

Mixed-effects regression models

Martijn Wieling

Center for Language and Cognition Groningen, University of Groningen

Seminar on Statistics and Methodology, Groningen - April 24, 2012

Overview

Part I

- Introduction
- Recap: multiple regression
- Mixed-effects regression analysis: explanation
- Case-study: Dutch dialect data (with Harald Baayen and John Nerbonne)
- Conclusion
- Part II
 - Extended case-study: Analyzing eye tracking data (with Hanneke Loerts)¹

¹All slides will be made available after this lecture.

Introduction

- Consider the following situation (taken from Clark, 1973):
 - Mr. A and Mrs. B study reading latencies of verbs and nouns
 - Each randomly selects 20 words and tests 50 participants
 - Mr. A finds (using a sign test) verbs to have faster responses
 - Mrs. B finds nouns to have faster responses

How is this possible?

Introduction

- Consider the following situation (taken from Clark, 1973):
 - . Mr. A and Mrs. B study reading latencies of verbs and nouns
 - · Each randomly selects 20 words and tests 50 participants
 - Mr. A finds (using a sign test) verbs to have faster responses
 - Mrs. B finds nouns to have faster responses
- How is this possible?

The language-as-fixed-effect fallacy

- The problem is that Mr. A and Mrs. B disregard the variability in the words (which is huge)
 - Mr. A included a difficult noun, but Mrs. B included a difficult verb
 - Their set of words does not constitute the complete population of nouns and verbs, therefore their results are limited to their words
- This is known as the language-as-fixed-effect fallacy (LAFEF)
 - Fixed-effect factors have repeatable and a small number of levels
 - Word is a random-effect factor (a non-repeatable random sample from a larger population)

Why linguists are not always good statisticians

- LAFEF occurs frequently in linguistic research until the 1970's
 - Many reported significant results are wrong (the method is anti-conservative)!
- Clark (1973) combined a by-subject (*F*₁) analysis and by-item (*F*₂) analysis in a measure called *min F*'
 - Results are significant and generalizable across subjects and items when min F' is significant
 - Unfortunately many researchers (>50%!) incorrectly interpreted this study and may report wrong results (Raaijmakers et al., 1999)
 - E.g., they only use *F*₁ and *F*₂ and not *min F*' or they use *F*₂ while unneccesary (e.g., counterbalanced design)

university of groningen

Our problems solved...

- Apparently, analyzing this type of data is difficult...
- Fortunately, using mixed-effects regression models solves all our problems!
 - The method is easier than using the approach of Clark (1973)
 - Results can be generalized across subjects and items
 - Mixed-effects models are robust to missing data (Baayen, 2008, p. 266)
 - We can easily test if it is necessary to treat item as a random effect

But first some words about regression...

Our problems solved...

- Apparently, analyzing this type of data is difficult...
- Fortunately, using mixed-effects regression models solves all our problems!
 - The method is easier than using the approach of Clark (1973)
 - Results can be generalized across subjects and items
 - Mixed-effects models are robust to missing data (Baayen, 2008, p. 266)
 - We can easily test if it is necessary to treat item as a random effect
- But first some words about regression...

Regression vs. ANOVA

- Most people either use ANOVA or regression
 - ANOVA: categorical predictor variables
 - Regression: continuous predictor variables
- Both can be used for the same thing!
 - ANCOVA: continuous and categorical predictors
 - Regression: categorical (dummy coding) and continuous predictors
- Why I use regression as opposed to ANOVA
 - No temptation to dichotomize continuous predictors
 - Intuitive interpretation (your mileage may vary)
 - Your design does not have to be completely balanced
 - Mixed-effects analysis is relatively easy to do and does not require a balanced design (which is generally necessary for repeated-measures ANOVA)
- This talk will focus on regression

Recap: multiple regression

- Multiple regression: predict one numerical variable on the basis of other independent variables (numerical or categorical)
 - (Logistic regression is used to predict a categorical dependent)
- We can write a regression formula as $y = I + ax_1 + bx_2 + ...$
- E.g., predict the reaction time of a participant on the basis of word frequency, word length and speaker age:
 RT = 200 5WF + 3WL + 10SA

- Mixed-effects regression modeling distinguishes fixed-effects and random-effects factors
- Fixed-effects factors:

university of groningen

- Repeatable levels
- Small number of levels (e.g., Gender, Word Category)
- Same treatment as in multiple regression (treatment coding)
- Random-effects factors:
 - Levels are a non-repeatable random sample from a larger population
 - Often large number of levels (e.g., Subject, Item)

What are random-effects factors?

