Magnitude Estimation
Outline of the talk

- Magnitude Estimation: The background
- ME and linguistic judgements
- ME: The implementation
- ME: A study
- ME: Perspectives and Problems
Grammaticality Judgements

- central in linguistic theory

grammaticality - acceptability - acceptability judgement
Grammaticality Judgements

- idealization of binarity: grammatical vs ungrammatical
- gradedness / relative acceptability
- pragmatic/context-induced
- frequency
- prescriptive knowledge
- preferences
- ...

(Schuetze 1996)
Grammaticality Judgements

- Chomsky (1975: 131)

“An adequate linguistic theory will have to recognize degrees of grammaticalness.”
Grammaticality Judgements

- The reality so far

Informal ordinal scales

e.g.: 0 - ? - ?? - ??* - * - **
- informal; i.e. no generally established categories (Featherston 2004)
- absolute rating, rather than relative ranking
- no information on relative distances
- limited scale (2-to-6-point scales)
- limited suitability for statistical analysis (in particular, parametric statistics)
An interval scale of linguistic acc. judgements

Magnitude Estimation

(e.g. Bard et al. 1996; Cowart 1997)
Magnitude Estimation in Psychophysics

- Stevens (1956, 1975)
 Proportional associations of numerical judgements with (perceived) physical stimulus, e.g. Line length, brightness, loudness, electric shock, etc.

 _________________ 10
 _________________ 14
Magnitude Estimation in Psychophysics

- Stevens (1956, 1975)
 Proportional associations of numerical judgements with (perceived) physical stimulus, e.g. Line length, brightness, loudness, etc.

Psychophysical Law:

\[\psi = kS^n \]

\(\psi \) - perceived stimulus magnitude
\(S \) - physical magnitude
\(k \) - constant
\(n \) - characteristic of a given modality (e.g. brightness 0.5; line length 1.0)
Psychophysical ME judgements
Psychophysical Law:

\[\psi = kS^n \]

- \(\psi \) - perceived stimulus magnitude
- \(S \) - physical magnitude
- \(k \) - constant
- \(n \) - characteristic of a given modality (e.g. brightness 0.5; line length 1.0)

Power Law:

\[\log\psi = \log k + n \log S \]
The Power Law in Psychophysics

Brightness: $n=0.33$
Line length: $n=1.0$
Electric shock: $n=3.5$
Magnitude Estimation & Linguistic Judgements

- Main difference between psychophysics and linguistics:

No objective measure of comparison for status of linguistic objects

N.B.: Corpus frequency does NOT reflect acceptability patterns
- Featherston (2004):
reflexive pronouns & German ditransitives

COSMAS, IDS (531 million word forms)

<table>
<thead>
<tr>
<th>Phrase</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>ihn ihm</td>
<td>0</td>
</tr>
<tr>
<td>ihn ihm selbst</td>
<td>0</td>
</tr>
<tr>
<td>ihm ihn</td>
<td>0</td>
</tr>
<tr>
<td>ihm ihn selbst</td>
<td>0</td>
</tr>
<tr>
<td>ihm sich ((him.DAT REFL.ACC))</td>
<td>0</td>
</tr>
<tr>
<td>ihm sich selbst</td>
<td>0</td>
</tr>
<tr>
<td>ihn sich</td>
<td>1</td>
</tr>
<tr>
<td>ihn sich selbst</td>
<td>14</td>
</tr>
</tbody>
</table>
The contrast of frequency and judgement patterns

![Graph showing the contrast of frequency and judgement patterns.](image)
Magnitude Estimation

- How to validate ME for linguistic stimuli?

Keller (2003):

- objective correlate of acceptability = number of (linguistic) constraint violations (n= 0.36)
- circularity?
- How to validate ME for linguistic stimuli?

