An overview of the Alpino Treebank
tools

An overview of the Alpino Treebank tools

An overview of the Alpino Treebank

tools

REVISION HISTORY

NUMBER

DATE

DESCRIPTION

NAME

An overview of the Alpino Treebank
tools

Contents

1 Introduction

2 DTSearch: find dependency structures using XPath queries

2.1 Examplesof using dtsearch L e e

3 DTView: graphical display of dependency structures
3.1 Basic Functionality e e e e

3.2 Keyboard navigation L. e e
4 DTXslt: Running stylesheets on a corpus
5 DTTred: Editing dependency structures with TrEd
6 DTEdit: Editing dependency structures with Thistle

7 ACT: Managing Compact Corpora
7.1 Creating COMPACt COTPOTA . . « « v v v v v e e e i i e e e e e e et e e e e e e e e e
7.1.1 Compressing a single direCtory L e e e e e e
7.1.2 Compressing a directory tree recursivelyo e
7.2 Updating compact COTPOTA v v v v vt e i e et e e e e e e e e e e e e e e e e e
7.2.1 Asymmetry of the \——targetdir option o it e

7.3 Extracting COMpact COTPOTA v v v v vttt e ettt e e e e e e e e e e
8 DTList: Listing the contents of a compact corpus
9 DTGrep: grep in dependency structures

10 DTGet: Write dependency structure to standard output

10

11
11
11
12
12
13
13

14

15

16

An overview of the Alpino Treebank

tools 1/16

Chapter 1

Introduction

In this document the various tools of the Alpino Treebank will be discussed. These tools include:

dtsearch
find dependency structures using XPath queries

dtview
display dependency structures

dtedit
edit dependency structures with Thistle (obsolete)

dttred
edit dependency structures with TrEd

dtxslt
apply style sheet to dependency structures

Most of the Alpino Treebank tools support two types of annotated corpora. In the simple case, each dependency structure is
represented by a single XML file. In addition, the tools support so-called compact annotated corpora, in which collections of
XML files are concatenated and compressed. The following tools are relevant for compact corpora in particular:

act
construct/extract compact annotated corpora

dtlist
list file names of dependency structures

dtgrep
search in dependency structures with grep

dtget
write the specified dependency structure to standard output

Some tools are not yet documented:

mg_m_search
use dtsearch on set of dependency structures returned by an MG query

wrappers and libraries for xquery
tools to apply Xquery to Alpino dependency structures (normal and compact)

An overview of the Alpino Treebank

tools 5/16

Chapter 2

DTSearch: find dependency structures using XPath
queries

Use dtsearch to search the corpus. dtsearch uses XPath expressions for querying.
A basic example is:

$ dtsearch -v ’//node[Qcat="pp"]’ /path/to/corpus

By using the —v option dtsearch will display the files that match the query using dtview. In this case, the XPath expression
matches with any dependency structure which contains a node with category pp.

DTSearch will process directories recursively.

The usage information lists the possible output methods:

usage: dtsearch [options] <[-g] QUERY> <files, directories, ...>
options:

—-gqQUERY, -eQUERY, --query=QUERY, --expr=QUERY
XPath expression to search for

-1, —--statistics print stats for values of rel,cat,pos labels in
matching nodes
-r, —--root-labels print stats for values of root label in matching nodes
-s, ——bracketed-sentence
show sentences with matching phrases
-c, ——matching-constituents
show matching constituents only, not the full sentence.
-d, -v, ——-dtview show matches using dtview.
——stdin read file arguments from stdin. Any non-option
arguments on the commandline will be ignored.
-h, —-help show this help message and exit

When no output method is selected dtsearch will print the filename.