- Random-effect factors are factors which are likely to introduce systematic variation
 - Some participants have a slow response (RT), while others are fast
 = Random Intercept for Subject
 - Some words are easy to recognize, others hard
 - = Random Intercept for Item
 - The effect of word frequency on RT might be higher for one participant than another: non-native speakers might benefit more from frequent words than native speakers
 - = Random Slope for Word Frequency per Subject
 - The effect of speaker age on RT might be different for one word than another: modern words might be recognized easier by younger speakers
 Random Slope for Speaker Age per Item
 - = Random Slope for Speaker Age per Item
- Note that it is essential to test for random slopes!

Random slopes are necessary!

This example is explained at Florian Jaeger's blog: http://hlplab.wordpress.com

Specific models for every observation

- Mixed-effects regression analysis allow us to use random intercepts and slopes to make the regression formula as precise as possible for every individual observation in our random effects
 - A single parameter (standard deviation) models this variation for every random slope or intercept
 - The actual random intercepts and slopes are derived from this value
 - Likelihood-ratio tests assess whether the inclusion of random intercepts and slopes is warranted
- Note that multiple observations for each level of a random effect are necessary for mixed-effects analysis to be useful (e.g., participants respond to multiple items)

Specific models for every observation

- RT = 200 5WF + 3WL + 10SA (general model)
 - The intercepts and slopes may vary (according to the estimated standard variation for each parameter) and this influences the word- and subject-specific values
- RT = 400 5WF + 3WL 2SA (word: scythe)
- RT = 300 5WF + 3WL + 15SA (word: twitter)
- RT = 300 7WF + 3WL + 10SA (subject: non-native)
- *RT* = 150 5*WF* + 3*WL* + 10*SA* (subject: fast)
- And it is easy to use!
 - > lmer($RT \sim WF + WL + SA + (1 + SA | Wrd) + (1 + WF | Subj)$)

Specific models for every subject

Case study: Dutch dialects w.r.t. standard Dutch

- The goal of this study is to investigate which factors predict the dialect distances of 562 words in 424 locations from standard Dutch
 - This study was a collaboration with John Nerbonne and Harald Baayen and is published as Wieling, Nerbonne and Baayen (2011, PLoS ONE).
- We use a mixed-effects regression model for this purpose
 - Random-effects factors: Location, Word and Transcriber
- Several location-, speaker- and word-related factors are investigated
 - E.g., number of inhabitants, average age of inhabitants, speaker age, speaker gender, word frequency and word category

Geographic distribution of locations

Determining dialect distances

- We use phonetic transcriptions of 562 words in 424 locations in NL
- These are compared to standard Dutch transcriptions using the Levenshtein algorithm (Levenshtein, 1965)
 - The Levenshtein algorithm measures the minimum number of insertions, deletions and substitutions to transform one string into another

- The distance between the dialectal and standard Dutch pronunciation is based on the total cost of the operations (above: 3)
- We actually use linguistically validated sensitive sound distances: e.g., [a]:[0] versus [a]:[i] (Wieling et al., 2012, JPHON)

The influence of geography

- An important determinant for dialect variation is geographic location (people in nearby locations have more contact than in distant locations)
- We include geography by predicting dialect distances with a Generalized Additive Model (GAM) which models the non-linear interaction between longitude and latitude
 - The fitted values of this GAM are included as a predictor in our model
 - (The details of this procedure are outside the scope of this lecture)

Fitted GAM for dialect distance from standard Dutch

Final model: fixed-effects

	Estimate	Std. Error	t-value
Intercept	-0.0153	0.0105	-1.4561
GAM distance (geography)	0.9684	0.0274	35.3239
Population size (log)	-0.0069	0.0026	-2.6386
Population average age	0.0045	0.0025	1.8049
Population average income (log)	-0.0005	0.0026	-0.1988
Noun instead of Verb/Adjective	0.0409	0.0122	3.3437
Word frequency (log)	0.0198	0.0060	3.2838
Vowel-consonant ratio (log)	0.0625	0.0059	10.5415

**t*-values indicate significance if |t| > 2 (two-tailed) or |t| > 1.65 (one-tailed)

Final model: random effects

Factors	Rnd. effects	Std. Dev.	Cor.	
Word	Intercept	0.1394		
	Pop. size (log)	0.0186		
	Pop. avg. age	0.0086	-0.856	
	Pop. avg. income (log)	0.0161	0.867	-0.749
Location	Intercept	0.0613		
	Word freq. (log)	0.0161	-0.084	
	Noun instead of Verb/Adjective	0.0528	-0.595	0.550
Transcriber	Intercept	0.0260		
Residual		0.2233		

*The inclusion of all random slopes and intercepts was warranted by likelihood-ratio tests

*A richer random effect structure is likely possible, but not computationally feasible (now: 24 CPU hours!)