Bard et al. (1996), etc.:

- comparison of ME results with other methods (e.g. 7-point scales, rank ordering, card sorting, cross-modal matching)
Cross-modal matching

- judging (non-) linguistic stimuli by assigning:
 a) line length
 b) numeric value

High correlation between ME data obtained by line lengths and numeric values

Bard et al. (1996)
Magnitude Estimation

Web-based version - DEMO:

http://www.cogsci.ed.ac.uk/~keller/web_exp/demo_magest.instr.html
ME: Experimental variation

- line lengths instead of numbers (increases face validity)
- fixing value of reference item
- leaving vs deleting reference item in view
- discouraging subjects from using 10-point scale
- allow time for calibration of the scale, i.e. discard first few responses
Magnitude Estimation: Summary

- Judgements are anchored by a reference item
- subsequent judgements are relative to previous ones
- judgements are proportional
- the scale has no minimum divisions and is open-ended
Magnitude Estimation: Summary

- Judgements are anchored by a reference item
- Subsequent judgements are relative to previous ones
- Judgements are proportional
- The scale has no minimum divisions and is open-ended

INTERVAL SCALE
Scrambling in German

An example
Scrambling in German

(1) ... dass John gestern das Buch las.

that John yesterday the book read
(2) ... dass John gestern das Buch las.
Scrambling in German

… dass John [das Buch] gestern las.
Scrambling in German

(2) … dass John [das Buch] gestern t las.

(3) … dass [das Buch] John gestern t las.
(4) Wer kauft den/einen Wagen?
Who buys the/a car?

a. Maria denkt, dass der VATer den Wagen kauft.
 Maria thinks that the father the car buys

b. Maria denkt, dass der VATer einen Wagen kauft.

c. Maria denkt, dass den Wagen der VATer kauft.

d. *Maria denkt, dass einen Wagen der VATer kauft.*
Scrambling in context

(5) Was kauft der Vater?
What does the father buy?

a. Maria denkt, dass der Vater den WAgen kauft. *Maria thinks that the father the car buys*
b. Maria denkt, dass der Vater einen WAgen kauft.
c. ?*Maria denkt, dass den WAgen der Vater kauft.*
d. *Maria denkt, dass einen WAgen der Vater kauft.*
Scrambling: A division of labour

- Information Structure (via FOCUS at PF)
- Semantics (Definiteness at/post LF)

SYNTAX
Pilot study: Stimuli

- contexts:

All FOCUS: What happened?
S-FOCUS: Who buys the car?
O-FOCUS: What does the father buy?

- stimuli:

a. Maria denkt, dass der Vater den Wagen kauft.
 Maria thinks that the father the car buys

b. Maria denkt, dass den Wagen der Vater kauft.
 Maria thinks that the car the father buys
Pilot study: Design

- factorial design (3x2x2)
 - FOCUS: All, S-Focus, O-Focus
 - WORD ORDER: base vs scrambled
 - DEFINiteness of object: +/-def

- additional conditions:
 - Verb Second x +/- scrambling
 - Double nominative x +/- scrambling

- fillers
Pilot study: Subjects and Method

- 47 native speakers of German

- Latin Square design - 8 lexicalizations
 → 192 test items + fillers

- 8 lists: 24 test items - 10 filler items

- Practice session 1: Judging line lengths (4)
- Practice session 2: Judging sentences (4)
- Experiment: Judging sentences (34 [24])
Results:

- Normalizing data:
 \[\psi_N = \frac{\psi_S}{\psi_R} \]
 (S - Stimulus; R - Reference)

- Geometric means (i.e. log-transformation):
 \[\log \psi_N \]
Results: Line judgements

<table>
<thead>
<tr>
<th>N</th>
<th>NUMB</th>
<th>C.01</th>
<th>C.02</th>
<th>C.03</th>
<th>C.04</th>
</tr>
</thead>
<tbody>
<tr>
<td>54</td>
<td>2.2</td>
<td>2.1</td>
<td>2.0</td>
<td>1.9</td>
<td>1.8</td>
</tr>
<tr>
<td>55</td>
<td>1.7</td>
<td>1.6</td>
<td>1.5</td>
<td>1.4</td>
<td>1.3</td>
</tr>
<tr>
<td>54</td>
<td>1.2</td>
<td>1.1</td>
<td>1.0</td>
<td>0.9</td>
<td>0.8</td>
</tr>
<tr>
<td>54</td>
<td>0.7</td>
<td>0.6</td>
<td>0.5</td>
<td>0.4</td>
<td>0.3</td>
</tr>
<tr>
<td>54</td>
<td>0.2</td>
<td>0.1</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Results: Range of Individual Scales

