
Automatic estimation of semantic relatedness for sentences

using machine learning.

Master’s Thesis
Rob van der Goot

s1915770
R.M.van.der.Goot@student.rug.nl

Rijksuniversiteit Groningen
Faculty of Arts

Supervisor: Johan Bos
Second Reader: Gosse Bouma

23-07-2014

Abstract

Because of the growth of interest in natural language processing, semantic relatedness
between words already has gotten a lot of attention in research. Since the ability to
cope with natural language automatically is getting better, many natural language
processing task can already process sentences. There has also been an increasing in-
terest for semantic relatedness between sentences.

The main research question of this paper is: Which features can be automatically
extracted from a natural language sentence that represents a good overview of the
semantic meaning of a sentence? This can be tested by trying to predict the amount
of semantic relatedness between sentences.

For training and evaluation the SICK (Sentences Involving Compositional Knowl-
edge) corpus is used. This corpus consists of 9,927 sentence pairs and an average
human judgement score on relatedness between 1 and 5. The sentences in the corpus
avoid the use of named entities and encyclopedic information, as well as usage of the
past tense. Therefore we can avoid a lot of preprocessing, and we can focus on the
task at hand.

The barebone of the system is a random forest regressor. This regressor builds a
model based on a lot of features that are extracted from many different models and
representations of the original sentence pairs. Most of the features used are based on
models built by the C&C tools and Boxer. From these tools the lemmatization, POS
tags, a logical model and a Discourse Representation Structure are used. Other data
used is WordNet data, the paraphrases database and two large text corpora (Wikipedia
and the English Gigaword corpus). The models that are generated are analyzed by a
python script, and properties that might contain semantic information are extracted.
After this extraction the overlap of a sentence pair for this property is calculated, the
result of this is the value of this feature that is inserted in our regression model.

The final system uses 18 features in total. Ranging from very simple features as
sentence length and word overlap, to much more complex features as synset overlap
and a Compositional Distributional Semantic Model (CDSM). The combination of all
features results in a pearson correlation of 0.820, and a mean square error of 0.334.
Paraphrasing can improve the precision of almost all features. The result of the total
model with all features can improve to a pearson correlation of 0.837 and a mean
square error of 0.322. This is a state of the art result compared to other systems built
for the same task. For many possible applications this is already a usable result.

1

Contents

Abstract 3

1 Introduction 5
1.1 Problems . 5
1.2 Semantic relatedness . 6
1.3 Semantic similarity vs semantic relatedness 6
1.4 Research question . 7

2 Related work 8
2.1 Semantic relatedness between words . 8
2.2 Semantic relatedness between sentences 9

3 Data and resources 10
3.1 Corpus . 10
3.2 A look at the training data . 12
3.3 Preprocessing of the SICK corpus . 13

3.3.1 Syntax tree . 13
3.3.2 Logical model . 14
3.3.3 Discourse Representation Structure 15

3.4 WordNet . 17
3.5 Skip-Gram model . 17
3.6 Paraphrases . 18

4 Methodology 19
4.1 Regression model . 19
4.2 Raw sentences . 20

4.2.1 Sentence length difference . 20
4.2.2 Word overlap . 21
4.2.3 Weighted word overlap . 21

4.3 Syntax tree . 22
4.3.1 Noun overlap . 23
4.3.2 Verb overlap . 23

4.4 Discourse Representation Structure . 23
4.4.1 Discourse condition overlap . 24
4.4.2 Agent overlap . 24
4.4.3 Patient overlap . 24

4.5 Logical model . 25
4.5.1 Instance overlap . 25

2

4.5.2 Predicate overlap . 25
4.5.3 Relation overlap . 26

4.6 Other features . 26
4.6.1 WordNet overlap . 26
4.6.2 Synset overlap . 27
4.6.3 Synset distance . 27
4.6.4 Compositional Distributional Semantic Model 28
4.6.5 Relations between sentences . 30
4.6.6 ID . 30

4.7 Paraphrases . 31

5 Evaluation 34
5.1 Features separate . 34
5.2 Relative importance . 36
5.3 Superfluous data sources . 37

6 Conclusion 39

7 Future work 41

A Commands for reproducing 42

3

Acknowledgements

You are now reading the final result of my information science study, my Master’s
Thesis. I would like to thank everyone who supported me during my study years.
Starting with my supervisor Johan Bos, but also the rest of the information science
department at the rug for all the educational support and advice. And for this thesis
in particular Johannes Bjerva for the cooperation.

Finally I want to thank the organisators of shared task 1 of Semeval 2014 1, for
putting forward the task and also for creating a very well structured and good corpus.

Further, I want to thank my great family. Not for the academic/research contri-
bution of course, but just for the support and inspiration.

ps. Appendix A contains a list of all commands that are needed to reproduce my
results.

1http://alt.qcri.org/semeval2014/task1/

4

Chapter 1

Introduction

The revolution in computer science that has happened roughly the last 50 years, has
already solved many problems. Because of increasing computing power and smarter
software, many real world application work almost flawlessly. One of the harder ar-
eas of interest in computer science is natural language processing. Natural language
processing is the study of communication between humans and computers through nat-
ural language. There are still many problems in natural language processing because
computers can not understand natural language in the way humans can.

One huge part of this problem is to extract and represent the meaning of natural
language. The main goal of this paper is to show how to automatically extract the
semantic meaning of a natural language sentence. This can be done by trying to predict
the similarity between two sentences. If it is possible to extract features semantically
meaningful information from both sentences and the overlap of these features give us
a good prediction of their relatedness Then we can safely assume that the collection
of these features represent the meaning of a sentence.

1.1 Problems

At first glance it might seem that this estimation of the similarity of semantic meaning
between two sentences is only useful for usage in another task. But if we manage to
get a good working system, this is also very helpful for many different problems.

The first problem that can be solved is that the meaning of a sentence can be saved
in a generalized manner. This meaning can of course be used for many additional
interesting research tasks and applications.

A more direct use for the relatedness prediction is evaluation. Think for example
about the popular field of natural language generation. This is still a very hard task,
even the evaluation of it is a difficult part. The results of a natural language generator
could be tested against a gold standard using the similarity scores found in the system
developed in this paper.

Another task that natural language processing could use these relatedness scores
for, is trying to find alternative sentences. Because many systems that generate natu-
ral language use predictable linguistic forms, using alternative sentences between the
normal sentences can make the language use more diverse. This is also a good property
if you want to replicate human language behaviour as good as possible.

Search engines can also greatly benefit from semantic similarity scores. Using these
scores it can quickly be guessed if a document has any semantic meaning in common

5

with the search query. If this is the case, it is probably a relevant document, and it
should be high in the results.

There are also many other uses for an automatic semantic similarity score, where
this score is less important. So I will not go into great detail about them here. Think
for example about translation, question answering or summarisation. A more com-
prehensive discussion about possible applications of semantic relatedness can be found
in Budanitsky (1999).

1.2 Semantic relatedness

There are many definitions of semantics, in this paper we will make use of the definition
of Saeed (2011), he defines semantics as:

The study of meaning communicated through language.

So instead of looking for semantic relatedness between two sentences, we can also
say we are looking for relatedness between the communicated meaning of two sentences.
We are not really looking for the communicated meaning though, instead the focus is
on the perceived meaning of the sentences of the human annotators. So the definition
can be further simplified, this results in “the similarity between the meaning of sentence
A and the meaning of sentence B”.

The problem in this definition is that there is no model to represent the meaning of
a sentence in a complete and correct manner. There have been many efforts to create
such a model (for example logical models, event-based models, DRS, thesauri etc.).
All these models are representations that try to represent a real world situation in a
formalized structure. Even though these models do not correspond completely with
how human visualize sentences, these models are definitely useful. Because they do
represent a great deal of the meaning of the sentence.

In addition there is the problem of the interpretation of a sentence, sentence mean-
ing is subjective. If two people read the same sentence they will both interpret it
differently. Unquestionably we can say that there is no such thing as the correct
semantic similarity between two sentences.

Because there is no correct similarity value between two sentences, human anno-
tated judgments should be used as gold data. These human ratings are not given by
the sender of the message (who knows the intended meaning), but are given by the
receiver of the message (that has his/her own interpretation of the sentence). Conse-
quently it is impossible to estimate the degree of the semantic similarity 100% similarly
to humans.

1.3 Semantic similarity vs semantic relatedness

A clear distinction that is made in most literature is between semantic similarity and
semantic relatedness. Semantic similarity is a sub-category of semantic relatedness.
This means that relatedness includes more relations between words than similarity.
Two word relations that are good examples of fitting only in the former category (word-
pairs that are related) but not in the latter category (word-pairs that are similar), are
meronyms and antonyms. Meronyms represent a whole-part relation, think about
building-door, laptop-screen or bus-wheel. These words are not semantically similar,

6

but they are definitely related. Words that are opposites of each other are called
antonyms. They can be related but they are very often not similar at all, they even
have an opposite meaning. Think for example about colors, ‘black’ and ‘white’ are
antonyms. They are related to each other, and a sentence meaning is usually not altered
much after changing one color. But these colors are not similar at all, instead they are
meant to be completely different. For sentences this distinction is less clear then it is
for words, thus semantic relatedness and semantic similarity are used interchangeably
in the rest of this paper.

The distinction between relatedness and similarity can already expose a hard case
for predicting a similarity value, namely contradictory sentences. If two sentences
contradict each other, they are definitely related in a way. But are they similar? If you
would ask a logician the answer would be ‘no’, because the meanings are opposites.
Some linguists might answer ‘yes’ though, because the only difference might be a
negation. Thus there is no consensus on the answer of this question, and there might
be a lot of variance in the human judgments of contradictory sentences.