2.1 Examples of using dtsearch

In order to be able to specify relevant XPath queries, it is neccessary to know a little bit about the way in which dependency
structures are encoded in XML. This encoding is rather straightforward. Nodes in the dependency structure are encoded by a
recursive XML element node. Nodes contain a variety of attributes. The most important attributes are:

cat
The category of the node (only for non-leaves)

An overview of the Alpino Treebank

tools 3/16

pos
The POS-tag of the node (only for leaves)

begin
The begin position of the node

end
The end position of the node

rel
The dependency relation

root
The root form of the node (leaves)

word
The surface form of the node (leaves)

index
The index of the node (for secondary edges or reentrancies)

There are more attributes, but these are the most important ones.

The following query lists all dependency structures which contain a subject node which itself contains a node with the root form
man. Because of the -s option, all matching sentences are displayed, where the matched part of the sentence is given in square
brackets.

$ dtsearch -s ’//node[@rel="su" and node[@root="man"]]’ g_suite

g_suite/192.xml [de man] zou op zijn te bellen
g_suite/193.xml [de man] zou zijn op te bellen
g_suite/194.xml dat [de man] zou zijn op te bellen
g_suite/195.xml dat [de man] zou op zijn te bellen
g_suite/196.xml dat [de man] op te bellen zou zijn
g_suite/298.xml [de man] is bang dat hij naar huis moet
g_suite/518.xml [de man] werd in de rede gevallen

Further examples are perhaps hard to understand without some knowledge of XPath. There are various tutorials and reference
manuals for XPath available on the web. See for example: What is XPath?

List all sentences containing a "krijgen-passive" in the h_suite treebank:

$ dtsearch -s ’//node[node[@rel="hd" and @root="krijg"] and \
node[@rel="su"]/QRindex=node[@rel="vc"]/node[Q@rel="0obj2"]/@index]’ h_suite

h_suite/277.xml Ik krijg doorbetaald

h_suite/296.xml hij krijgt een microfoon onder de neus geduwd

h_suite/300.xml De ontslagen medewerkers krijgen tot 1 januari 2004 doorbetaald
h_suite/301.xml De ontslagen medewerkers krijgen hun salaris tot 1 januari 2004 doorbetaald
h_suite/306.xml Hij krijgt betaald voor zijn adviezen

h_suite/307.xml Hij krijgt een fortuin betaald voor zijn adviezen

h_suite/556.xml Je kreeg met de paplepel ingegoten dat je beleefd moest zijn

Sometimes it is convenient to get the matched portion of the sentence and nothing more. This is accomplished with the —c
option. For instance, the following finds determiner phrases which contain an adverb as a daughter node.

$ dtsearch -c ’//node[@cat="detp" and node[@pos="adv"]]’ leuven_yellow_pages

leuven_yellow_pages/244.xml iets meer dan bij ons
leuven_yellow_pages/275.xml wat meer
leuven_yellow_pages/276.xml zoveel meer

Quantitative information can be obtained with the —1 option. For instance, this query finds which relations occur as sisters to the
tag relation:

http://en.wikipedia.org/wiki/XPath

An overview of the Alpino Treebank

tools 4716

$ dtsearch -1 ’//node[../node[Qrel="tag"]]’ cdb
rel:
295 tag
291 nucl
cat:
228 smain
104 svl
56 pp
40 du
30 conj
27 ssub
12 mwu
10 np
whqg
inf
detp
cp
ap

=

pos:
28 adv
20 tag
8 noun
adj
verb
num
comp

= w W o

More examples, for the interested reader to try out:
Find topicalized secondary objects with category NP:
$ dtsearch -v ’//node[../Qcat="smain" and Q@rel="obj2" and \
not (@cat="pp") and @begin = ../@begin]’
Find occurrences of extraposition of comparatives out of topicicalized constituents:
$ dtsearch -v ’//node[@cat="smain" and node[node[Q@rel="obcomp"]/QRend\

> ../node[@rel="hd"]/@begin]/@begin = @begin]’

It is also possible to search in the text of the sentence. To do this efficiently, we have developed mg_m_search, that should be
used in such cases for very large treebanks. Searching for text can be done as follows:

S dtsearch -v ’contains(//sentence,"tot zo")’

This works, because there is atmost one sentence element - the string value of a node set in XPath is defined as the string value
of the first element of that node set.