Final model: interesting correlational structure

Factors	Rnd. effects	Std. Dev.	Cor.	
Word	Intercept	0.1394		
	Pop. size (log)	0.0186		
	Pop. avg. age	0.0086	-0.856	
	Pop. avg. income (log)	0.0161	0.867	-0.749
Location	Intercept	0.0613		
	Word freq. (log)	0.0161	-0.084	
	Noun instead of Verb/Adjective	0.0528	-0.595	0.550
Transcriber	Intercept	0.0260		
Residual		0.2233		

*The inclusion of all random slopes and intercepts was warranted by likelihood-ratio tests

*A richer random effect structure is likely possible, but not computationally feasible (now: 24 CPU hours!)

Correlation structure of by-word random slopes

- LD = -0.0069PS 0.0005PI + 0.0045PA + ... (general model)
- *LD* = -0.0600*PS* 0.0420*PI* + 0.0290*PA* + ... (*gehad*: extreme pattern)
- *LD* = 0.0380*PS* + 0.0420*PI* 0.0110*PA* + ... (*vrij*: inverted pattern)

By-location random slopes for word frequency

By-location random slopes for Noun-Verb contrast

Case study conclusions

- Our model explained about 45% of the variation in the data with respect to the distance from standard Dutch
- We identified a number of location- and word-related variables playing an important role in predicting the dialect distance from standard Dutch
 - Geography (i.e. social contact between locations)
 - Location-related factors: population size and average age
 - Word-related factors: word category, word frequency and vowel-cons. ratio
- Using a mixed-effects regression approach ensures our results are generalizable and enabled us to quantify and study the variation of individual words and speakers

Time for a short break!

- The goal of this study is to investigate if Dutch people use grammatical gender to anticipate upcoming words
 - This study was conducted together with Hanneke Loerts (who did most of the work) and is currently under review (Loerts, Wieling and Schmid, submitted)
- What is grammatical gender?

university of groningen

- Gender is a property of a noun
- Nouns are divided into classes: masculine, feminine, neuter, ...
- E.g., *hond* ('dog') = common, *paard* ('horse') = neuter
- The gender of a noun can be determined from the forms of other elements syntactically related to it (Matthews, 1997: 36)

Gender in Dutch

Gender	Definite article	Adjective in definite NPs	Adjective in Indefinite NPs
Common	De hond	De mooie hond	Een <mark>mooie</mark> hond
English equivalent	The _{com} dog _{com}	The _{com} beautiful dog _{com}	A beautiful _{com} dog _{com}
Neuter	Het huis	Het mooie huis	Een <mark>mooi</mark> huis
English equivalent	The _{neu} house _{neu}	The _{neu} beautiful house _{neu}	A beautiful _{neu} house _{neu}

- Gender in Dutch: 70% common, 30% neuter
 - When a noun is diminutive it is always neuter
- Gender is unpredictable from the root noun and hard to learn
 - Children overgeneralize until the age of 6 (Van der Velde, 2004)

Why use eye tracking?

- Eye tracking reveals incremental processing of the listener during the time course of the speech signal
- As people tend to look at what they hear (Cooper, 1974), lexical competition can be tested

Testing lexical competition using eye tracking

 Cohort Model (Marslen-Wilson & Welsh, 1978): Competition between words is based on word-initial activation

 This can be tested using the visual world paradigm: following eye movements while participants receive auditory input to click on one of several objects on a screen

Support for the Cohort Model

- Subjects hear: "Pick up the candy" (Tanenhaus et al., 1995)
- Fixations towards target (Candy) and competitor (Candle): support for the Cohort Model