1.4 Research question

It is impossible for a computer to try to guess the degree of semantic relatedness be-
tween two sentences right away. That is why the focus is more on calculating the
overlap of pieces of semantic meaning between two sentences. The main thing needed
for this, are different kinds of semantically informative information that can be ex-
tracted from sentences and then compared to each other. So the focus will be on
the overlap of semantic features that can automatically be derived from sentences in
natural language. Consequently the main research question is: Which features can
be automatically extracted from a natural language sentence that represents a good
overview of the semantic meaning of a sentence?

This main research question can be splitted down into many other questions. Start-
ing with: which representations of a sentence can be used best to represent the semantic
meaning of a sentence? But also within these representations there are many different
aspects that might have a very different contribution to the semantic meaning. So
sub-questions here will be: Is model X a good model for representing the semantic
meaning of a sentence or a real world situation. These sub-questions can then be fur-
ther divided in questions about the features separately, thus: Is feature A of model X
an informational feature regarding semantic meaning?

Furthermore large corpora can tell us a lot about co-occurrences and thus related-
ness, and can thus also provide us with features. Finally the use of paraphrases will
also be exploited to see if it helps to generate semantically similar sentences, and see if
these new sentences give a better score on similarity. This raises two more questions,
firstly: To what extent can co-occurrences of words help us to estimate the semantic
similarity between sentences? And secondly, can paraphrasing be used to improve the
effects of the features?

7

Chapter 2

Related work

The last couple of years there has been a growing interest in semantic similarity. Most
of the research done before is based on semantic similarity between words. This paper
will focus on semantic similarity between sentences instead. But since sentences consist
of words, the work done on word similarity can also be very useful for sentence level
comparisons. Since semantic relatedness and semantic similarity for words can both
be interesting for the task at hand, both will be discussed.

2.1 Semantic relatedness between words

In previous research about semantic relatedness between words three different ap-
proaches can be distinguished based on the data source used. The first type of data
that is used often is a large text corpus. In these large text corpora can be searched
for co-occurrences and similar language constructions to find related words. See for
examples of this approach Miller and Charles (1991) or for an adaption to larger snip-
pets of text Islam and Inkpen (2008). A nice detailed overview of how this correlation
can work for particular examples can be found in Lund and Burgess (1996). The main
advantage of using co occurences of a large corpus is robustness, and even if language
changes the system only needs a new corpus that consists of raw text. So there is no
need for annotation, which makes this an attractive data source.

The second data source that is very popular to use is Wikipedia. Wikipedia can
firstly be used as large text corpora to search for co-occurrences and other language
phenomena as described in before This is not what it is normally used for in the
research about semantic relatedness though. In research in this area the link system
and categorical system of wikipedia are very popular information sources. The link
system can be used to measure the number of clicks needed to get from one page to
another, and the distances between categories is also a meaningful measure. These
systems perform well on rather small and simple test sets.

Results with a correlation from 0.55 (Strube and Ponzetto, 2006) to 0.78 (Witten
and Milne, 2008) are reported, using just the wikipedia links. But these results are not
comparable to the results of the sentence comparison task at all, since no user generated
language is used to evaluate. Most of the previous research uses the WordSimilarity-
353 collection (Finkelstein et al., 2001) for evaluation. This collection consists mostly
of words that have an entry in wikipedia.

Another very popular data source for this task is WordNet (Fellbaum, 1998). Word-
Net is a large thesaurus which includes a lot of information about words. WordNet is

8

used in a variety of methods to estimate relatedness between words. The correlation
scores retrieved by WordNet based systems are usually higher then the correlation
scores obtained by Wikipedia based systems. A nice overview of different methods
of extracting word similarity from WordNet can be found in (Budanitsky and Hirst,
2006). This shows that the correlations are in the range of 0.74 (Hirst and St-Onge,
1998) up to 0.85 (Jiang and Conrath, 1997). These results are generally better then
the results that are achieved by using wikipedia.

2.2 Semantic relatedness between sentences

Sentence relatedness is what we are after, and there has already been some research
on this subject. A highly similar task was introduced for Semeval 2012 (Agirre et al.,
2012). There is a large variety of methods that are used in this shared task. The
main data sources that were used at that time are WordNet and raw text corpora
(mainly Wikipedia), but also dictionaries, stopword lists and paraphrases were popular
resources. The teams participating in this shared task also made use of existing NLP
tools, just as we will. The most popular tools were lemmatizers and POS taggers,
followed by other parsers, word sense disambiguation and semantic role labelers.

The standard evaluation metric for semantic similarity scores is the Pearson cor-
relation. This has become the standard because it represents how strong the relation
between the gold-standard and the systems estimation is. Another good way to com-
pare the results is the mean square error (mse). The mse tells us how large what the
mean difference between our own estimates and gold value is.

The Pearson correlations in Semeval 2012 task range from negative up until 0.8239
(no mse’s were reported). While human annotators themselves are reported to score
approximately a 0.9 correlation on the human judgements. So the results are promising,
but the humans still do a better job at predicting semantic relatedness. This is not
surprising since the annotators are also human. Taking all this into consideration the
scores are very high, and it will be hard to improve these results.

9

Chapter 3

Data and resources

Because a supervised learning approach is used, the first thing needed is a labeled
training corpus. This corpus is described in the first section of this chapter. To gain
more information from the original corpus the raw sentences of the corpus are converted
to different models/representations, this preprocessing is discussed in the second part
of this chapter. To get even more information about the words used in the corpus
additional data from external sources is needed. This external data is discussed in the
final part of this chapter.

3.1 Corpus

The only corpus that is made with this exact task in mind is the SICK (Sentences
Involving Compositional Knowledge) (Marelli et al., 2014) corpus. This corpus is
made available by SemEval 2014, and is used for the SemEval shared task (Marelli
et al., 2014). The SICK corpus is the result of merging two other corpora. The
first also originates from SemEval, but from another task and year1. This corpus
consists of descriptions of videos by human annotators. The second corpus used is a
corpus with descriptions of images instead of videos (Rashtchian et al., 2010). Some of
these sentences are paired with descriptions of the same video/image (they are often
highly similar), and some sentences are paired with sentences of other videos/images.
Also some of these sentences were negated to obtain some sentence pairs that are a
contradiction.

The SICK corpus consists of 9,927 sentence pairs annotated with human judgments
of semantic similarity, and semantic relation. Below are some random sentence pairs
of the corpus to give an idea what the data looks like, and what kind of sentences are
there to be found.

1http://www.cs.york.ac.uk/semeval-2012/task6/index.php?id=data

10

Listing 3.1: Some example sentence pairs, taken straight out the corpus.

1105

A woman is riding a horse

A man is opening a package that contains headphones

1.1

NEUTRAL

634

A kid swimming in the ocean is tossing a coin into the pool , near the

man

A father is launching the daughter in a swimming pool

1.6

NEUTRAL

8400

There is no man playing guitar next to a drummer

A man is playing guitar next to a drummer

3.785

CONTRADICTION

2869

Two bikes are being ridden by two people

Two people are riding a motorcycle

3.8

NEUTRAL

44

Two young women are sparring in a kickboxing fight

Two women are sparring in a kickboxing match

4.9

ENTAILMENT

To make the examples more clear the tabs in the raw data are replaced with
newlines. The first thing each sentence pair has, is an id. This id is unique and ranges
from 1-10,000 (some are missing, hence the total of 9,927 sentence pairs). After this
the two sentences that form the sentence pair are stated. Finally we are provided
with the gold score for both parts of the SemEval shared task. The first score is the
gold relatedness score. This score is the average of the ratings of 10 different human
annotators. The annotators are instructed to give an estimation of the similarity in
meaning between the two sentences within the range of 1 (not related) up to 5 (very
related). This score is the score I am trying to predict in this paper.

The second gold score given here needs a little more explanation, it represents a
category. It represents the relation between both sentences, as judged by humans. The
categories that are used in the corpus are: contradiction, entailment and neutral. A
contradictory relation means that it is not possible that both sentences are true at the
same time. An entailment relation however, means that if one sentence is true the
other one must also be true. Additionally there is the neutral relation. This relation
is used when none of the former relations describe the sentence. This basically means
that there is no relation between the sentences, and the similarity score will often be
low.

In most of the examples in listing 3.1 is easy to see for humans which sentences
are descriptions of the same video/image (id’s 44 and 2869). The also applies to
descriptions of totally different video’s (id’s 634 and 1105), as well as finding added
negations (id 8400).

11

Table 3.1: Descriptive statistics for the SICK corpus

N Mean Standard deviation
Contradiction 1,459 3.60 0.450
Entailment 2,857 4.57 0.341
Neutral 5,611 2.98 0.927
All 9,927 3.53 1.016

Figure 3.1: Boxplots for each sentence relation category and all combined.

The SICK corpus consists of basic sentences. Almost all sentences are grammat-
ically correct, none of the sentences have encyclopaedic knowledge or proper nouns
in them, and they are all in present tense. The sentences are also already tokenized.
The combination of these factors make the usage of these sentences as training and
test data very convenient. It is not a good reflection of language use in the real world
though. The main reason to have a corpus this way is that many problems are already
taken care of, so the focus can be completely on the task itself.

3.2 A look at the training data

Before starting to dig into the task, it is good to get an overview of how the value
of relatedness is distributed. Table 3.1 shows the summary of the data found in the
corpus. The most interesting part is the row for ‘All’, because all sort of sentence
relations need a similarity score. But the other entries in the table are also interesting,
because sentence relation is one of the features.

The data in the table shows that entailed sentences have a very high score without
much diffusion, while neutral sentences have the lowest scores. In the row of the table
that shows the information about all sentences we can see that the data has a pretty
central mean, and a standard deviation of 1.016. This means that most of the data
(68.2%) can be found in the range of 2.514 - 4.546. For a better comparison of how
the data is distributed, see the boxplot in figure 3.1.

