
Testing the Robustness of Linguistic Distances

Wilbert Heeringa & Franz Manni

University of Groningen, Faculty of Arts, Humanities Computing, Groningen

National Museum of Natural History, Eco-Anthropology Group, Paris

Statistics Seminar

Wednesday, April 19, 2006

1

Introduction

• Linguistic distance measurements between dialects based on a limited number of words.

• What is the minimum words required to obtain reliable results?

Measure consistency.

• What is the influence of the selection of the words on the results?

Perform bootstrapping.

• We consider pronunciation and lexical measurements.

2

Overview

• Measurements

• Consistency

• Classification

• Bootstrapping

• Conclusion

• Final remarks

3

Measurements

4



Finding pronunciation distances

• Pronunciation includes phonetic and morphologic variation.

• Pronunciation differences measured with Levenshtein distance.

5

Algorithm

• Levenshtein distance was applied for comparison of Irish dialects by Kessler in 1995.

Later it was applied to Dutch, Sardinian, Norwegian, American English, German and

Bulgarian dialects, and Bantu languages.

• Calculate the cost of changing one string into another.

• Example: afternoon may be pronounced as ["æ@ft@­n0;n] in the dialect of Savannah and

as [­æft@r"nu;n] in the dialect of Lancaster.

• Change the first pronounciation into the other.

æ@ft@n0n delete @ 1

æft@n0n insert r 1

æft@rn0n subst. 0/u 1

æft@rnun

3

6

Algorithm

• Many sequence operations map [æ@ft@n0n] → [æft@rnun]. Levenshtein distance = cost

of cheapest mapping.

• The sum of the operations is divided by the length of the longest alignment which gives

the minimum cost. The longest alignment has the greatest number of matches.

• Example:

æ @ f t @ ∅ n 0 n

æ ∅ f t @ r n u n

1 1 1

A total cost of 3 divided by a length of 9 gives a word distance of 0.33 or 33%.

• Using m words the distance between two dialects is equal to the average of m

Levenshtein distances.

• All distances between n dialects are arranged in a n × n matrix.

7

Algorithm

• Refinement: use gradual acoustic segment distances as operation weights.

• We used the logarithmic segment distances: greater distances are reduced more than

smaller ones.

• We assure that the minimum cost is based on a alignment in which

– a vowel matches with a vowel

– a consonant matches with a consonant

– the [j] or [w] matches with a vowel

– the [i] or [u] matches with a consonant

– the schwa matches with a sonorant

8



Aggregate

• Simplified example: Find distance between Middelstum and Ommen on the basis of 6

words. Diacritics are ignored, all operation costs have a weight of 1.

Middelstum Ommen

schip sxIp sxIp 0/4 0

pet pEt pEt@ 1/4 0.25

geroepen rOupm @rupm 2/6 0.33

springen sprIN sprINkt 2/7 0.29

kelder kEl@r kEld@r 1/6 0.17

huis hus hys 1/3 0.33

1.37

• Distance: (1.37/6) × 100 = 23%.

• From the RND questionaire we selected 125 words. Since only word pairs are considered

which have the same lexemes, the number of word pairs per dialect pair may vary.

9

Finding lexical distances

• We use Goebl’s Gewichteter Identitätswert.

• Similarity weighted by frequency of lexemes.

• We want to obtain distances. Therefore we calculate inverse similarity weights.

• Distance between similar lexemes varies between 2/n (mininum number of similar

lexemes) and 1 (if lexemes across all dialects are the same), where n is the number of

varieties.

• Example: In our 360 RND dialects we found the following lexemes for schip: schip

(353), boot (2), lager (1), schuit (4).

schip vs. schip : 353/360 = 0.981

schuit vs. schuit : 4/360 = 0.011

boot vs. boot : 2/360 = 0.006

• Distance between different lexemes is always 1.

10

Aggregate

• Example: Find distance between Middelstum and Ommen on the basis of 6 words.

Middelstum Ommen

vriend kAm@rU;t
ˇ

kAm@rO:t 140/354 0.40

schip sxIp sxIp 353/360 0.98

ver v
˚

E:r Vit
ˇ

1

zijn bIn
"

bInt 176/360 0.49

nog nOx nOx 354/355 1.00

duwen stø;tn
"

drYk
ˇ
N
"

1

4.87

• Distance: (4.87/6) × 100 = 81.2%.

11

Consistency

12



Consistency

• Cronbach’s α is a popular method to measure consistency or reliability.

• When calculating the distances between nv varieties on the basis of nw words, nw

matrices are obtained, each containing the distances between the nv varieties on the

basis of the pronunciations of one word.

