM ANOVA framework exist. However,
multi-level or mixed-effect linear models provide a more
general solution.

I Multilevel modeling is a general technique that can be used
for a wide range of problems.
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Overview

I A short introduction to general linear models (not to be
confused with generalized linear models).

I Multilevel models: introduction.

I Multilevel models: examples.

I Summary.
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Simple regression: a reminder

yi = a+ bxi + ei

y is the outcome (or response) index i represent each
unit observation/measurement (‘index’ in our
example data).

x is the predictor variable.

a is the intercept.

b is the slope of the regression line.

a+ bxi is the deterministic part of the model.

e is the error, or the variation that is not accounted for
by the model. Assumed to be (approximately)
normally distributed with 0 mean (ei are assumed to
be i.i.d).

Typically, regression is applied when both outcome and predictor
variable(s) are continuous values, but it can be extended for
categorical variables.
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Predicting effect of time on speech rate

We want to see whether time during the experiment has an effect
on speech rate.

index subject time item context speech rate

1 subject1 10 item1 A 3.755
2 subject1 7 item1 B 4.150
3 subject1 15 item1 C 3.060

. . .

Our model is,

speech.ratei = a+ b× timei + ei

Here is the way to specify in R:

> lm(speech.rate ~ time)
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R output: predicting effect of time on speech rate

> summary(lm(rate ~ time))

Call:

lm(formula = rate ~ time)

Residuals:

Min 1Q Median 3Q Max

-5.2888 -1.6484 -0.5204 1.6276 5.1750

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.88059 0.39048 20.182 <2e-16 ***

time -0.08645 0.04295 -2.013 0.0459 *

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2.273 on 148 degrees of freedom

Multiple R-squared: 0.02665, Adjusted R-squared: 0.02007

F-statistic: 4.052 on 1 and 148 DF, p-value: 0.04594
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And the graph...
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Multiple regression

Regression analysis can be extended to multiple predictors.

yi = a+ b1x1i + . . .+ bkxki + ei

Example would be predicting children’s test scores from mothers’
and fathers’ IQ scores.
In R:

> lm(speech.rate ~ time + subject.age)

Note: In R, intercept, a, is implicitly included in a model
specification. If you want a model with 0 intercept, you could
specify the model as speech.rate ~ time + subject.age - 1, and a
model without slope (model of the mean) can be specified using
speech.rate ~ 1.
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Regression with categorical predictors

I A categorical variable with N levels converted to N− 1
‘indicator’ (or dummy) variables.

I Consider ‘context’ variable with three levels (‘A’, ‘B’, ‘C’), we
can code it as two variables, ‘contextB’, ‘contextC’ :

level contextB contextC

A 0 0
B 1 0
C 0 1

I Other coding options (contrasts) are possible. With some
constraints, the inferences will not change.

I If the levels are ordered, transforming the categorical variable
into a numeric variable may be more appropriate.
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An example with only two levels

We want to check whether means of two of the contexts differ
(labeled as ‘A’ and ‘C’).

Normally we would do a t-test:

> t.test(rate2 ~ context2, var.equal=T)

Two Sample t-test

data: rate2 by context2

t = -1.4806, df = 98, p-value = 0.1419

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-1.5596945 0.2267907

sample estimates:

mean in group A mean in group C

6.428031 7.094483
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Ç. Çöltekin / RuG Multilevel models Apr 18, 2013 11 / 37



Motivation Regression Introduction Examples Summary

Doing t-test with regression

I We have two levels of the predictor (A and C).

I We code ‘A’ as 0 and ‘C’ as 1.

yi = a+ b× contextCi + ei
a (intercept) is the mean of level ‘A’.

b (slope) is the mean difference between ‘A’ and ‘B’.
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Doing t-test with regression: practice

> summary(lm(rate2 ~ context2))

Call:

lm(formula = rate2 ~ context2)

Residuals:

Min 1Q Median 3Q Max

-5.0466 -1.3540 -0.4838 1.6895 5.0638

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.4280 0.3183 20.196 <2e-16 ***

context2C 0.6665 0.4501 1.481 0.142

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2.251 on 98 degrees of freedom