Lexical competition based on syntactic gender

- Other models of lexical processing state that lexical competition occurs based on all acoustic input (e.g., TRACE, Shortlist, NAM)
- Does gender information restrict the possible set of lexical candidates?
 - I.e. if you hear *de*, will you focus more on an image of a dog (*de hond*) than on an image of a horse (*het paard*)?
 - Previous studies (e.g., Dahan et al., 2000 for French) have indicated gender information restricts the possible set of lexical candidates
- In the following, we will investigate if this also holds for Dutch with its difficult gender system using the visual world paradigm
 - We analyze the data using mixed-effects regression in $\ensuremath{\mathbb{R}}$

university of groningen

Experimental design

- 28 Dutch participants heard sentences like:
 - Klik op de rode appel ('click on the red apple')
 - Klik op het plaatje met een blauw boek ('click on the image of a blue book')
- They were shown 4 nouns varying in color and gender
 - Eye movements were tracked with a Tobii eye-tracker (E-Prime extensions)

Experimental design: conditions

Target	Competitor		Gender Competitor	Colour Competitor
	Het _{neu} groene bureau _{neu} The _{neu} green desk _{neu}		Different	Different
De _{com} rode appel _{com} The _{com} red apple _{com}	De _{com} gele zon _{com} The _{com} yellow sun _{com}		Same	Different
incom i ca apprecom	Het _{neu} rode hart _{neu} The _{neu} red heart _{neu}	•	Different	Same
	De _{com} rode taart _{com} The _{com} red cake _{com}		Same	Same

- Subjects were shown 96 different screens
 - 48 screens for indefinite sentences (klik op het plaatje met een rode appel)
 - 48 screens for definite sentences (klik op de rode appel)

Visualizing fixation proportions: different color

Condition: Colour different - Gender same

Condition: Colour different - Gender different

Visualizing fixation proportions: same color

Martijn Wieling

Which dependent variable?

- Difficulty 1: choosing the dependent variable
 - Fixation difference between Target and Competitor
 - Fixation proportion on Target requires transformation to empirical logit, to ensure the dependent variable is unbounded: log(((y+0.5))/((N-y+0.5)))

• ...

- Difficulty 2: selecting a time span
 - Note that about 200 ms. is needed to plan and launch an eye movement
 - Taking every individual sampling point into account is possible but computationally expensive
- In this lecture we use:
 - The difference in fixation between Target and Competitor
 - Averaged over the time span starting 200 ms. after the onset of the determiner and ending 200 ms. after the onset of the noun (about 800 ms.)
 - This ensures that gender information has been heard and processed, both for the definite and indefinite sentences

Independent variables

- Variable of interest
 - Competitor gender vs. target gender
- Variables which could be important
 - Competitor color vs. target color
 - Gender of target (common or neuter)
 - Definiteness of target
- Participant-related variables
 - Gender (male/female), age, education level
 - Trial number
- Design control variables
 - Competitor position vs. target position (up-down or down-up)
 - Color of target
 - ... (anything else you are not interested in, but potentially problematic)

Some remarks about data preparation

- Check if variables correlate highly
 - If so: exclude variable, or transform variable
 - See Chapter 6.2.2 of Baayen (2008)
- Check if numerical variables are normally distributed
 - If not: try to make them normal (e.g., logarithmic transformation)
 - See Chapter 2.2 of Baayen (2008)
 - Note that your dependent variable does not need to be normally distributed (the residuals of your model do!)
- Center your numerical predictors when doing mixed-effects regression
 - If the predictor is not centered, a different random slope (i.e. coefficient) will directly result in a different intercept and this will result in uninformative correlations of this random slope and the random intercept
 - See Chapter 7.1 and Figure 7.5 of Baayen (2008)

Our data

> head(eye)

	Subject	Item	Target	Defin	ite	Target	Neuter	Ta	argetCo	lor	Targetl	Brown	n Target	Place
1	S300	appel			1		()	:	red		()	1
2	S300	appel			0		()		red		()	2
3	S300	vat			1		-	L	bro	own			L	4
4	S300	vat			0		-	L	bro	own			L	1
5	S300	boek			1		-	L	b.	lue		()	4
6	S300	boek			0		-	L	b.	lue		()	1
	TargetTo	pRight	CompCo	olor	Comp	Place	TupCdo	own	CupTdo	vn '	TrialID	Age	IsMale	
1		0		red		2		0		0	44	52	0	
2		1	b	rown		4		1		0	2	52	0	
3		0	ye.	llow		2		0		1	14	52	0	
4		0	b	rown		3		1		0	43	52	0	
5		0]	blue		3		0		0	5	52	0	
6		0	ye.	llow		3		1		0	30	52	0	
	Edulevel	. SameC	olor Sa	ameGe	nder	Targe	etPerc	Сс	ompPerc	F	ocusDif	f		
1	1		1		1	40.	.90909	6.	818182	3.	4.09090	9		
2	1		0		0	63.	63636	0.	000000	6	3.636364	4		
3	1		0		0	47.	72727	43.	181818		4.54545	5		
4	1		1		0	27.	90698	9.	302326	1	8.60465	1		
5	1		1		0	11.	11111	25.	000000	-1	3.88888	9		
6	1		0		1	23.	.80952	50.	000000	-2	6.19047	6		