This boxplot shows that the data for all the sentences are even distributed. Only
the lower values (1-3) are a little less common. There also seems to be a relation
between sentence similarity and sentence relation. Neutral sentences have the lowest

12

(a) Contradicion (b) Entailment

(c) Neutral (d) All

Figure 3.2: The distributions of the semantic similarity scores as annotated by humans.

values, followed by contradiction and entailment.
Figure 3.2 confirms our findings and shows in graphs how the similarity scores are

distributed.

3.3 Preprocessing of the SICK corpus

Only basic features can be extracted directly from the raw sentence pairs. To get more
semantic information, the sentences needs to be parsed and converted to different
representations/models. The tools used for this purpose are the C&C tools (Curran
et al., 2007) and Boxer (Bos, 2008). Using the output of these tools gives the ability
to look deeper into the semantic meaning of the sentences and leads hopefully to more
useful features.

To demonstrate and explain the output files, I will use the first sentence of sentence
pair with id 2869 from the sick corpus as example sentence. This sentence is: “Two
bikes are being ridden by two people”.

3.3.1 Syntax tree

The CCG parser of C&C tools (Steedman, 2000) outputs syntax trees as .ccg files. An
example of the main part of the ccg file can be found in listing 3.2.

The syntax information is not used very extensively in this work. Thus a full
description of this structure goes beyond the scope of this work. Instead I will only
discuss the parts that are used in our own script, with line #10 as example. The first

13

Listing 3.2: The main part of the .ccg file of our example sentence.

1 ccg(1,

2 ba(s:dcl ,

3 lx(np, n,

4 fa(n,

5 t(n/n, ’Two ’, ’two ’, ’CD ’, ’I-NP ’, ’O’),

6 t(n, ’people ’, ’people ’, ’NNS ’, ’I-NP ’, ’O’))),

7 fa(s:dcl\np,

8 t((s:dcl\np)/(s:ng\np), ’are ’, ’be ’, ’VBP ’, ’I-VP ’, ’O’),

9 fa(s:ng\np ,

10 t((s:ng\np)/np, ’riding ’, ’ride ’, ’VBG ’, ’I-VP ’, ’O’),

11 fa(np:nb ,

12 t(np:nb/n, ’a’, ’a’, ’DT ’, ’I-NP ’, ’O’),

13 t(n, ’motorcycle ’, ’motorcycle ’, ’NN ’, ’I-NP ’, ’O ’)))))).

argument ((s:ng\np)/np)is the rule the parser used to determine the POS-tag of this
particular word, so this part includes no direct semantic information. After this, the
raw word follows (riding). The third argument is the lemma of the word (ride), this can
come in very useful if the words need to be compared. The last and most important
thing included is the POS-Tag, for our example the POS-Tag is VBG. The POS-Tags
used by this parser are the same ones used by the Penn-treebank (Santorini, 1990).

3.3.2 Logical model

Boxer can use a variety of model builders. The best results can be achieved by using
a combination of two of those model builders. First Paradox (Claessen and Sörensson,
2003) will try to build a logical model, Paradox is an efficient state of the art model
builder. The model built by Paradox is not a minimal model though, only the domain
size is minimal. This domain size can be used to rebuild the model in Mace-2 (McCune,
2001) to generate a minimal logical model. Boxer can also try to use world knowledge
to create a larger, more informational model. This world knowledge consists of is-a
relations from WordNet, these are used to give more information about the instances
that are identified. So this can broaden the concepts, and is basically used to describe
that if ‘a man’ is doing something, ‘a person’ is also doing something. Since this model
is giving us more information about the instances of the model, this larger model is
used for the features. The logical model for our example sentence is shown in listing 3.3.

14

Listing 3.3: The .mod file for our example sentence

1 model([d1],

2 [f(1,c2number ,[d1]),

3 f(1,n1abstract_entity ,[d1]),

4 f(1,n1animate_thing ,[d1]),

5 f(1,n1artefact ,[d1]),

6 f(1, n1automotive_vehicle ,[d1]),

7 f(1,n1bike ,[d1]),

8 f(1,n1entity ,[d1]),

9 f(1,n1event ,[d1]),

10 f(1,n1numeral ,[d1]),

11 f(1,n1object ,[d1]),

12 f(1,n1person ,[d1]),

13 f(1,n1physical_entity ,[d1]),

14 f(1, n1psychological_feature ,[d1]),

15 f(1, n1selfC45propelled_vehicle ,[d1]),

16 f(1,n1symbol ,[d1]),

17 f(1,n1vehicle ,[d1]),

18 f(1,n1wheeled_vehicle ,[d1]),

19 f(1,n2being ,[d1]),

20 f(1,n2communication ,[d1]),

21 f(1,n3conveyance ,[d1]),nltk

22 f(1,n3instrumentality ,[d1]),

23 f(1,n3sign ,[d1]),

24 f(1,n6unit ,[d1]),

25 f(1,v1go ,[d1]),

26 f(1,v1ride ,[d1]),

27 f(2,card ,[(d1 ,d1)]),

28 f(2,r1agent ,[(d1 ,d1)]),

29 f(2,r1patient ,[(d1 ,d1)])]).

This file uses the prolog notation, each property ‘f’ represents a fact in the knowledge-
base for this sentence. The second argument of the ‘f’ represents the name of the
predicate, the third argument is the list of variables used for the unification in prolog,
while the first argument of ‘f’ is actually just the size of this list. All the predicates
with two instances are thus predicates with the number ‘2 as first argument, and these
represents relations between two instances. All properties of instances are represented
here as predicates with the number ‘1.

The most interesting aspect of the output by C&C is that it does not only output
the model of both sentences separately, but it also tries to generate a combined model
for both sentences. This model tells us a lot about how the relation between the two
sentences. If it is impossible to create such a model the sentences are contradictions
and their meanings will probably not differ much (they will just be opposites). If it
is possible to create a model but the combined model is not much larger then the
seperate models, the sentences are probably very related. Finally there is the case
that there is a combined model that is substantially bigger then the separate models.
This means that the sentences both contribute a lot of different information to the
combined model, thus the similarity score for this sentence pair is probably low.

3.3.3 Discourse Representation Structure

The Discourse Representation Theory (DRT) (Kamp et al., 2011) is a framework used
to express meaning by abstract mental representations. These representations are of-
ten shown as boxes (or in a bracket structure, but that is harder to read for humans).

15

Shortly said, a Discourse Representation Structure (DRS) is a nested structure con-
taining boxes that contain lists of formal logic variables and predicates, these boxes
can also be combined using logical connectives. Boxer (Bos, 2008) is used to obtain
Discourse Representation Structures automatically, these are outputted as .drs files.
The drs file based on our example sentence is found in listing 3.4.

Listing 3.4: The .drs file for our example sentence

1 sem (1 ,[1001:[tok:’Two ’,pos:’CD ’,lemma:two ,namex:’O’] ,1002:[tok:bikes ,

pos:’NNS ’,lemma:bike ,namex:’O’] ,1003:[tok:are ,pos:’VBP ’,lemma:be ,

namex:’O’] ,1004:[tok:being ,pos:’VBG ’,lemma:be ,namex:’O’] ,1005:[tok

:ridden ,pos:’VBN ’,lemma:ride ,namex:’O’] ,1006:[tok:by ,pos:’IN ’,

lemma:by ,namex:’O’] ,1007:[tok:two ,pos:’CD ’,lemma:two ,namex:’O

’] ,1008:[tok:people ,pos:’NNS ’,lemma:person ,namex:’O’]],drs ([[]:B

,[]:C,[]:D] ,[[1006]: rel(C,B,agent ,0) ,[1008]: pred(B,person ,n,0)

,[1007]: card(B,2,eq) ,[]:rel(C,D,patient ,0) ,[1005]: pred(C,ride ,v,0)

,[1002]: pred(D,bike ,n,0) ,[1001]: card(D,2,eq)])).

2 %%% ______________

3 %%% |x1 x2 x3 |

4 %%% |..............|

5 %%% |agent(x2 ,x1) |

6 %%% |person(x1) |

7 %%% ||x1| = 2 |

8 %%% |patient(x2 ,x3)|

9 %%% |ride(x2) |

10 %%% |bike(x3) |

11 %%% ||x3| = 2 |

12 %%% |______________|

The output is in a prolog notation, the first line is thus a bracket structure and is
hard to read. This is the reason that boxer included the box seen at the bottom of
the file. This box is commented out and thus only used for humans to understand the
DRS easier.

A DRS consists of a list of discourse referents and a list of discourse conditions.
In our example the discourse referents are x1, x2 and x3. These are the instances to
be found in the DRS, and things can be said about these using discourse conditions.
The discourse conditions in our example are agent, person, patient, ride and bike. By
inserting the discourse referents in the discourse conditions, it is possible to unify and
use the information in the DRS.

The first line of this listing is a prolog list that contains two things. First there is
a list with information about every word in the sentence, namely the tokenized word,
the POS-tag and the lemma. Secondly there is a list representation of a DRS. Because
this is the interesting part, I took out this part and cleared the code with newlines and
indentation.

As better visible now in listing 3.5 it can be seen that the DRS is separated in 2
parts. The first part consists of the variables, called x1, x2, x3 in the box of listing 3.4
before. They are now represented as prolog variables with alphabetical characters used
as names. The second part contains the information about the variables. Each variable
has it’s own predicate (pred()), which defines what the variable represents. Besides the
predicates there are relations (rel()), they represent the relations the variables have to
each other.

16

Listing 3.5: The prolog representation of the DRS indented.

