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[P1] Predicting success in Neural Machine Translation (NMT)

Number of nominal cases (nominative, genitive, acccusative...)
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NMT quality varies dramatically among language pairs. Differences in morphology
and word order lead to worse quality

Which typological features make a language harder to model?



[P1] Predicting success in Neural Machine Translation (NMT)

To isolate specific features we work with synthetic languages:
- Toy languages created with synchronous grammars, OR
- Real languages with fictitious features

Original they say the broker took them out for lunch frequently .
(subject; verb; object)
Polypersonal agreement they saykon the broker tookkarker them out for lunch frequently .
(kon: plural subject; kar: singular subject; ker: plural object)
Word order variation SVO they say the broker took out frequently them for lunch .
SOV they the broker them took out frequently for lunch say .
VOS say took out frequently them the broker for lunch they.
VSO say they ook out frequently the broker them for lunch .
oSV them the broker ook out frequently for lunch they say .
OVS them took out frequently the broker for lunch say they .
Case systems Unambiguous theykon saykon the brokerkar tookkarker theyker out for lunch frequently .
(kon: plural subject; kar: singular subject; ker: plural object)
Syncretic theykon saykon the brokerkar tookkarkar theykar out for lunch frequently .

(kon: plural subject; kar: plural object/singular subject)
Argument marking theyker sayker the brokerkin tookkerkin theyker out for lunch frequently .
(ker: plural argument; kin: singular argument)

[Ravfogel et al. 2019] Studying the Inductive Biases of RNNs with Synthetic Variations of Natural Languages



[P2] Measuring compositionality in neural networks
(with D. Hupkes, UvA)
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Do neural language models (NLMs) systematically recombine known parts and
rules? Do NLMs favour rules or exceptions during training?

[Hupkes et al. 2019] The compositionality of neural networks: integrating symbolism and connectionism



[P2] Measuring compositionality in neural networks
(with D. Hupkes, UvA)

Extend [Hupkes et al. 2019] by:

e Monitoring accuracy of various
tests over training time

e Strengthening the comparison of
different architectures with better
hyperparameter tuning

e Extending the dataset .. ?
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[Hupkes et al. 2019] The compositionality of neural networks: integrating symbolism and connectionism




[P3] Extracting machine-readable access control policies from text
(with F. Turkmen, RuG-CS)

namespace subject{
attribute subject_type{

category = subject_cat
. S . id = "subject_type”
subject.employee.health professional. working howrs type = string}
subject.subject_type object.lab_procedure. status namespace employee{

attribute rank({
), A category = subject_cat
. . & id = "rank”
An on-call senior nurse may change the list of approved |ab procedurc; type = string}
\7_’ namespace health_professional
: {
subjecl.employee.l'ank attribute working_hours{
object. object_type category = subject_cat
id = "working_hours”
type = string }}}}
namespace object{

- Natural language is the preferred way to express =iinibuke: objoct fypel
category = object_ca
. . . . . . . id = "object_type”
security policies within real-world organizations vpe string) {
namespace lab_procedure
- NLP techniques (word embedding, information e e o N
id = status
extraction) can help automate this process type = string}}}

- We'll look at ways to better evaluate state-of-the-art
methods and improve their NLP components

[Alhoaly et al. 2019] Automated extraction of attributes from Natural Language ABAC Policies