Our very first mixed-effects regression model

```
# Comments are preceded by #
# Commands are preceded by >
# Results are preceded by nothing
# A model having only random intercepts for Subject and Item
> model = lmer( FocusDiff ~ (1|Subject) + (1|Item) , data=eve )
# Show the results of the model
> print ( model, corr=F )
[...]
Random effects:
                   Variance Std.Dev.
Groups Name
Item (Intercept) 22.968 4.7925
Subject (Intercept) 257.111 16.0347
Residual
                     3275.691 57.2336
Number of obs: 2280, groups: Item, 48; Subject, 28
Fixed effects:
           Estimate Std. Error t value
(Intercept) 30.867 3.377 9.14
```


By-item random intercepts

Martijn Wieling

By-subject random intercepts

Martijn Wieling

Is a by-item analysis necessary?

- anova always compares the simplest model (above) to the more complex model (below)
- The *p*-value > 0.05 indicates that there is no support for the by-item random slopes
 - This indicates that the different conditions were very well controlled in the research design

Adding a fixed-effect factor

- SameColor is highly important as |t| > 2
 - negative estimate: more difficult to distinguish target from competitor
- We need to test if the effect of SameColor varies per subject
 - If there is much between-subject variation, this will influence the significance of the variable in the fixed effects

Testing for a random slope

```
# a model with an uncorrelated random slope for SameColor per Subject
> model4 = lmer(FocusDiff ~ SameColor + (1|Subject) + (0+SameColor|Subject),
               data=eve)
> anova (model3, model4)
model3: FocusDiff ~ SameColor + (1 | Subject)
model4: FocusDiff ~ SameColor + (1 | Subject) + (0 + SameColor | Subject)
      Df AIC BIC logLik Chisg Chi Df Pr(>Chisg)
model3 4 24610 24633 -12301
model 4 5 24611 24640 -12301 0.738 1 0.3903
# model4 is no improvement, what about a model with a random slope for
# SameColor per Subject correlated with the random intercept
> model5 = lmer(FocusDiff ~ SameColor + (1+SameColor|Subject), data=eye)
> anova(model3,model5)
model3: FocusDiff ~ SameColor + (1 | Subject)
model5: FocusDiff ~ SameColor + (1 + SameColor | Subject)
      Df AIC BIC logLik Chisg Chi Df Pr(>Chisg)
model3 4 24610 24633 -12301
```

```
model5 6 24603 24637 -12295 11.111 2 0.003866 **
```


Investigating the model structure

> print (model5, corr=F)

Linear mixed model fit by REML Formula: FocusDiff ~ SameColor + (1 + SameColor | Subject) Data: eye AIC BIC logLik deviance REMLdev 24595 24629 -12292 24591 24583 Random effects: Groups Name Variance Std.Dev. Corr Subject (Intercept) 335.73 18.323 SameColor 115.33 10.739 -0.855 2754.06 52.479 Residual Number of obs: 2280, groups: Subject, 28 Fixed effects: Estimate Std. Error t value (Intercept) 53.021 3.849 13.78 SameColor -46.511 3.035 -15.32

• Note SameColor is still highly significant as the |t| > 2 (absolute value)

By-subject random slopes

Martijn Wieling

Mixed-effects regression models

Correlation of random intercepts and slopes r = -0.855

Investigating the gender effect

- It seems there is no gender effect...
- Perhaps we can take a look at the fixation proportions again (now within our time span)

Martiin Wieling

Visualizing fixation proportions: different color

Visualizing fixation proportions: same color

Martijn Wieling

Mixed-effects regression models

There might be an interaction?

```
> model7 = lmer(FocusDiff ~ SameColor + SameGender * TargetDefinite +
                           (1+SameColor|Subject), data=eve)
> print (model7, corr=F)
Fixed effects:
                         Estimate Std. Error t value
                          53.0880
                                     4.3022 12.340
(Intercept)
                        -46.5098
SameColor
                                     3.0344 -15.327
SameGender
                          -0.5754
                                     3.1305 -0.184
TargetDefinite
                          0.1003
                                     3.1082 0.032
SameGender:TargetDefinite
                          0.6581
                                     4.4011 0.150
```

- An interaction is specified by a * in the model specification
- No interaction present between definiteness of the target and same gender of competitor and target (t-values lower than |2|)...