1 drs(nltk

2 [

3 []:B,

4 []:C,

5 []:D

6],

7 [1006]: rel(C,B,agent ,0),

8 [1008]: pred(B,person ,n,0),nltk

9 [1007]: card(B,2,eq),

10 []: rel(C,D,patient ,0),

11 [1005]: pred(C,ride ,v,0),

12 [1002]: pred(D,bike ,n,0),

13 [1001]: card(D,2,eq)

14]

15)

3.4 WordNet

To cope with conceptual differences in sentence pairs information about the relations
. An example where this is useful is when one annotator describes a person as a man,
while another annotator might describe the same entity as a boy or a person. This
information is available in the WordNet thesaurus (Fellbaum, 1998). WordNet groups
words in sets of synonyms called synsets. These synsets are then connected in one
large thesaurus using hypernyms, hyponyms, meronyms and holonyms.

Hypernyms represent an “is a relation”. So if word 1 is a hypernym of word 2,
this means that word 1 also fits in the larger category of word 2 (for example, car
is a hypernym of vehicle). A hyponym is the same relation as a hypernym but then
reversed. If word 1 is a hypernym of word 2, then word 2 is a hyponym of word 1.

A meronym is a “part of” relation. So word 1 is a meronym of word 2 means that
word 1 is a part of word 2 (for example, screen is a meronym of laptop). A holonym
is the reverse relation of a meronym.

To gather the information of the synsets easily in a python script, the nltk python
package (Bird, 2006) is used. This package makes it easy to directly access the data
and use pre-defined functions of the package that already does certain calculations.

3.5 Skip-Gram model

A Skip-Gram is almost the same as the well-known N-Gram, it has one modification
though. Instead of consisting of N consecutive words, a constant number of words are
skipped (usually 1) to get the next word for our N-Gram. The knowledge of words that
co-occur with a specific word is information that has a lot of value about the meaning
of that word. This information can be used to calculate the similarity between word
meanings, which can be combined to get a similarity value for a sentence.

To get a good model I have used the open-source word2vec tool (Mikolov, 2013).
As input the first billion characters of wikipedia are used as suggested on the word2vec
website. In addition to this training data I added the English Gigaword corpus (Parker
et al., 2009), for the reason that data taken from one source might be to homegenic.

All this data is first preprocessed, including tokenization and conversion to lower

17

Listing 3.6: Some example paraphrases.

| woman ||| chick |

| woman ||| dame |

| woman ||| daughter |

| woman ||| donna |

| woman ||| female |

| woman ||| femme |

| woman ||| girl |

| bike ||| bicycle |

| bike ||| bicycling |

| bike ||| bikes |

| bike ||| biking |

| bike ||| cycling |

case. The word2vec tool provides a Perl script that already does this. The vectors are
trained using the parameter settings suggested by the creators of the word2vec tool2.
These are a vector dimensionality of 1600 with a context window (N) of 10 words.

3.6 Paraphrases

Paraphrasing means replacing a part of a sentence in order to obtain a new sentence
that does not alter the original meaning of the sentence, even though the syntactic
structure may be different. Using synonyms of words is in fact a simple form of
paraphrasing, but paraphrasing also takes into account multiple word expressions or
sub-sentences. The state of the art paraphrases collection is the PPDB(ParaPhrase
DataBase) (Ganitkevitch et al., 2013).

This database contains a lot more information then just the paraphrases, but most
of it is of little interest for our purposes. Many information is about the POS-tags
of the word, how the word is retrieved and overall statistics as how frequent it is. If
information like this is needed it is better to retrieve it from one of our models. Because
they take the context into account, the values will be more precise. So the database
is preprocessed, and all the information that is not used is removed for the sake of
efficiency. The result of this is a text file with a list of phrases and their corresponding
paraphrases. To get an idea of what this data looks like, there are some examples in
listing 3.6

2https://code.google.com/p/word2vec/

18

Chapter 4

Methodology

Because the goal is to use many different features to predict a numerical target value
and there is a very good training corpus available, the choice for using a regression
model to estimate the similarity of sentence pairs is obvious. From every model/repre-
sentation as described in chapter 3 the aspects that distribute to the semantic meaning
of the sentences have to be extracted. After this is done for both sentences the overlap
of these aspects can be calculated and this will be an estimate of the similarity of the
sentences focusing only on that particular aspect. This value will be the value inserted
into our regression model.

The programming language that is best suited for this task is Python. The main
reason to choose Python is that text processing scripts can be written relatively quick
and easy. It also offers many additional packages that already provide functionality
that is necessary (Especially the Scikit-learn regression model, and the NLTK WordNet
acces). The source of the script that calculates the values for the features can be found
at our github repository 1. Unfortunately there is much more needed to gather the
necessary data, all the steps that have to be taken to reproduce the results of this
paper can be found in appendix A.

This chapter will first explain the choice of the regression model that is used.
The remainder of this chapter is divided by the different types of the data that is
used for the features, and for each type of data each feature is discussed in it’s own
section. To conclude this chapter the use of paraphrases to improve the precision of
each feature separately is discussed. The discussion of each feature will end with an
example calculation for the sentence pair with id ‘2869’. This sentence pair consists of
the following two sentences:

Two bikes are being ridden by two people

Two people are riding a motorcycle

4.1 Regression model

There are many different regression models available that all have their own advantages
and disadvantages. The choice of a regression model is based on three demands. Firstly
our regressor should be robust. This is important when using human annotated data
that can easily have some outliers, this for example very probable with the judgements
for contradictory sentence pairs. Another property of the regressor that is needed for

1https://github.com/bjerva/semeval-relatedness

19

this task is that it does not overfit easily, otherwise we will not be able to train and
test properly. The last very important property of the regressor that is needed, is that
it can let relative weaker features also contribute in the total model. Because we have
a lot of different features there will be some features that contribute relatively less.
But the combination of all of these relatively less useful features might be a good a
significant contribution to the total model.

Taken all these demands in consideration a random forest regressor is an appro-
priate choice. This regressor meets all our requirements, and is especially known for
taking into account the less useful features. So this regressor gets the most of the entire
combination of all the features, without having to worry about which feature works
better and which has a worse predictive power. Because python is used for the rest
of the project, the scikit-learn (Pedregosa et al., 2011) implementation of the random
forest regressor is used.

4.2 Raw sentences

The following features are taken from the raw data in the corpus, so they can be used
as baseline features.

4.2.1 Sentence length difference

The number of words in a sentence does not give us any information about the semantic
meaning of the sentence. It does give an estimate of the complexity of a sentence though
(Flesch, 1948). So even though this might be a very weak feature in the total model, it
can be a contributing feature if it is already known that the meanings of two sentences
are somewhat related. This is the case if we combine this featurewith the upcoming
features, so this feature might have a small but significant contribution to the model.
The sentences are stored as lists of words, so the difference in sentence length can be
calculated using the following formula:

| length(sena)− length(senb)

min(length(sena), length(senb))
|

Example

The values used here are the length of the first sentence and the length of the second
sentence. This is easy to get in our implementation because the sentences are stored
as lists of words. So the example sentences are stored like:

[Two , bikes , are , being , ridden , by , two , people]

[Two , people , are , riding , a, motorcycle]

If the formula is filled in, this results in:

| 8− 6

min(8, 6))
| = 0.333

20

4.2.2 Word overlap

Word overlap is a straightforward feature that is often used as a baseline. There are
many small variations possible to calculate the word overlap. A very basic method
to calculate the word overlap is used. The sentences are already tokenized, so the
words can easily be gathered by just splitting the sentences by whitespaces. After this
the sets of these words for each sentence are taken, so that every word only occurs
once. This makes sense because most words that are used twice in one sentence are
stop words. Hence they do not provide much information about the meaning of the
sentence, especially not if the word order is not taken into account anymore. To adjust
for the lengths of the sentences the length of both sentences is used separately in the
formula. For word overlap the following formula is used:

(length(set(sena) ∪ set(senb))− length(set(senb)))

length(set(sena))

Example

The resulting sets of our two example sentences are found in listing 4.1

Listing 4.1: The sets of words used in the example sentences

sentence1: [Two , bikes , are , being , ridden , by , two , people\n]

sentence2: [Two , people , are , riding , motorcycle\n]

combined: [Two , bikes , are , being , ridden , by, two , people\n, people.

riding , motorcycle\n]

As can be seen from our example the capitals and newline characters are kept in
the words. This means the assumption is made that the first word and the last word
can have a special meaning in comparisons to all the other words.

11− 5

8
= 0.75

4.2.3 Weighted word overlap

In normal language usage some words are very common while many words are less
commonly. The more common used words usually give less information about the
meaning of the sentence. These words are usually stop words, while the less common
words give us a more distinguishable idea of what the sentence is about. This effect can
be easily demonstrated when looking how common the words of our example sentences
are. In listing 4.2 the frequencies of every word in our example are shown (counted
in the SICK corpus). For humans it was already obvious that the word ‘bikes’ is
more semantically informative then the word ‘are’, but using weighting we can also
automatically try to estimate the informative value of words.

Listing 4.2: The words frequencies for our example sentence.

two bikes are being ridden by two people

1535 39 3806 1080 86 1413 1535 973

21

The main problem with this data is that it only shows estimates the importance of
words instead of entire sentences. To use this data the frequencies of both sentences
needs to be combined. The final value of this feature will also be a word overlap, but
it uses the weights of the words in the sentences. For overlap only the words that
occur in both sentences can be of meaning, since the other words can not be compared
to words of the other sentence. For all words that occus in both sentences we will
calculate their weight using the following formula:

#sentences− word freq

#sentences

The word-freq in this formula is the count of the number of occurrences of a word
in the entire corpus. After getting these values there still needs to be a normalisation
for the length of the sentences, otherwise long sentences will have more change to get
a higher value. So the total sum of all the words is divided by the number of words
that are used in the summation.