Multiple R-squared: 0.02188, Adjusted R-squared: 0.0119

F-statistic: 2.192 on 1 and 98 DF, p-value: 0.1419
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T-test as regression: the picture
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T-test as regression: the picture
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ANOVA as regression

Remembering that we code three levels as two indicator (dummy)
variables:

yi = a+ b1 × contextBi + b2 × contextCi + ei
a (intercept) is the mean of context ‘A’.

b1 (slope of contextB) is the mean difference between ‘A’ and ‘B’.

b2 (slope of contextC) is the mean difference between ‘A’ and ‘C’.
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ANOVA as regression: practice

> summary(lm(rate ~ context))

Call:

lm(formula = rate ~ context)

Residuals:

Min 1Q Median 3Q Max

-5.0466 -1.3719 -0.4616 1.6664 5.0638

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.4280 0.3128 20.548 < 2e-16 ***

contextB 1.6165 0.4424 3.654 0.000359 ***

contextC 0.6665 0.4424 1.506 0.134105

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2.212 on 147 degrees of freedom

Multiple R-squared: 0.08404, Adjusted R-squared: 0.07158

F-statistic: 6.744 on 2 and 147 DF, p-value: 0.001577
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ANOVA as regression: the picture
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ANOVA as regression: ANOVA table

> anova(lm(rate ~ context))

Analysis of Variance Table

Response: rate

Df Sum Sq Mean Sq F value Pr(>F)

context 2 66.00 32.998 6.7437 0.001577 **

Residuals 147 719.29 4.893

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Note that the fitted model is the same, we only summarize the
results differently.

Problem with this analysis: the cases
(measurements/observations) are not independent. Each case is
related to others through ‘subject’ and ‘item’.
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What is a multilevel model?

yi = a+ b1x1i + . . .+ bkxki + ei

I In a classical regression model, the parameters (a and bi) are
‘fixed’.

I In multilevel models, we model one or more parameters as
‘random’, being drawn from a distribution.

I Multilevel modeling is about estimating the main model, and
the random parameters simultaneously.
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A simple example: accounting for between-subject variation

yi = aj[i] + bx1i + ei

aj = µj + εj

For our example,

y (response variable) is the speech rate, indexed by
each measurement unit (speaker × context × item).

aj is intercept for each subject j, notation j[i] indicates
subject associated with ith unit.

e is the error for each unit.

µj is the mean speech rate for subject j.

εj is the error (variation) associated with the speech
rate for subject j.

Note: this is equivalent to repeated measures ANOVA.
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Analysis using RM ANOVA

Repeated-measures ANOVA is a restricted version of multilevel
linear model, which works fine for this example.

> summary(aov(rate ~ context + Error(subject)))

Error: subject

Df Sum Sq Mean Sq F value Pr(>F)

Residuals 9 75.24 8.359

Error: Within

Df Sum Sq Mean Sq F value Pr(>F)

context 2 66.0 33.00 7.07 0.00119 **

Residuals 138 644.1 4.67

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Compare with F(2, 147) = 6.7437(p = 0.001577) from earlier
(non-RM) ANOVA.
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Analysis with multi-level modeling

> library(lme4); summary(lmer(rate ~ context + (1|subject)))

Linear mixed model fit by REML

Formula: rate ~ context + (1 | subject)

AIC BIC logLik deviance REMLdev

670.6 685.7 -330.3 659.6 660.6

Random effects:

Groups Name Variance Std.Dev.

subject (Intercept) 0.24616 0.49615

Residual 4.66703 2.16033

Number of obs: 150, groups: subject, 10

Fixed effects:

Estimate Std. Error t value

(Intercept) 6.4280 0.3434 18.717

contextB 1.6165 0.4321 3.741

contextC 0.6665 0.4321 1.542

Correlation of Fixed Effects:

(Intr) cntxtB

contextB -0.629

contextC -0.629 0.500
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Why use multilevel models?

I RM ANOVA has very strict requirements
I all assumptions of ANOVA, except independence of samples.
I balanced design
I sphericity (homogeneity of variance/covariance)

I We may want to include continuous predictors.

I We may have more than one sources error, e.g., error due to
subjects and items, where RM ANOVA is no more applicable.