• The average inter-correlation r̄ among the words is calculated as:

r̄ =

nw∑

i=2

i−1∑

j=1

r(wi, wj)

nw×(nw−1)
2

• Cronbach’s α can be written as a function of the number of words and the average

inter-correlation among the words:

α =
nw × r̄

1 + (nw − 1) × r̄

13

Data source

• Reeks Nederlandse Dialectatlassen (RND).

• Compiled by E. Blancquaert and W. Pée.

• Published by ’de Sikkel’, Antwerp.

• 16 volumes, 16 transcribers.

• 1956 dialects

• Texts in phonetic script, consisting of 139 sentences.

• Texts are in phonetic script.

• About 2-5 informants per site.

• We selected 360 dialects, 125 words.

• 125 words vary phonetically, 107 words vary lexically.

14

Consistency

0 20 40 60 80 100 120
number of words

0.0

0.2

0.4

0.6

0.8

1.0

C
ro

nb
ac

h’
s 

al
ph

a

0 20 40 60 80 100
number of words

-0.1

0.1

0.3

0.5

0.7

C
ro

nb
ac

hs
’s

 a
lp

ha

Left: Cronbach’s α values for random subsets of 2 through 125 words (pronunciation). From 13 words on

α is always higher than 0.70. For 125 words α is equal to 0.97. Right: Cronbach’s α values for random

subsets of 2 through 107 words (lexis). From 86 words on α is always higher than 0.70. For 107 words α is

equal to 0.75.

15

Classification

16



Clustering

Grouw Haarlem Delft Hattem Lochem

Grouw 0 41 44 45 46

Haarlem 41 0 16 34 36

Delft 44 16 0 37 38

Hattem 45 34 37 0 20

Lochem 46 36 38 20 0

Apply Johnson’s algorithm to the upper half of the matrix (blue values):

• Iteratively,

1. select shortest distance in matrix,

2. fuse the two datapoints involved.

• To iterate, we have to assign a distance from the newly formed cluster to all other

points (several alternatives, we used UPGMA).

• Repeat until one cluster is left over.

17

Composite Cluster Map

• Introduced by Peter Kleiweg

• Darker lines separate distant groups, lighter lines more similar groups.

• In the first step the border between the two most significant groups is drawn.

• In the second step, two borders are drawn which separate the three most significant

groups.

• The first border, which was already drawn in the previous step, is drawn again, resulting

in a darker color.

• The second border is drawn for the first time, so it will be lighter than the other one.

• In the i-th step, the i − 1 borders of the i most significant groups are drawn again

(they get darker), and a new border is added.

• If the cluster contains n varieties, we start with drawing borders which separate the

2 most signficant groups, and end with drawing borders which separate the n most

significant groups.

18

Clustering

Two composite cluster maps. Left: map obtained on the basis of pronunciation distances. Right: map

obtained on the basis of lexical distances.

19

Bootstrapping

20



Aggregate on classification level

• We have one matrix per word. The distances in the matrix are based on the variation

of that word (pronunciation or lexical).

• Create a composite cluster map for each matrix.

• We have n words, so we get n composite cluster maps.

• Show the aggregate of the n maps.

21

Pronunciation

Two composite cluster maps. The left one is obtained on the basis of the aggregate of 125 distance matrices.

The right one is obtained on the basis of the aggregate of 125 single word-based cluster maps.

22

Lexis

Two composite cluster maps. The left one is obtained on the basis of the aggregate of 107 distance matrices.

The right one is obtained on the basis of the aggregate of 107 single word-based cluster maps.

23

Bootstrapping

• We have one matrix per word. The distances in the matrix are based on the variation

of that word (pronunciation or lexical).

• Usually if we have n words, we take the aggregate of all n corresponding matrices.

• Bootstrap matrix: select randomly m matrices from the n matrices and take the

aggregate.

• In our case: n = m. Some matrices will not be selected, others may be selected more

than once.

• Generate 100 bootstrap matrices, and generate a composite cluster map for each.

• Superimpose all 100 cluster maps.

24



Pronunciation

Two composite cluster maps. The left one is obtained on the basis of one distance matrix, which is based on

all 125 words. The right one is based on 100 bootstrapping matrices. Each matrix is based on 125 randomly

selected words.

25

Lexis

Two composite cluster maps. The left one is obtained on the basis of one distance matrix, which is based on

all 107 words. The right one is based on 100 bootstrapping matrices. Each matrix is based on 107 randomly

selected words.

26

Conclusions

• Pronunciation distances are more consistent than lexical distances (Cronbach’s α: 0.97

versus 0.75).

• Both aggregation of cluster maps and bootstrapping shows the pronunciation distances

to be more robust than the lexical distances.

27

Final remarks

We thank:

• Peter Kleiweg (visualization software)

More about dialectometry in Groningen and Amsterdam can be found at:

• http://www.dialectometry.net/

28