In addition to "contains()" there are various other XPATH functions that are useful in this context, such as "starts-with()" and
"matches()". The latter is used for regular expression matching in XPath 2 (currently not supported).

$ dtsearch ' (//comment[. = "time_out"] or //comment[. ="out_of_memory"]’

In this case, the query will also match in case there are multiple comments (these are indeed allowed).

An overview of the Alpino Treebank

tools 5/16

Beware of shell quoting
Make sure you keep the shell (your command interpreter) from interpreting any special characters in the query. Use

@ any of the following schemes:
dtsearch ’//node[@cat="pp"]’
dtsearch "//node[@cat="pp’]"

dtsearch "//node[Qcat=\"pp\"]"

The first two are the most convenient ones to type.

An overview of the Alpino Treebank

tools 6/16

Chapter 3

DTView: graphical display of dependency struc-
tures

Use dtview to visualize Alpino Dependency structures on your screen.

Screenshot of DTView vannoord/alp/Alpino/dtview.png vannoord/alp/Alpino/dtview.png Screenshot of DT View

3.1 Basic Functionality

DTView can visualize dependency structures and highlight nodes that match an XPath expression. This expression can be
specified on the commandline or in the text entry at the top of the window.

Apply
Apply the XPath expression for highlighting to the current tree. (This can also be achieved by pressing Enter in the text
field)

Filelist
Toggle the visibility of the file list

Ext’d Attrs
Toggle the visibility of any extended attributes that might be present. In general trees that are not hand-corrected contain
extra attributes.

Previous, Next
Go to the previous or next file in the file list.

Smaller, Bigger, Normal
Change the size of the displayed tree.

TrEd
Run the TrEd tree editor on the current file.

Thistle
Run the Thistle tree editor on the current file. (Obsolete, use TrEd instead)

Emacs
Run the Emacs text editor on the current file.

Open Selection
Your current X-selection is supposed to contain a file name. This file name is opened.

Quit

Exit the viewer

An overview of the Alpino Treebank

tools 7716

3.2 Keyboard navigation

Table 3.1: Keyboard shortcuts for DT View

Key(s) Description
Control-q exit

n, Page Down next file

p, Page Up previous file

Up scroll canvas

Down scroll canvas

Left scroll canvas

Right scroll canvas

e toggle Extended Attributes
f toggle Filelist

t invoke TrEd editor
Keypad_Add zoom in
Keypad_Subtract zoom out
Keypad_Multiply revert to original size

An overview of the Alpino Treebank

tools 8/16

Chapter 4

DTXslt: Running stylesheets on a corpus

The dtxslt tool can be used in a similar fashion as programs such as xsltproc to apply a stylesheet to dependency structures.

Usage: dtxslt [options] <files, directories, ...>
-s, ——stylesheet=STYLESHEET The styleheet to use for output.
-g, ——query=QUERY XPath-expression to be used as query. The

expression should evaluate to a node set or
a boolean. With this option the stylesheet
is only applied to documents matching QUERY.

——param=<name>=<value> Normal parameter for stylesheet
——stringparam=<name>=<value> String-parameter for stylesheet
—-—-stdin Read the arguments from standard input, one

argument per line. When this option is
used, any files or directories specified on
the command line will be discarded.

-r, ——recursive Process the directory tree recursively

Help options:

-?, ——help Show this help message
—-—usage Display brief usage message
An example:

$ dtxslt -r -s stylesheets/print-sentence.xsl Machine/clef

This example applies the print-sentence.xs1 stylesheet to every .xml file under Machine/clef. The —r flag ensures
dtxslt will recursively walk through the directory structure looking for .xml files and compact corpora.

Look for examples of stylesheets in Alpino/TreebankTools/stylesheets. Another place that shows the use of
stylesheets in the Alpino Treebank is the create-sanity-check—-stylesheet.py script in the misc-scripts di-
rectory.