Example

There are four words in the first sentence that also occur in the second sentence, so
the weight of all these words should be combined. Note that the word ‘two’ is double,
since this occurs two times in the sentence. If a word occurs multiple times it is more
important, so it is desirable to have it in the formula twice too.

two
19854− 1535

19854
= 0.923

are
19854− 3806

19854
= 0.808

two
19854− 1535

19854
= 0.923

people
19854− 973

19854
= 0.951

This results in:

0.923 + 0.808 + 0.923 + 0.951

4
= 0,901

4.3 Syntax tree

For a description of the syntax tree used here, see section 3.3.1. Usually the POS-tags
of verbs and nouns have the highest semantic informational value. So these 2 POS-tags
have their own overlap feature.

22

4.3.1 Noun overlap

A collection of all nouns that occur in a sentence can give a good summary of the
theme of a sentence. The nouns are thus a good source for recognizing the semantic
meaning of a sentence. To calculate the overlap lemma’s can be used in favor of the
real word. Then it does not matter if a sentence is about a person or about persons.

length(nouns sena ∩ nouns senb)

length(nouns sena ∪ nouns senb)

Example

The nouns that are found in respectively the first sentence and the second sentence
are:

[person , bike]

[person , motorcycle]

If these lists are inputed in the formula, the outcome will be as follows:

1

3
= 0.333

4.3.2 Verb overlap

A verb is a word that describes an action, consequently verbs can have a great contri-
bution to semantic meaning. The calculation of verb overlap uses the same method as
the noun overlap. So the formula will be:

length(verbs sena ∩ verbs senb)

length(verbssena ∪ verbs senb)

Example

The verbs that are found in respectively the first and the second sentence are:

[be]

[be , ride]

This results in:

1

2
= 0.5

4.4 Discourse Representation Structure

In the box in listing 3.5 it is directly visible that the discourse conditions gives a great
deal of semantic information of a sentence. The first DRS feature will thus only use
the discourse conditions. Additionally the second and third feature will also take the
discourse referents into account, by coupling them with their meanings.

23

4.4.1 Discourse condition overlap

Since the theme of the DRS is already visible by looking only at the discourse condi-
tions, the amount of overlap between these discourse conditions can be a good estimator
for the relatedness of the sentences. So our first feature created for DRS, is just an
overlap of these discourse conditions. The formula used for this overlap is:

length(set a ∩ set b)

length(set a ∪ set b)

Example

As can be seen in section 3.3.3, the discourse conditions of the first sentences are:

[’person ’, ’ride ’, ’bike ’, ’patient ’, ’agent ’]

The discourse conditions of the second sentence are not very different, because
many of the same properties can be given to the discourse references. Our second
sentence has the following list of discourse conditions:

[’person ’, ’ride ’, ’patient ’, ’motorcycle ’, ’agent ’]

If these sets are inserted in our formula that was given before, the result will be:

4

6
= 0.667

4.4.2 Agent overlap

An agent in a drs structure is the discourse reference (or entity) that initiates the main
action of the sentence. This is very useful information if we speak about the meaning
of a sentence. But since most of the sentences only have one agent, this feature can
not give a very precise overlap score.

Example

The only agent found for our example is ‘person’. The formula used here is again the
overlap formula for sets:

length(set a ∩ set b)

length(set a ∪ set b)

The second sentence also has only one agent which is also ‘person’ so the agent
overlap is perfect, as shown below:

1

1
= 1.0

4.4.3 Patient overlap

In a normal DRS it is not uncommon to have multiple agents or patients. In the SICK
corpus this is very rare though. There are only a couple DRS’s with two agents. On
the other hand, there is no sentence in the corpus that has multiple patients. So this
feature is binary, the patient can either be the same (score = 1.0) or it can be different
(score = 0.0).

24

Example

The patients found in the first sentence is ‘bike’, but the second sentence has ‘mo-
torcycle’ as patient. So there is no overlap at all, and the value of this feature will
be:

0

2
= 0.0

4.5 Logical model

A logical model consists of 3 kinds of information: instances, predicates about these
instances and the relation between the instances. So it makes sense to create features
for the overlap of instances, predicates and relations.

4.5.1 Instance overlap

The instances are the ‘variables’ in the logical model. They can be initiated and then
used to state facts about themselves. If the models of both sentences and the combined
model is used, it is possible to see if the second sentence includes any complementary
instances with respect to the first sentence. For doing this, the following formula is
used:

1− #instances sen1&2−#instances sen1

#instances sen2

Example

In a logical model each entity that takes part in that model is represented as an
instance. The logical model of our example (section 3.3.2) contains only one instance,
‘d1’. The logical model of the other sentence of this sentence pair contains also 1
instance. Since these 2 instances can be unified by each other, the combined model
also contains 1 instance, hence the score is:

1− 1− 1

1
= 1.0

This means that both sentences can use the same instance if the logical models are
combined. Thus the overlap is perfect.

4.5.2 Predicate overlap

In logical models predicates are used to state facts about the instances. As explained
in section 3.3.2, these instances can be recognized by having a ‘1’ as first argument of
the fact in the model file outputted by C&C. It comes in very handy here that we are
not only provided with the logical models for both sentences separately, but we also
have a model file that represents a logical model for both sentences combined. These
three models can be used to get the overlap, using the formula below:

1− #predicates sen1&2−#predicates sen1

#predicates sen2

25

For contradictory sentences there is no combined logical model available, hence the
value 0 is used for this feature then. Because there is no overlap to be found at all.
This particular issue is resolved later when the negations are removed, see section 4.7.

Example

Because the model used also makes use of world knowledge to generate more general
predicates, the lists of predicates are quite large. As can be counted in our exam-
ple model in section 3.3.2 our example contains 25 different predicates. All of these
represent facts about the instances of the first sentences. The model of the second
sentence consists of the exact same predicates except for one predicate. The predicate
that is not in the second sentence is ‘bike’, instead of bike this model has the predicate
‘motorcycle’. This means that both models have 25 predicates, and when they are
combined into one model it will have one additional predicate. The filled in formula
will then be:

1− 26− 25

25
= 0.96

4.5.3 Relation overlap

The relations in a logical model are predicates that take 2 variables. These relations
give us much semantic information since they tell us how the different instances are
related to each other. The overlap of the relations is calculated in the same way as the
instance overlap.

1− #relations sen1&2−#relations sen1

#relations sen2

Example

All the relations in the three models are the same, because the objects in both sentences
have the same relation to each other. This can be shown by looking in the model files,
where all three model files have the same relations:

f(2,card ,[(d1,d1)]),

f(2,r1agent ,[(d1,d1)]),

f(2,r1patient ,[(d1,d1)])]).

So all the variables have the value ‘3’, and thus the result is 1.0 which tells us this
is a perfect overlap.

1− 3− 3

3
= 1.0

4.6 Other features

4.6.1 WordNet overlap

For the concepts we use the hypernym relations (“is a” relation) as described in sec-
tion 3.4. First the thesaurus with all the concepts of the first sentence is built, the
program starts out with all the concepts of the sentence, and then recursively search

26

for hypernyms. Until the top of the thesaurus is found(the top entity is called ‘ob-
ject’). After this, the same procedure is taken for the combination of all concepts of
both sentences. The sizes of these two trees can be compared to see what the second
sentence contributes over the first sentence. This is the formula to calculate the value
of this feature:

1− #concepts both sentences−#concepts sen1

#concepts sen1

Example

Our example sentence pair has only one difference in the occurrences of concepts. This
is the difference between ‘bike’ and ‘motorcycle’. Because motorcycle is a hypernym
of bike, the size of the tree for both sentences did not change (the concept motorcycle
was already in the tree before we added the second sentence). Thus the number of
concepts are equal, and the overlap is:

1− 27− 27

27

4.6.2 Synset overlap

The WordNet synsets used here are described in section 3.4. For each word the first
10 cognitive synonyms are collected. All these words are then collected in a set per
sentence. The end value of this feature will be the overlap between the two sets of
words.

words sen1 ∩ words sen2

words sen1 ∪ words sen2

Example

The set of synonyms that can be extracted from WordNet for the first sentence of our
example is:

[’bike ’, ’beingness ’, ’being ’, ’organism ’, ’two ’, ’II ’, ’2’, ’

motorcycle ’, ’existence ’, ’deuce ’, ’ar ’, ’are ’]

The second sentence has a very large set for this feature. So the result of the
intersection will be relatively small in comparison to the size of the union. And the
resulting value of the formula will thus be very low. After inserting the sets, we get:

6

33
= 0.182.

4.6.3 Synset distance

The synsets in wordnet do not only contain a list of synonyms for words. An even more
interesting feature is that all the data together is stored as a thesaurus. A thesaurus
is a large net that connects and groups words based on their meanings. So WordNet
is basically a large web of synsets that are connected by links, these links represents
is-a relations. The minimum number of connections that are needed to travel from
one synset to another synset is used to calculate the path similarity. Because a score

27

between 0 and 1 is useful for many calculations the path similarity also uses these
restrictions, it divides 1 by this amount of connections that are needed to travel trough.
The resulting formula is:

pathsim(1)
1

length(worda 7→ wordb)

This path similarity is a good representation of the differences in meaning for two
words. It is impossible to use the synset path similarity as a feature for comparing
sentences though. So there are two steps that are still need to be taken: Firstly the
words in the first sentence that occur in the WordNet synsets are collected. These
are then coupled to the words of the second sentence with the highest path similarity.
After this coupling is done we know what words most have a probable relation.

The scores gotten for the word couples still needs to be combined to one score
for the feature used in the model. They can be combined by simply adding together
all the path similarity scores. This will not be a fair comparison if we have a long
sentence pair and a short sentence pair. Because a long sentence usually have more
words found in the thesaurus and if these words all have a low path similarity they can
still get a higher score together. So the length of the sentences will have to be taken
into account, or even better the amount of words used for the total score (the amount
of synsets used for one sentence). So the total score needs to be divided by the number
of path similarities that are used to get to that score. If the number of synsets found
per sentence is ‘n’, the formula will be:

path sim(1) + ... + path sim(n)

n

Example

First we will take a look at the maximum path similarities found for each word in the
first sentence, they are shown in table 4.1.