- Min
- Max
- Reference
Range of Individual Scales (Normalized)
Number of Distinctions by Subjects

N_DIFJUD

Number of Subjects

N_DIFJUD

24 conditions - max. 14 hypothesized to be different
Subject Consistency - Ungrammatical Items

- All Focus
- S Focus
- O Focus
Subject Consistency - Non-scrambled order

ALL FOCUS

S FOCUS

O FOCUS
Results: Normalized means
Log-transformed judgements by item

- **LogJudg**
 - 1,4
 - 1,2
 - 1,0
 - 0,8
 - 0,6
 - 0,4
 - 0,2
 - 0
 - 0,2
 - 0,4
 - 0,6
 - 0,8
 - 1,0
 - 1,2
 - 1,4

- **Type**
 - 30
 - 28
 - 26
 - 24
 - 22
 - 20
 - 18
 - 16
 - 14
 - 12
 - 10
 - 8
 - 6
 - 4
 - 2
 - 0

- **Focus**
 - ALL FOCUS
 - S FOCUS
 - O FOCUS
Results: log-transformed normalized means

- Non-scrambled unfocussed NP
 - Definite/indefinite

- Scrambled unfocussed NP

- Scrambled focussed definite NP

- Scrambled unfocussed indefinite NP

- Scrambled focussed indefinite NP

- Ungrammatical sentences
Pilot study

Statistical calculations:

- Repeated Measures ANOVA
- Post-hoc tests (e.g. Tukey)
Results: log-transformed normalized means

- Non-scrambled unfocussed NP, Definite/Indefinite
- Scrambled unfocussed definite NP
- Scrambled focussed definite NP
- Scrambled unfocussed indefinite NP
- Scrambled focussed indefinite NP
- Ungrammatical sentences

** ns ns ns ns ns ns
Pilot study: Summary

- constant acceptability of base order irrespective of FOCUS/DEF
- cumulativity of some constraints (e.g. WORD ORDER & FOCUS)
- non-cumulativity of other constraints (FOCUS & DEF)
- facilitating effects of FOCUS in appropriate contexts & adverse effect in inappropriate context
- DEF constrains scrambling categorically

→ NO optionality & NO obligatoriness of scrambling in any context
Pilot study: Summary

ranked weighting according the observed interactions between the factors investigated (35).

(35) Case Violation = Verb Second = Definiteness > Word Order > FOCUS
- Classifying constraint interactions:

 Soft vs Hard Constraints (e.g. Keller 2000)

- Modelling constraint interactions in grammar:

 Stochastic OT (e.g. Boersma, Bresnan, etc.)
 Linear OT (e.g. Keller)
 Weighted Rules (e.g. Uszkoreit)
Magnitude Estimation: Problems

- The robustness of judgements

Replication studies (Bard et al. 1996) and Fanselow et al. (2004) show high reliability of graded judgements

- The effects of the reference sentence

Schlesewsky (2004): Absolute and relative ratings of items change depending on reference sentence. Relative ranking remains constant.
Magnitude Estimation: Problems

Proportionality

- What does it ‘mean’ for a sentence to be e.g. ‘twice or half as good/acceptable’ as the reference sentence?

- Can subjects judge proportionality, or do they just judge differences?
Psychophysical ME judgements
Linguistic ME judgements

Featherston (2004)
Consequences

- Just use normalized judgements, rather than log-transformed judgements
- Use ‘thermometer scale’, i.e. provide two anchoring points with fixed values as reference items (Featherston 2004)
- Treat ME data as (ultimately) reflecting ordinal scale