Another interaction?

```
> model8 = lmer(FocusDiff ~ SameColor + SameGender * TargetNeuter +
                          (1+SameColor|Subject), data=eve)
> print (model8, corr=F)
Fixed effects:
                      Estimate Std. Error t value
                        59.373
                                  4.290 13.839
(Intercept)
SameColor
                       -46.692 3.033 -15.394
                       -7.622 3.080 -2.475
SameGender
TargetNeuter
                       -12.464 3.096 -4.027
SameGender:TargetNeuter
                       14.974
                                   4.386 3.414
```

- There is clear support for an interaction (all |t| > 2)
- Can we see this in the fixation proportion graphs?

Visualizing fixation proportions: target neuter

Visualizing fixation proportions: target common

Martijn Wieling

Testing if the interaction yields an improved model

To compare models differing in fixed effects, we specify REML=F.
We compare to the best model we had before, and include TargetNeuter as
it is also significant by itself.

The interaction improves the model significantly

- Unfortunately, we do not have an explanation for the strange neuter pattern
- Note that we still need to test the variables for inclusion as random slopes (we do this in the lab session)

How well does the model fit?

```
# "explained variance" of the model (r-squared)
> cor( eye$FocusDiff , fitted( model8 ) )^2
[1] 0.2347549
```

```
> qqnorm( resid( model8 ) )
> qqline( resid( model8 ) )
```


Adding a factor and a continuous variable

```
# set a reference level for the factor
> eye$TargetColor = relevel ( eye$TargetColor , "brown" )
> model9 = lmer(FocusDiff ~ SameColor + SameGender * TargetNeuter +
TargetColor + Age +
(1+SameColor|Subject), data=eye)
> print(model9, corr=F)
```

Fixed effects:

	Estimate	Std. Error	t value
(Intercept)	81.7602	17.7363	4.610
SameColor	-46.8085	3.0221	-15.489
SameGender	-7.5730	3.0641	-2.472
TargetNeuter	-12.4801	3.0794	-4.053
TargetColorblue	11.6108	3.5878	3.236
TargetColorgreen	15.3901	3.5768	4.303
TargetColorred	16.5083	3.5798	4.612
TargetColoryellow	16.0423	3.5931	4.465
Age	-0.7301	0.3591	-2.033
SameGender:TargetNeuter	14.8669	4.3637	3.407

Converting the factor to a contrast

```
> eye$TargetBrown = (eye$TargetColor == "brown") *1
> model10 = lmer(FocusDiff ~ SameColor + SameGender * TargetNeuter +
                           TargetBrown + Age +
                           (1+SameColor|Subject), data=eve)
> print (model10, corr=F)
Fixed effects:
                      Estimate Std. Error t value
                      96.6001 17.5691 5.498
(Intercept)
SameColor
                     -46.8328 3.0300 -15.456
SameGender
                      -7.5911 3.0635 -2.478
                    -12.5225 3.0789 -4.067
TargetNeuter
                     -14.8923 2.9256 -5.090
TargetBrown
                      -0.7284 0.3588 -2.030
Age
SameGender:TargetNeuter 14.8965
                                  4.3626 3.415
# model9b and model10b: REML=F
> anova (model9b, model10b)
            AIC BIC logLik Chisq Chi Df Pr(>Chisq)
        Df
model10b 11 24566 24629 -12272
model9b 14 24570 24650 -12271 2.6164 3 0.4546
```


Many more things to do...

- We need to see if the significant fixed effects remain significant when adding these variables as random slopes per subject
- There are other variables we should test (e.g., education level)
- There are other interactions we can test
- We will experiment with these issues in the lab session (Friday, 9-11)!
 - We use a subset of the data (only color competitors)
 - Simple R-functions are used to generate all plots

What you should remember...

- Mixed-effects regression models offer an easy-to-use approach to obtain generalizable results even when your design is not completely balanced
- Mixed-effects regression models allow a fine-grained inspection of the variability of the random effects, which may provide additional insight in your data
- Mixed-effects regression models are easy in R
 - Lab session: this Friday, 9:00 11:00

Thank you for your attention!