Table 4.1: A list of the found maximum path similarities.

Word sentence 1 Word sentence 2 Path similarity

two two 1.0
are are 1.0
being people 0.167777
ridden riding 1.0

The summed value of the path similarities is 3.1667, this is based on 4 word pairs,
so the value of this feature is:

3.167

3
= 0.792

4.6.4 Compositional Distributional Semantic Model

For this feature the Skip-Gram model described in section 3.5 is used. Each word in
this model has it’s own vector with a length of 1600. So first all the vectors for the
words in a sentence are collected. These vectors are then summed up using element-
wise addition, so that we end up with 1 vector that has 1600 values that represent

28

this sentence in respect to our skip-gram model. This is done for both sentences of a
sentence pair. The result is then two different vectors that each represent a sentence.
The cosine distance can be used to calculate the distance between the two vectors.

29

Example

Because of the huge amount of values used here per sentence pair, it is impossible to
show the entire calculation in this paper. Instead of showing the entire calculation,
below a part of the resulting vectors for both sentences are shown.

[0.194736 -0.256398 0.235763 .., 0.001883 0.247598 0.164759]

[-0.034507 0.019716 0.367023 .. , -0.083645 -0.006491 0.213231]

The cosine distance between these two vectors is 0.300.

4.6.5 Relations between sentences

Boxer does not only provides models for us, it also tries to identify the relation within a
sentence pair. It distinguishes between neutral, entailment and contradictory relations.
This is also the other part of shared task 1 of SemEval 2014 (Marelli et al., 2014).
Neutral relations are relations where both sentences have nothing to do with each
other. Sentence 1 entails sentence 2 if stating that sentence 1 is true also means
that sentence 2 is automatically true. While a contradictory relation states that both
sentences can never be true at the same time.

The gold data of this task is available in our corpus. But since this data is not
available in a real world situation, we will not use it. Instead the predictions of Boxer
are used, since they are based on the raw sentences. But this is categorical data, which
cannot be inputted directly into our regression model. So each category is treated as
it is a separate binary feature, which has the value 1 if the sentence pair belongs to
the relation-category and 0 if it does not.

Even though there is no direct mapping from sentence relation to sentence similar-
ity, it is a safe assumption that entailed and contradictory sentences will have a higher
similarity then sentences with a neutral relation. See for a closer look at the contribu-
tions of similarity scores among the different relations 3.2. So this will probably be a
feature that has a valuable contribution to the final model. More information on how
boxer tries to categorize the sentence pairs can be found in the Semeval paper of our
team: Bjerva et al. (2014).

Example

Boxer tags this sentence pair as having an entailment relation. Even though this might
seem reasonable, in the corpus this sentence pair is annotated as a neutral relation.
Both relations can be explained by taking a closer look at the sentences. There is an
ambiguity in meaning, and the human annotators have been favoring another meaning
as the one that boxer chooses. Because the annotated data is not available in a real
world situation it can not be used here either, and only our feature for the entailment
relation will have the value 1.0, the features for the other two relations will have the
value 0.0.

4.6.6 ID

Our corpus seemed to be a little biased when looking at the gold values. In the
beginning of the corpus the gold similarity scores are higher then on the end of the
corpus. To test this I have included two features only based on the id of the sentence
pair. One feature is just the id of the sentence pair, for our example 2869. But

30

what if our corpus is just a little biased? Then it would make more sense to give an
approximate value to the feature. This is why our second feature divides the id by
1000, and then rounds it downwards. So the value for our second ID feature is 2.

Even though these features might contribute to a better similarity prediction, they
should not be used in the final model. Because these id’s are of course not available
in a real world situation. All the other features that are explained in this chapter are,
or can be made, available for real world sentences.

4.7 Paraphrases

To increase the predictive value of each feature it might be a good idea to not only look
at the two sentences at stake. But instead also try to calculate each separate feature for
semantically almost equivalent sentences. The first step for this is to generate sentences
with (almost) the same semantic meaning. This can be done by replacing parts of the
sentences by their paraphrases. See section 3.6 to see how these paraphrases were
obtained.

The process to generate the new sentences is rather straightforward. For each
word in sentence 1 the corresponding paraphrases are found. If the replacement text is
present in sentence 2 a new sentence pair can be generated using this paraphrase. This
last restriction is included because otherwise this method will result in an exploding
amount of sentence pairs, while many of them would not retrieve higher scores per
feature and thus will not be used at all. Since parsing all the different model/repre-
sentations takes a long time, it is better to leave those paraphrases out.

Another way to generate semantically similar sentences is to remove negations from
the sentences. After this is done, there will be less sentences with a contradiction rela-
tion. This means that it will be possible to generate a logical model for contradictory
sentence pairs, which was impossible before. So the features that use the logical model
will probably have the most benefit from this. To do this I first manually searched in
the corpus for all the occurring negations. These negations can be removed by simply
adding these words to our paraphrases database, and replace them with their positive
equivalent. So the following paraphrases are added to our database:

Listing 4.3: Negation words and their replacements.

1 | not ||| |

2 | n’t ||| |

3 | no ||| a |

4 | none ||| some |

5 | nobody ||| somebody |

To get the most out of all the new sentences, also different combinations of para-
phrases should be considered. If one sentence pair has 2 different possible paraphrases,
this results in 3 new sentence pairs. One sentence pair uses both paraphrases, but a
sentence pair that only uses one paraphrase might be better. So for each paraphrase
itself a new sentence pair is also generated.

This results in 10,515 new sentence pairs. These new sentences are generated from
4,977 sentence pairs of the original corpus, because the other sentence pair do not have
appropriate paraphrases or negations.

31

After this process all the same tools that were used to process the original sentence
pairs are used once again on all new sentence pairs. Now that all the new data is
available, a new function is made for every feature we already had. In algorithm 1 is
shown how the new feature values are calculated.

featureValue = getFeatureValue(senA, senB);
forall sentenceCombination in alternativeSentences do

sentenceCombinationValue = getFeatureValue(sentenceCombination(senA),
sentenceCombination(senB));
if sentenceCombinationValue >featureValue then

featureValue = sentenceCombinationValue;
end

end
return featureValue

Algorithm 1: Psuedo code that shows how the paraphrases are used with all already
existing features.

Using this code all different sentence pair combinations are treated equally. And
the highest value that is found for each feature is the one that is used in the final
model. So here two assumptions are made. The first assumption is that the meaning
of the alternative sentences are (almost) equal to the meaning of the original sentences.
If this is true, it is correct to use the values of one the alternative sentences instead of
the original value.

The other assumption is that if a sentence pair finds a higher value, this means
that it discovered an equality that was not recognized in the original sentence pair. So
it found something that always was there, this is known because we already assumed
that the meanings of the sentences are equal. If these two assumptions are true it is
sensible to use the highest value of all sentence combinations. In the results chapter
(chapter 5) it will become clear if these assumptions are in fact true.

Example

For our example sentence pair only one replacement is found. Listing 4.4 shows the
differences between the original sentences and the new sentences created by paraphras-
ing.

Listing 4.4: On top the two original sentences, beneath them the sentences after para-
phrasing.

1 Two bikes are being ridden by two people

2 Two people are riding a motorcycle

3

4 Two motorcycle are being ridden by two people

5 Two people are riding a motorcycle

The replacement made here is bikes 7→ motorcycle. The result of replacing bikes
(plural) with motorcycle (singular) is an ungrammatical sentence, but the parsers used
will try to parse the sentences anyway and they will not give useless results over a small
error like this.

For our example sentence pair the score of several features increase after para-
phrasing. All the original values and the new values of the features are shown in
table 4.2.

32

Table 4.2: A table showing how the values of the different features change after the
paraphrasing (bold means the value has changed).

Feature Old score New score

Sentence length 0.333 0.333
Word overlap 0.75 0.75
Weighted word overlap 0.901 0.901
Noun overlap 0.333 1.0
Verb overlap 0.5 0.5
Instance overlap 0.96 1.0
Predicate overlap 0.96 1.0
Relation overlap 1.0 1.0
Discourse condition overlap 0.667 0.667
Agent overlap 1.0 1.0
Patient overlap 0.0 1.0
WordNet overlap 1.0 1.0
Synset overlap 0.182 0.182
Synset distance 0.792 0.792
Contradiction 0.0 0.0
Neutral 0.0 0.0
Entailment 1.0 1.0
CDSM 0.301 0.301
ID 2869 2869
ID 1-10 2.0 2.0

So not many values change for this example, some of them do get higher though.
Especially the noun overlap has an remarkable increasement, this is due to the fact
that there are not many nouns in these sentences. Due to this the value of the original
sentence pair was probably too low, and the new value comes closer to a trough meaning
overlap between the nouns. Another thing that might be surprising is the fact that
the word overlap does not change, even though there are more similar words in the
sentence. But as described in section 4.2.2, first and last words are treated separately.

33

Chapter 5

Evaluation

Unlike some other regression models, the random forest regressor does not output a
formula. The regressor uses decision trees, which are not possible to visualise here. So
there is need for other methods to evaluate the different features. First I will build a
model for each feature separately, and the results of these models can be evaluated.
Then I group the features based on the data source they use, and also build models for
these groups of features. This can expose how semantically informative the different
data sources are. Besides this it is also possible to look at the relative importance of
each feature in the complete model.

5.1 Features separate

First the model is trained on the different features separately to show how well the
different features and models can predict the semantic similarity by themselves. This is
thus not a direct mapping for the importance of a feature in the entire model, it tells a
great deal about the the prediction power of a feature (group) though. The results are
shown in table 5.1. For this evaluation 5,000 sentence pairs are used for training and
4,927 sentence pairs are used for evaluation. The P represents the Pearson correlation,
and mse stands for the mean square error. There is also a distinction between the
scores that uses paraphrases(+pp) and the scores for the same features without using
paraphrases(-pp).

