# Inf Sci Master thesis topics

2019/2020

## Arianna Bisazza a.bisazza@rug.nl

[P1] Predicting success in Neural MT

[P2] Compositionality in Neural Networks

[P3] Extracting Access Control policies from text

#### [P1] Predicting success in Neural Machine Translation (NMT)

Number of nominal cases (nominative, genitive, acccusative...)



Order of Subject, Object, Verb

NMT quality varies dramatically among language pairs. Differences in morphology and word order lead to worse quality

Which typological features make a language harder to model?

### [P1] Predicting success in Neural Machine Translation (NMT)

To isolate specific features we work with synthetic languages:

- Toy languages created with synchronous grammars, OR
- Real languages with fictitious features

| Original               |                  | <pre>they say the broker took them out for lunch frequently . (subject; verb; object)</pre>                                                   |  |
|------------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--|
| Polypersonal agreement |                  | they saykon the broker tookkarker them out for lunch frequently .<br>(kon: plural subject; kar: singular subject; ker: plural object)         |  |
| Word order variation   | SVO              | they say the broker took out frequently them for lunch.                                                                                       |  |
|                        | SOV              | they the broker them took out frequently for lunch say.                                                                                       |  |
|                        | VOS              | say took out frequently them the broker for lunch they.                                                                                       |  |
|                        | VSO              | say they took out frequently the broker them for lunch.                                                                                       |  |
|                        | OSV              | them the broker took out frequently for lunch they say.                                                                                       |  |
|                        | OVS              | them took out frequently the broker for lunch say they .                                                                                      |  |
| Case systems           | Unambiguous      | theykon saykon the brokerkar tookkarker theyker out for lunch frequently.<br>(kon: plural subject; kar: singular subject; ker: plural object) |  |
|                        | Syncretic        | theykon saykon the brokerkar tookkarkar theykar out for lunch frequently .<br>(kon: plural subject; kar: plural object/singular subject)      |  |
|                        | Argument marking | theyker sayker the brokerkin tookkerkin theyker out for lunch frequently .<br>(ker: plural argument; kin: singular argument)                  |  |

[Ravfogel et al. 2019] Studying the Inductive Biases of RNNs with Synthetic Variations of Natural Languages

#### [P2] Measuring compositionality in neural networks (with D. Hupkes, UvA)



Do neural language models (NLMs) systematically recombine known parts and rules? Do NLMs favour rules or exceptions during training?

[Hupkes et al. 2019] The compositionality of neural networks: integrating symbolism and connectionism

#### [P2] Measuring compositionality in neural networks (with D. Hupkes, UvA)

Extend [Hupkes et al. 2019] by:

- Monitoring accuracy of various tests over training time
- Strengthening the comparison of different architectures with better hyperparameter tuning
- Extending the dataset .. ?

#### Benchmark: PCFG SET

| Unary functions $F_U$ :  |                                         | Binary functions $F_B$ :                                                     |
|--------------------------|-----------------------------------------|------------------------------------------------------------------------------|
| copy $x_1 \cdots x_n$    | $\rightarrow x_1 \cdots x_n$            | append $\mathbf{x}, \mathbf{y} \rightarrow \mathbf{x} \mathbf{y}$            |
| reverse $x_1 \cdots x_n$ | $\rightarrow x_n \cdots x_1$            | prepend x, y $\rightarrow$ y x                                               |
| shift $x_1 \cdots x_n$   | $\rightarrow x_2 \cdots x_n x_1$        | $\texttt{remove-first} \ \mathbf{x}, \ \mathbf{y}  \rightarrow \ \mathbf{y}$ |
| swap $x_1 \cdots x_n$    | $\rightarrow x_n x_2 \cdots x_{n-1}$    | $r_1$ remove second $\mathbf{x}, \mathbf{y} \rightarrow \mathbf{x}$          |
| repeat $x_1 \cdots x_n$  | $\rightarrow x_1 \cdots x_n x_1 \cdots$ | $x_n$                                                                        |
| echo $x_1 \cdots x_n$    | $\rightarrow x_1 \cdots x_n x_n$        |                                                                              |



[Hupkes et al. 2019] The compositionality of neural networks: integrating symbolism and connectionism

#### [P3] Extracting machine-readable access control policies from text (with F. Turkmen, RuG-CS)



- Natural language is the preferred way to express security policies within real-world organizations
- NLP techniques (word embedding, information extraction) can help automate this process
- We'll look at ways to better evaluate state-of-the-art methods and improve their NLP components

attribute subject\_type{ category = subject\_cat id = "subject\_type" type = stringnamespace employee{ attribute rank{ category = subject\_cat id = "rank" type = stringnamespace health\_professional attribute working\_hours{ category = subject\_cat id = "working\_hours" type = string  $\}\}\}$ namespace object { attribute object\_type{ category = object\_cat id = "object\_type" type = stringnamespace lab\_procedure{ attribute status{ category = object\_cat id = status

```
type = string \} \}
```

[Alhoaly et al. 2019] Automated extraction of attributes from Natural Language ABAC Policies