Algorithms for

LIN{LEPED~
940 | LB LENG—

becn ;

PIONIER Project Proposal

Gertjan van Noord

Algorithms for Linguistic Processing

Gertjan van Noord

ben 2

Graduate School for Behavioral and Cognitive Neurosciences
Alfa-informatica
P.O. Box 716
NL 9700 AS Groningen
vannoord@let.rug.nl
http://www.let.rug.nl/“vannoord/alp

Contents

Introduction

1 Background and Motivation
1.1 Computational Linguistics L oL
1.2 Grammar Approximation and Grammar Specialisation
1.3 Immovation L e
1.4 OVerview o .o e

2 Finite-state Language Processing
2.1 Arguments for Finite-state Language Processing
2.2 Previous Work in Finite-state Language Processing
2.3 Research Questions in Finite-state Language Processing
2.3.1 Finite-State Calculus 0oL
2.3.2 Methods of Finite-state Approximation
2.3.3 Qualitative Evaluation of Finite-state Approximation
2.3.4 Experimental Evaluation of Finite-state Approximation
2.3.5 Approximation of constraint-based grammars
2.3.6 Finite-state Approximation and Interpretation
2.3.7 Finite-state Approximation in Language Generation
2.3.8 Compact Formats for Finite-state Approximations

3 Grammar Specialisation
3.1 Motivationo
3.2 Previous Work in Grammar Specialisation and Disambiguation
3.3 Research Questions in Grammar Specialisation and Disambiguation
3.3.1 The Importance of Words for Disambiguation
3.3.2 Disambiguation of Lexical Dependency Structures
3.3.3 Evaluation of Disambiguation Techniques

4 Grammar Development for Dutch
4.1 Towards a linguistically motivated grammar for Dutch
4.2 Motivation for TST Grammar
4.3 Current Status

11
11
14
14
15

17
17
20
23
23
24
24
26
26
27
27
27

29
29
31
33
33
35
35

Gertjan van Noord

4.4 Development Plans 41
4.4.1 Corpus Exploration, 41
4.4.2 Syntactic Coverage o 42
4.4.3 Lexical Coverage 42
4.4.4 Automated lexical acquisitiono L. 42
4.4.5 Linguistic Sophistication 0oL 43

Towards a linguistically-informed search tool: Igrep 45

5.1 What is lgrep? 45

5.2 The construction of Igrep oL 47

Bibliography 49

Introduction

Algorithms for Linguistic Processing is a research proposal in the area of computational
linguistics. The proposal focuses on problems of ambiguity and processing efficiency by in-
vestigating grammar approrimation and grammar specialization techniques. In this section
we will try to explain for a broader audience what computational linguistics is, and what
the current proposal is all about.

What is computational linguistics?

Linguistics is concerned with the study of natural languages such as Dutch, English, Ko-
rean, Nepali, Tagalog etc. Linguists hypothesise models (‘grammars’) of such languages
which indicate the form utterances in the language can have. A grammar of English, for
instance, will account for the fact that the first example below is an English sentence,
whereas the second is not, even though it is made up of the very same English words:

(1) a. The small man loves the tall lady
b. The lady tall man loves small the
c. The tall lady loves the small man

Such grammars also describe the relation between form and meaning of the utterances
in a given natural language. The grammar must distinguish the meaning of sentence (1-a)
from the meaning of sentence (1-c). For the non symmetric verb love the difference in
syntactic order corresponds not only to a difference in grammatical function (such as
subject, direct object), but also to a difference in semantic roles (e.g. who is loved, and
who is loving). Syntactic analysis will therefore determine the semantic interpretation.

In linguistics, grammars can play various roles. For example in theoretical linguistics
they are sometimes considered as models of the knowledge native speakers have of their
language. In computational linguistics, another perspective is taken: computational lin-
guistics is about the computation of the relation between form and meaning in natural
language. Thus, rather than focusing on what the relation between form and meaning
is, computational linguists want to know how this relation can be computed. Suppose
we have a grammar of Dutch and we are given a Dutch sentence, how can we compute
its corresponding meaning? And in the reverse direction, suppose we are given a certain
meaning, how can we compute a Dutch or an English sentence expressing that meaning?

6 Gertjan van Noord

Thus, computational linguistics is concerned with the way in which natural language is or
can be processed.

Why study computational linguistics?

Why do we want to know how the relation between form and meaning can be computed?
We identify three motivations to study computational linguistics.