An overview of the Alpino Treebank

tools 9/16

Chapter 5

DTTred: Editing dependency structures with TrEd

The dttred program is a simple script which starts the TrEd tree editor, with the appropriate settings for Alpino dependency
structures. The program normally takes one or more arguments: the file names you want to edit.

Alpino-specific functionality can be found under the User-defined— Alpino menu.

Documentation for TrEd

http://ufal.mff.cuni.cz/~pajas/tred/

An overview of the Alpino Treebank

tools 10/16

Chapter 6

DTEdit: Editing dependency structures with This-
tle

The dtedit program is a simple script which starts the Thistle editor, with the appropriate settings for Alpino dependency
structures. The program normally takes one or more arguments: the file names you want to edit.

Please use the documentation of Thistle in the local installation directory of Thistle on your machine.

DTEdit is now obsolete. Please use dt t red instead.

@ Compact annotated corpora are not supported by dtedit and dttred
If you want to edit a dependency structure from a compact annotated corpus, you must first extract the file (using ACT),
use dtedit or dttred, and then pack the file back into the archive (again using ACT).

An overview of the Alpino Treebank

tools 11/16

Chapter 7

ACT: Managing Compact Corpora

The Alpino corpora can be stored in what we call "Compact Corpora". They consist of two files per corpus: one file with
the compressed data and a seperate file with the filename information. Together they’re in a way similar to .zip files, but their
compression ratio (because they typically consist of a lot of small files) is much better. The compression method is based on
dictzip (see www.dict.org).

All of our tools work transparently on files in a normal directory structure and those in a compact corpus.

7.1 Creating compact corpora

The tool to manage compact corpora is called act, which stands for Alpino Corpus Tool. From the act point of view, a corpus
is a directory that contains .xml files.

7.1.1 Compressing a single directory

Let’s assume we have the following directory structure:

corpus_directory
|—— cdb

\

| |—— 1.xml~

\ |—— 10.xml

| |-— 100.xml
| |-— 1000.xml

|—— 997 .xml

|—— 998.xml

|=— 999.xml

| -— CVS

| |-— Entries

| | -— Repository
| ‘—— Root

‘-— Makefile

—-— compact_corpora

We want to create a compact corpus for cdb in the compact_corpora directory. Here are two ways to do this:

$ cd compact_corpora
$ act —--create ../cdb

The same can be accomplished with:

http://www.dict.org

An overview of the Alpino Treebank

tools 12/16

$ act —--create --targetdir=compact_corpora cdb

Both methods will put two new files in the compact_corpora subdirectory:

\

—— compact_corpora
|-— cdb.data.dz
‘—— cdb.index

Compact corpora will only contain .xml files. In our example above, 1 .xml~, the CVS directory structure, and Makefile are
all ignored.

7.1.2 Compressing a directory tree recursively

Consider the following directory structure (only directories shown):

corpus_directory

| —— cdb

| ‘—-— CVS

| -— Machine

| ‘—— clef

| |-— AD19940103
| |-— AD19940104
| |-— AD19940105
| |-— AD19940106
| |-— AD19940107
| ‘—— AD19940108
‘-— compact_corpora

Assume only cdb and the directories starting with “AD” contain .xml files.
The following will create a compact version of the Machine directory structure under compact_corpora/Machine:

S act —--create —--recursive —--targetdir=compact_corpora/Machine Machine/

The target-directory will be created if necessary.
The default for \--targetdir is the current directory, so the following yields the same result as the previous example:

$ mkdir -p compact_corpora/Machine
S cd compact_corpora/Machine
$ act —--recursive ../../Machine

To replace the Machine subdirectory with a compact equivalent use the following:

$ cd Machine
$ act —--remove —--create —-recursive

The \-—remove option will cause the source files to be removed after creating the compact corpus.

When using recursion to create compact corpora, the directories specified should not contain any xml files, i.e. they should
(only) contain other directories.

7.2 Updating compact corpora

Scenario: there’s a compact corpus and there are several files that have updates. Say, a couple of sentences have been reparsed.