I We may want to include predictors at higher, e.g., subject,
level.

I We may want to arrive at conclusions at multiple levels (more
on this later).

I Using ‘generalized linear models’ (logistic regression, count
regression) may be more appropriate.

I The data may be structured in complex ways.
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Varying intercepts

Level 1: speech.ratei = aj[i] + b× contexti + ei
Level 2: aj = µsubject + εj

The examples we discussed so far are varying-intercept models. In
these models,

I Each group has a different intercept: each subject has a
characteristic/baseline speech rate.

I All groups share common slope(s): subject and the context
does not interact. That is, a subject does not systematically
speak slower on one context while speaking faster on the
other context(s).

I Level 2 can be more complex, as much as linear modeling
allows.
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Varying intercepts: visualization
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Varying intercepts: multiple sources of variation

Level 1: speech.ratei = aj[i] + b× contexti + ei
Level 2: aj = µsubject + εsubject

Changes are in Level 2 regression.

α is the intercept for the Level 1 intercept term (base speech
rate without subject and item variation).

δsubject is the (systematic) change to the base speech rate due to
subject.

δitem is the (systematic) change to the base speech rate due to
item. N

Note: this model can be formulated different ways.
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Varying intercepts: multiple sources of variation

Level 1: speech.ratei = α+ aj[i] + ak[i] + b× contexti + ei
Level 2: aj = δsubject + εsubject

ak = δitem + εitem

Changes are in Level 2 regression.

α is the intercept for the Level 1 intercept term (base speech
rate without subject and item variation).

δsubject is the (systematic) change to the base speech rate due to
subject.

δitem is the (systematic) change to the base speech rate due to
item. N

Note: this model can be formulated different ways.
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Multiple sources of variation: analysis in R

> summary(lmer(rate ~ context + (1|subject) + (1|item)))

Linear mixed model fit by REML

Formula: rate ~ context + (1 | subject) + (1 | item)

AIC BIC logLik deviance REMLdev

488.4 506.4 -238.2 475.1 476.4

Random effects:

Groups Name Variance Std.Dev.

subject (Intercept) 0.48599 0.69713

item (Intercept) 4.13699 2.03396

Residual 1.06964 1.03424

Number of obs: 150, groups: subject, 10; item, 5

Fixed effects:

Estimate Std. Error t value

(Intercept) 6.4280 0.9472 6.786

contextB 1.6165 0.2068 7.815

contextC 0.6665 0.2068 3.222

Correlation of Fixed Effects:

(Intr) cntxtB

contextB -0.109

contextC -0.109 0.500
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Varying slopes

As well as intercepts, slopes can vary:

Level 1: speech.ratei = α+ aj[i] + ak[i] + bk[i] × contexti + ei
Level 2: aj = δsubject + ε

a
subject

ak = δitem + εaitem
bk = µitem + εbitem

bj is varying slope due to item (that is, we have
item–context interaction)

µa mean value of slope (varied by item)
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Varying slopes: visualization
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Varying slope: example
> summary(lmer(rate ~ context + (1|subject) + (1+context|item)))

Linear mixed model fit by REML

Formula: rate ~ context + (1 | subject) + (1 + context | item)

AIC BIC logLik deviance REMLdev

497 530.1 -237.5 474.2 475

Random effects:

Groups Name Variance Std.Dev. Corr

subject (Intercept) 0.48791 0.69850

item (Intercept) 4.05136 2.01280

contextB 0.12299 0.35070 -0.210

contextC 0.01643 0.12818 0.995 -0.110

Residual 1.04089 1.02024

Number of obs: 150, groups: subject, 10; item, 5

Fixed effects:

Estimate Std. Error t value

(Intercept) 6.4280 0.9380 6.853

contextB 1.6165 0.2574 6.281

contextC 0.6665 0.2119 3.144

Correlation of Fixed Effects:

(Intr) cntxtB

contextB -0.209

contextC 0.154 0.363
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Continuous predictors

Level 1: speech.ratei = α+ aj[i] + ak[i]
+bt × timei + bk[i] × contexti + ei

Level 2: aj = δsubject + ε
a
subject

ak = δitem + εaitem
bk = µitem + εbitem

Varying slopes without varying intercepts are also possible, but
rarely needed in practice.
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Continuous predictors: example
> summary(lmer(rate ~ context + time + (1|subject) + (1+context|item)))