Most correlations get higher if the features use paraphrases, two features get slightly
worse results though. These are both WordNet features, WordNet overlap and synset
distance. This is probably because WordNet already knows about the relations of
the words so these features do not need the paraphrases. The other WordNet feature
(synset overlap) works much better with the paraphrasing though, this can be ex-
plained because this feature does not use the relations that are available in WordNet.
The paraphrasing do seem to have a low impact on the results of the total model, but it
must be taken into account that higher scores are very hard to improve. So an increase
of 0.07 in correlation and a decrease of 0.012 for the mse is a great improvement if the
results are already as high as they are here.

Another surprising feature is the id feature. This feature has no meaning though,
it only uses the id given by the corpora. So for a real world application this number
would not make sense, therefore we should focus on the combined model that does not
use the id feature. The final results are then shown in the last row of the table, they
will be discussed in the conclusion (chapter 6).

34

Table 5.1: The results of using the features separately/grouped with and without using
the paraphrasing. (+pp & -pp)

Datasource P(-pp) P(+pp) mse(-pp) mse(+pp)

Raw Sentences 0.541 0.598 0.746 0.666
Word overlap 0.271 0.340 0.944 0.902
Sentence length 0.227 0.229 0.971 0.970
Weighted word overlap 0.501 0.504 0.795 0.793

POS 0.647 0.676 0.592 0.553
Noun overlap 0.574 0.624 0.682 0.621
Verb overlap 0.372 0.381 0.877 0.870

Logical model 0.698 0.696 0.535 0.525
Instance overlap 0.618 0.619 0.629 0.628
Predicate overlap 0.619 0.651 0.628 0.586
Relation overlap 0.359 0.361 0.886 0.885

DRS 0.634 0.667 0.610 0.569
Discourse condition overlap 0.619 0.620 0.628 0.628
Agent overlap 0.317 0.348 0.915 0.894
Patient overlap 0.124 0.124 1.002 1.002

Wordnet 0.666 0.688 0.575 0.544
WordNet overlap 0.652 0.651 0.590 0.591
Synset overlap 0.386 0.409 0.917 0.888
Synset distance 0.355 0.349 0.964 0.962

CDSM 0.608 0.607 0.681 0.681

Relation prediction 0.621 0.620 0.626 0.623

ID 0.493 0.493 0.807 0.807

Combined model (with ID) 0.837 0.842 0.305 0.297
Combined model(without ID) 0.820 0.827 0.334 0.322

35

Table 5.2: The order of the top 16 features for each evaluation method.

Pearson correlation Relative importance

1 WordNet overlap CDSM
2 Predicate overlap WordNet overlap
3 Noun overlap Discourse condition overlap
4 Discourse condition overlap Predicate overlap
5 Relation prediction Noun overlap
6 Instance overlap Weighted word overlap
7 CDSM Instance overlap
8 Weighted word overlap Neutral judgement
9 Synset overlap Synset overlap
10 Verb overlap Synset distance
11 Relation overlap Sentence length
12 Synset distance Word overlap
13 Agent overlap Relation overlap
14 Word overlap Contradiction judgement
15 Sentence length Verb overlap
16 Patient overlap Patient overlap

The strongest features are predicate overlap and WordNet overlap, these both use
the is-a relation (predicate overlap uses it indirectly). Thus this shows that the is-a
relation can come in very useful for extracting semantic meaning.

The data source that scores the highest correlation is the logical model. And
the raw sentences yield the lowest correlation score. This results tells us that the
interpretation of relatedness is a lot more then just the visible text read by a human.
In addition it follows from these results that a logical model is a very effective way of
representing semantic meaning.

5.2 Relative importance

Another way to evaluate our results is to use the built-in function in sklearn that
estimates the importance of our features. This produces a graph that show the relative
importance for each feature. The resulting score for each feature is based on the
position of this feature on the decision trees that our regressor uses. So the importance
score of a feature does not perfectly correlate with the prediction power the feature
contributes to the entire model. For evaluating with this graph, it is obvious to use
paraphrases since they give a better score. It is also convenient to leave out the id’s
because these are impossible to get for real world applications. See for the resulting
graph figure 5.1.

If these results are compared with the previous method for evaluation in table 5.1
there are some differences in the order of features. For a comparison of both evalua-
tions, see table 5.2.

Note: There are some different features in this list, since the three relation predic-
tions are only scored for a grouped correlation while they are judged seperately by the
relative importance graph. It is preferable to use them as group, but this is impossible
for relative importance.

36

Figure 5.1: Graph that shows the relative importance of the features.

The main difference is found in the relation prediction because the result of those
three features is grouped in the table, this is not possible for calculating the relative
importance though. The other big difference is the CDSM feature, this feature is on
the top of the decision tree in the regression model, and thus is on top of the relative
importance list. When using this feature isolated in a regression model the score is
not the highest at all.

5.3 Superfluous data sources

It is good to avoid superfluous features, because they only slow the program down
while not improving the results. And there might even be features that make the final
correlation of the regression model slightly worse. To be really sure if a data source
used that does not contribute to the entire model, the total model can be compared
to a model without the features of the data source. So I built seven other models,
each excluding one feature group. This is done by group because the differences will
be very minimal when only leaving out one feature.

37

Table 5.3: Pearson correlation when excluding one feature group.

Excluded feature group Pearson correlation mse

None 0.827 0.322
Relation prediction 0.826 0.323
WordNet 0.826 0.323
DRS 0.825 0.326
POS 0.821 0.332
CDSM 0.820 0.334
Logical model 0.819 0.335
Raw sentences 0.814 0.344

The results are ordered by pearson correlation and can be found in table 5.3. The
differences are not very big, since there are always a lot of remaining features which
also achieve a high score. This table shows us that Relation prediction, the WordNet
features and the DRS features can be excluded from the model without much precision
loss. But the combination of deleting these feature groups might gives us a more
significant decrease. So I trained one more model on the remaining 4 feature groups,
this resulted in a Pearson correlation of 0.819 and a mean square error of 0.334. For
efficiency reasons these three features can thus be left out at the cost of a small decrease
in correlation.

Another surprising result is that the raw sentences is the worst data source to miss.
In our previous evaluation when testing the feature groups seperate (table 5.1) this
feature group had the lowest score, but in the final model this feature group has a big
contribution.

38

Chapter 6

Conclusion

The main question of this paper was: Which features can be automatically extracted
from a natural language sentence that represents a good overview of the semantic
meaning of a sentence? There are numerous features that work good for this task, but
the best results can be achieved by combining these features. The best result that is
possible to get with the features that are used in this paper is a correlation of 0.827
and a mean square error of 0.322. This is a very good result compared to other systems
that do the same task (see 1 for a comparison).

When comparing the features separately we can say that the features that use
WordNet data are overall the best features (this includes the logical model features).
This is not surprising as WordNet is also a very popular data source for computing word
similarity. The features that only use the raw sentences are very weak features. While
this data is the only data that is directly visible for a human, it does not represent the
semantic meaning very well.

There are some features that use the entire sentence, but some features use scores of
word similarity and try to combine the word similarity of different words in a sentence
pair to one score. The first category seems to work better because these features have
more information about the semantic meaning of the word in context. This also reflects
in the evaluation table (see table 5.1).

Paraphrasing is a usefull improvement to increase the precision of most of the
features. Almost all the features profit from using the paraphrases, and the few features
that get lower scores when trying alternative sentences are only getting a little bit
worse.

In final analysis it is good to look at the usability of these results. The correlation
score of 0.827 means that our regression model can account for 82,7 % of the similarity
score as given by human annotators. So already a lot of the score is taken care of in
our model, and the rest of the score is very hard to predict. This has become clear
when the last features where added, the score did not increase much while the last
features did have a good prediction power by themselves. It would be interesting to
get the cross-annotator agreement to get an upper bound of how good humans are
at predicting these values, but for this the individual scores are needed which are not
publicly available.

The lowest mean square error to achieve with all the features is 0.322. This value
means that on average our system is only 0.322 wrong in comparison to a human

1http://alt.qcri.org/semeval2014/task1/index.php?id=results/

39

comparison on the scale of 1-5. The results are very promising, and depending on the
task, they can be already good enough to use. Many things still needs to be taken
care of to use this system in a real world situation tough, the corpus has a very limited
set of words and consists of simple sentences. So a lot of preprocessing still needs
to be done, and encyclopedic information should be added for usage in a real world
application. And the system also needs an annotated training corpus that is similar
to the test data (or real world data), which depending on the use can be very hard to
come by.

40

Chapter 7

Future work

This exact task is also performed by 16 other teams1. The highest score of our combined
model using paraphrases is among the best three systems on this task with a very small
difference. This suggests that this might almost be the upper bound of what can be
achieved with the technologies available right now.

So even though little improvement can be made on this corpus, there is still a lot
of research that still can be done. Starting with making the system usable for real
natural language. The SICK corpus used for evaluation in this paper uses a simplified
version of natural language. If this model is used for real world language use many
pre-processing steps needs to be taken, and even after this the results will probably be
worse.

An addition to improve this system could be to make a different regressor for
each rte category (neutral, contradiction and entailment) that boxer predicts. As
can be seen in figure 3.1 and figure 3.2, the different entailment categories all have a
very different contribution. It would be interesting to see if the creation of different
regression models based on smaller training sets but on more specific data will work
better than the approach taken before.

Another very practical improvement to this approach could be to not use a super-
vised learning method anymore. Because of our limited evaluation set we could use
a supervised learning method here. But it is very hard to get an annotated corpus
for real language use. And even if such a corpus is created somehow the system will
function worse because of the increased complexity compared to the SICK corpus. If
the real world corpus has the same size as the corpus used here, it can never include all
the words or language phenomena that exists. In the SICK corpus we could be pretty
sure that most phenomena and words that were in the test set, were already trained
on in the training set.