Updating will work on a sparse directory structure, i.e. the directory structure only needs to contain the reparsed files. These files
will be merged with the existing compact corpus or compact corpora.

act —--recursive —--update --targetdir clef newly_parsed_clef

An overview of the Alpino Treebank

tools 13/16

7.2.1 Asymmetry of the \--targetdir option

When using \--recursive, the \--targetdir option provides a straight directory to directory mapping. With regular
corpus directories (directories that contain xml files) however this is not possible, because when converting to a compact corpus
the name of the last directory component has to map to a filename.

Let’s illustrate this with two examples. The cdb directory is a regular corpus directory and (therefore) contains . xm1 files. The
cdb compact corpus will be created/updated below the compact_corpora directory:

act —--update cdb --targetdir=compact_corpora

The clef directory does not contain any .xml files, it contains other directories that contain the .xml files. In this case we
have a direct mapping from directory to directory:

act —--recursive --update clef —--targetdir=compact_corpora/clef

Therefore the directory arguments given to act \--recursive should not contain any .xml files, otherwise the compact
corpora may end up in places not intended.

7.3 Extracting compact corpora

To extract a compact corpus use the \——extract flag. At the moment of writing extracting only works non-recursively.

Extracting creates a new directory with . xml files for every compact corpus specified on the commandline. For example, the
following extracts a collection of compact corpora to a specific directory (current directory is the default):

$ act —--targetdir /lots/of/space/Machine/clef —--extract Machine/clef/x.index

Use \--force to have act overwrite existing directories.

An overview of the Alpino Treebank

tools 14/16

Chapter 8

DTList: Listing the contents of a compact cor-
pus

To show the contents of a compact corpus use “dtlist”. The compact corpus " cdb can be specified as cdb, as
cdb.index oras cdb.data.dz.

$ dtlist compact/corpora/cdb.index
compact_corpora/cdb/0.xml
compact_corpora/cdb/1.xml
compact_corpora/cdb/2.xml
compact_corpora/cdb/3.xml
compact_corpora/cdb/4.xml
compact_corpora/cdb/5.xml

Note the complete path in the output and the numerical sorting.

Watch out with wildcards and compact corpora
The following will give two listings! One for cdb .data.dz, and one for cdb. index:

$ dtlist compact_corpora/cdbx

An overview of the Alpino Treebank

tools 15/16

Chapter 9

DTGrep: grep in dependency structures

DTGrep can be used to search in dependency structures with regular expressions. The dt grep program basically is a stripped
down grep program that knows about Compact Corpora. DTGrep uses Perl-compatible regular expressions.

usage: dtgrep [options] arguments

options:
——help show this help message and exit
—ePATTERN, --regexp=PATTERN
use PATTERN as a regular expression
-i, —-—-ignore-case ignore case distinctions
-v, —-—invert-match select non-matching lines
-1, ——files-with-matches
only print FILE names containing matches
-h, --no-filename suppress the prefixing filename on output
—-—stdin read file arguments from stdin. Any non-option

arguments on the commandline will be ignored.

An overview of the Alpino Treebank

tools 16/16

Chapter 10

DTGet: Write dependency structure to standard
output

The dtget tool simply takes a sequence of one or more filenames, and prints the corresponding dependency structures to
standard output.

	Introduction
	DTSearch: find dependency structures using XPath queries
	Examples of using dtsearch

	DTView: graphical display of dependency structures
	Basic Functionality
	Keyboard navigation

	DTXslt: Running stylesheets on a corpus
	DTTred: Editing dependency structures with TrEd
	DTEdit: Editing dependency structures with Thistle
	ACT: Managing Compact Corpora
	Creating compact corpora
	Compressing a single directory
	Compressing a directory tree recursively

	Updating compact corpora
	Asymmetry of the \--targetdir option

	Extracting compact corpora

	DTList: Listing the contents of a compact corpus
	DTGrep: grep in dependency structures
	DTGet: Write dependency structure to standard output