Linear mixed model fit by REML

Formula: rate ~ context + time + (1 | subject) + (1 + context | item)

AIC BIC logLik deviance REMLdev

491.1 527.2 -233.6 459.9 467.1

Random effects:

Groups Name Variance Std.Dev. Corr

subject (Intercept) 0.5140446 0.716969

item (Intercept) 4.2347270 2.057845

contextB 0.0662157 0.257324 -0.461

contextC 0.0021566 0.046439 0.974 -0.247

Residual 0.9501461 0.974754

Number of obs: 150, groups: subject, 10; item, 5

Fixed effects:

Estimate Std. Error t value

(Intercept) 7.10359 0.97366 7.296

contextB 1.50092 0.22835 6.573

contextC 0.53312 0.19908 2.678

time -0.07407 0.01920 -3.858

Correlation of Fixed Effects:

(Intr) cntxtB cntxtC

contextB -0.329

contextC -0.033 0.428

time -0.180 0.131 0.174
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Predictors at higher levels

Level 1: speech.ratei = α+ aj[i] + ak[i]
+bt × timei + bk[i] × contexti + ei

Level 2: aj = δsubject + β× age+ εasubject
ak = δitem + εaitem
bk = µitem + εbitem

In R:

rate ~ context + time + (1|subject+age) + (1+context|item))
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More multilevel scenarios (1)

We want to test the effect of a new language learning method,
where

Level 1: Students in classrooms test scores, gender . . .
Level 2: Classrooms in schools teacher’s attitude . . .
Level 3: Schools in cities/districts average income, city size . . .
Level 4: Cities in countries native languages, SLA policies . . .
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Model fit

I In (complex) multilevel models, the standard inferences from
least-squares regression are not available.

I The typical practice (like any multiple regression model) is to
find the best fit (e.g., guided by AIC).

I In most cases, simulation based inference and model checks
are the only option.

I If you really need your p-values, there are tools to calculate
‘simulation based’ p-values (e.g., pvals.fnc() from languageR

package by Baayen).
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Summary

I Multilevel (or mixed-effect) models are a generalization of
linear models where some of the parameters are considered
random variables.

I We model parameters as ‘random’ where we have a
systematic variation that we can explain by input variables.

I Fixed parameters are those where inferential uncertainty is
assumed to be random.

I The multilevel modeling provides a solution to
language-as-a-fixed-effect fallacy, but it is applicable to a
wider range of problems.
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Where to go from here

I We have only covered examples of least-squares regression,
multilevel models can also be fitted for any ‘generalized linear
model’.

I Once you have taken the path of specifying ‘random’
parameters, you can embrace it, and use Bayesian inference.

Recommended reading:

I Gelman and Hill (2007): if you are serious about multilevel
modeling, worth your reading time: well written, precise,
accessible.

I Baayen (2008): especially takes a linguistic perspective.
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Clark’s solution to the language-as-a-mixed-effect fallacy

The solution offered Clark 1973 for the language-as-a-mixed-effect
fallacy:

min F ′(i, j) =
F1F2
F1 + F2

Where F1(n,n1) is the F value due to subjects, F2(n,n2 is the
F-value due to items (e.g., words or sentences). The associated
degrees of freedom i will be equal to number of observations (note
that n1 is the DF due to number of subjects, and n2 is the DF due
to number of items) n, and j can be calculated using,

j =
(F1 + F2)

2

F21
n2

+
F22
n1

See Clark (1973) for the details and the derivations.
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Fixed and random effects

The predictors whose coefficients are modeled as random variables
are called ‘random effects’, and the ones with constant coefficients
are called ‘fixed effects’.
Question is which variables shoud you model as random, and which
ones should be modeled as fixed. Commonly expected∗ guidlines
are, model a variable as

fixed if all values (or all values that the researcher is interested) are
represented in the sample.

random if sample contains only part of the vlaues that the research
aims to generalize.

* See Gelman and Hill (2007, p.245) for a discussion.
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