Kandola et al. (2002) already made a good start on a supervised learning model.
But this method can probably be improved using the deep semantic features that are
described in this paper, because the existing systems that use supervised learning are
only based on word corpora. With all the different models and representations used
in this paper much more and different internal semantic information is available.

1http://alt.qcri.org/semeval2014/task1/index.php?id=results/

41

Appendix A

Commands for reproducing

All commands that are needed to reproduce the results for Ubuntu

13.10 64bit. Paradox and vampire needs to be compiled , this is not

included in these steps. 8gb ram is required and a fast cpu and a

ssd are recommended.

sudo apt -get install subversion

svn co http ://svn.ask.it.usyd.edu.au/candc/trunk candc

first enter wrong password , then authenticate

cd candc

wget http :// svn.ask.it.usyd.edu.au/download/candc/models -1.02. tgz --

http -user=[user] --http -password =[password]

tar -xvzf models -1.02. tgz

ln -s Makefile.unix Makefile

sudo apt -get install swi -prolog

make bin/nc

make bin/boxer

make bin/tokkie

make ext/bin/bliksem

make ext/bin/mace

cd ext/otter -3.3f

make all

cd ../

wget http :// downloads.sourceforge.net/project/gsoap2/gSOAP/gsoap_2

.8.17. zip?r=http%3A%2F%2 Fsourceforge.net%2 Fprojects %2 Fgsoap2 %2

Ffiles %2 FgSOAP %2F&ts =1394902772& use_mirror=garr -O gsoap_2 .8.17.

zip

unzip gsoap_2 .8.17. zip

cd gsoap -2.8/

./ configure --prefix =/home/rob/candc/ext/

sudo apt -get install byacc

sudo apt -get install flex

make

make install

cp gsoap/bin/linux386/soapcpp2 ../ bin

cd ../../

make soap

cp ext/otter -3.3f/bin/mace2 ext/bin/mace

cp ext/otter -3.3f/bin/otter ext/bin/otter

----paradox

cp ~/ Downloads/paradox3 ext/bin/paradox

http :// packages.ubuntu.com/quantal/libgmp3c2

wget http ://nl.archive.ubuntu.com/ubuntu/pool/universe/g/gmp4/

42

libgmp3c2_4 .3.2+ dfsg -2 ubuntu1_amd64.deb

sudo dpkg -i libgmp3c2_4 .3.2+ dfsg -2 ubuntu1_amd64.deb

----vampire

cp ~/ Downloads/vampire ext/bin/vampire

chmod 777 ext/bin/*

make -p working

cd working

wget http :// alt.qcri.org/semeval2014/task1/data/uploads/sick_trial.

zip http :// alt.qcri.org/semeval2014/task1/data/uploads/sick_train.

zip http :// alt.qcri.org/semeval2014/task1/data/uploads/

sick_test_annotated.zip http :// alt.qcri.org/semeval2014/task1/data

/uploads/sick_test.zip

unzip ’*.zip ’

cp SICK_train.txt SICK_all.txt

tail -500 SICK_trial.txt >> SICK_all.txt

----_prepareSICK

change value of infile to sick_all.txt

src/scripts/boxer/sick/_prepareSICK

src/scripts/boxer/sick/_preparePAR

src/scripts/boxer/sick/_runSICK

src/scripts/boxer/sick/_evalSICK

cd ../

sudo apt -get install git

git clone git@github.com:bjerva/semeval -relatedness.git

cd semeval -relatedness

sudo apt -get install python -nltk

sudo apt -get install python -requests

sudo apt -get install python -numpy

sudo apt -get install python -scipy

git clone git@github.com:scikit -learn/scikit -learn.git

cd scikit -learn

python setup.py build

sudo python setup.py install

make

----Add to ~/. bashrc

export PYTHONPATH="/home/rob/semeval -relatedness/scikit -learn";

sudo apt -get install r-base

python src/_prepareSICK2.py

python src/_runSICK2

python src/semeval_task1.py

43

Bibliography

Agirre, E., M. Diab, D. Cer, and A. Gonzalez-Agirre (2012). Semeval-2012 task 6: A
pilot on semantic textual similarity. In Proceedings of the First Joint Conference on
Lexical and Computational Semantics-Volume 1: Proceedings of the main conference
and the shared task, and Volume 2: Proceedings of the Sixth International Workshop
on Semantic Evaluation, pp. 385–393. Association for Computational Linguistics.

Bird, S. (2006). Nltk: the natural language toolkit. In Proceedings of the COL-
ING/ACL on Interactive presentation sessions, pp. 69–72. Association for Compu-
tational Linguistics.

Bjerva, J., J. Bos, R. van der Goot, and M. Nissim (2014). The meaning factory:
Formal semantics for recognizing textual entailment and determining semantic sim-
ilarity. In SemEval 2014. To appear.

Bos, J. (2008). Wide-coverage semantic analysis with boxer. In Proceedings of the 2008
Conference on Semantics in Text Processing, pp. 277–286. Association for Compu-
tational Linguistics.

Budanitsky, A. (1999). Lexical semantic relatedness and its application in natural
language processing.

Budanitsky, A. and G. Hirst (2006). Evaluating wordnet-based measures of lexical
semantic relatedness. Computational Linguistics 32 (1), 13–47.

Claessen, K. and N. Sörensson (2003). New techniques that improve mace-style finite
model finding. In Proceedings of the CADE-19 Workshop: Model Computation-
Principles, Algorithms, Applications, pp. 11–27.

Curran, J., S. Clark, and J. Bos (2007, June). Linguistically motivated large-scale
nlp with c&c and boxer. In Proceedings of the 45th Annual Meeting of the Associa-
tion for Computational Linguistics Companion Volume Proceedings of the Demo and
Poster Sessions, Prague, Czech Republic, pp. 33–36. Association for Computational
Linguistics.

Fellbaum, C. (1998). WordNet: An Electronic Lexical Database. Bradford Books.

Finkelstein, L., E. Gabrilovich, Y. Matias, E. Rivlin, Z. Solan, G. Wolfman, and
E. Ruppin (2001). Placing search in context: The concept revisited. In Proceed-
ings of the 10th international conference on World Wide Web, pp. 406–414. ACM.

Flesch, R. (1948). A new readability yardstick. Journal of applied psychology 32 (3),
221.

44

Ganitkevitch, J., B. Van Durme, and C. Callison-Burch (2013). Ppdb: The paraphrase
database. In Proceedings of NAACL-HLT, pp. 758–764.

Hirst, G. and D. St-Onge (1998). Lexical chains as representations of context for
the detection and correction of malapropisms. WordNet: An electronic lexical
database 305, 305–332.

Islam, A. and D. Inkpen (2008). Semantic text similarity using corpus-based word
similarity and string similarity. ACM Transactions on Knowledge Discovery from
Data (TKDD) 2 (2), 10.

Jiang, J. J. and D. W. Conrath (1997). Semantic similarity based on corpus statistics
and lexical taxonomy. arXiv preprint cmp-lg/9709008 .

Kamp, H., J. Van Genabith, and U. Reyle (2011). Discourse representation theory. In
Handbook of philosophical logic, pp. 125–394. Springer.

Kandola, J., N. Cristianini, and J. S. Shawe-taylor (2002). Learning semantic similarity.
In Advances in neural information processing systems, pp. 657–664.

Lund, K. and C. Burgess (1996). Producing high-dimensional semantic spaces from
lexical co-occurrence. Behavior Research Methods, Instruments, & Computers 28 (2),
203–208.

Marelli, M., L. Bentivogli, M. Baroni, R. Bernardi, S. Menini, and R. Zamparelli
(2014). Semeval-2014 task 1: Evaluation of compositional distributional seman-
tic models on full sentences through semantic relatedness and textual entailment.
Proceedings of SemEval 2014: International Workshop on Semantic Evaluation..

Marelli, M., S. Menini, M. Baroni, L. Bentivogli, R. Bernardi, and R. Zamparelli
(2014). A sick cure for the evaluation of compositional distributional semantic mod-
els. Proceedings of LREC 2014 .

McCune, W. (2001). Mace 2.0 reference manual and guide. arXiv preprint cs/0106042 .

Mikolov, T. (2013). word2vec - tool for computing continuous distributed representa-
tions of words. - google project hosting,. https://code.google.com/p/word2vec/.

Miller, G. A. and W. G. Charles (1991). Contextual correlates of semantic similarity.
Language and cognitive processes 6 (1), 1–28.

Parker, R., L. D. Consortium, et al. (2009). English gigaword fourth edition. Linguistic
Data Consortium.

Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay (2011). Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research 12, 2825–2830.

Rashtchian, C., P. Young, M. Hodosh, and J. Hockenmaier (2010). Collecting image
annotations using amazon’s mechanical turk. Proceedings of the NAACL HLT 2010
Workshop on Creating Speech and Language Data with Amazon’s Mechanical Turk .

Saeed, J. (2011). Semantics. Introducing Linguistics. Wiley.

45

Santorini, B. (1990). Part-of-speech tagging guidelines for the penn treebank project
(3rd revision).

Steedman, M. (2000). The Syntactic Process. A Bradford book. MIT Press.

Strube, M. and S. P. Ponzetto (2006). Wikirelate! computing semantic relatedness
using wikipedia. In AAAI, Volume 6, pp. 1419–1424.

Witten, I. and D. Milne (2008). An effective, low-cost measure of semantic relatedness
obtained from wikipedia links. In Proceeding of AAAI Workshop on Wikipedia and
Artificial Intelligence: an Evolving Synergy, AAAI Press, Chicago, USA, pp. 25–30.

46