As humans, we process language very easily many times a day in our normal commu-
nications with each-other. Hence, in our terminology, we are able to compute a meaning
for a given utterance (since we understand each-other), and to compute an utterance for
a given meaning (since we can express our thoughts). We want to know how humans per-
form this task, in order to further our understanding of natural language. In this sense,
computational linguistics is part of linguistics and cognitive science.

A second motivation to study computational linguistics is of a more practical nature.
If we know how to compute this relation between form and meaning, then we can write
computer programs which perform this computation. Such computer programs will make
a broad set of interesting natural language applications possible: spoken information sys-
tems, machine translation systems, natural language interfaces, and many others. One
of the results of the NWO Priority Programme on Language and Speech Technology is
a spoken dialogue system for public transport information. The system is accessible by
telephone. A caller can request (in ordinary Dutch) time-table information for all Dutch
train connections. The system operates automatically: if all goes well, no human interac-
tion is required. In such a system the computer analyses the utterances of a user in order
to find out what connection is being requested. Furthermore, natural language synthesis
is used to produce further questions (for instance if not all information is available for a
database lookup yet), and to produce the resulting connection, once the database has been
consulted. From this perspective, computational linguistics is an engineering science (the
term human language technology is sometimes used for this type of work).

The third motivation to study computational linguistics is theoretical: we are interested
in the computation of the relation between form and meaning for its own sake. This
computation has interesting formal properties and relates in interesting ways to theoretical
aspects of the theory of computing in general. Construed in this way, computational
linguistics is closely related to mathematical linguistics and theoretical computer science.

Two problem areas in computational linguistics

The proposal Algorithms for Linguistic Processing focuses on two crucial problem areas
in computational linguistics: problems of processing efficiency and ambiguity. For the
problem of efficiency we propose to investigate grammar approximation techniques, whereas
a number of grammar specialization techniques are proposed for the ambiguity problem.

Algorithms for Linguistic Processing 7

Efficiency and Grammar Approximation. The first problem, efficiency, is posed by
the fact that the grammars which are typically hypothesised by linguists are unattractive
from the point of view of computation. For a given grammatical formalism, computational
efficiency is expressed by stating the (maximum) number of steps required to compute the
analysis of a sentence of length n, where n is the number of words. In the simple case,
the number of steps will increase proportionally with n. In such cases the complexity is
said to be linear. For more complex grammatical formalisms, the number of steps will
increase faster than n (e.g. it increases proportionally with n® for so-called ‘context-free
grammars’). For certain even more powerful grammatical formalisms it can be shown that
no upper-bound to the number of steps required to find an analysis can be given. The
human language user, however, seems to process in linear time; humans understand longer
sentences with no noticeable delay. This implies that neither context-free grammars nor
more powerful grammatical formalisms are likely models for human language processing.
An important issue therefore is how the linearity of processing by humans can be accounted
for. For this purpose we will explore grammar approrimation techniques.

Grammar approximation techniques approximate a given (powerful) grammar by means
of devices of a much simpler form: finite-state devices. Finite-state devices are a type of
formalism that has been studied extensively in mathematics and computer science. They
are known to allow very efficient processing (in linear time). It is also known that they are
incapable of treating certain linguistic constructions in full generality. But interestingly,
at least some of the constructions that cannot be treated with finite-state devices are also
difficult for humans.

For example, constructions involving center-embedding are very hard to process for
humans, but are regarded as grammatical by linguists. In English particle verb construc-
tions, the particle can either precede or follow the direct object (put the book down / put
down the book). If the direct object contains a relative clause, and the particle follows the
direct object, then the examples become very hard to understand. For finite-state devices
it is equally impossible to process these sentences. This suggests that finite-state devices
could offer language models adequately accounting for the efficiency of human language
processing.

(2) a. I called the man who put the book that you told me about down up
b. The man who the boy who the students recognised pointed out is a friend of mine
c. The man the boy the students recognised pointed out is a friend of mine
d. The rat the cat the dog chased bit ate the cheese

(3) De de de oude schuur bewonende boer toebehorende kat haat ratten
The the the old shed living-in farmer is-owned cat hates rats
The cat owned by the farmer living in the old shed hates rats

Grammar Specialization. A further problem is posed by ambiguity. Many words are
ambiguous: a dictionary lists various meanings for a single word. For instance, the Dutch
word zagen can be the past tense form of the verb zien (to see) or the present tense form

8 Gertjan van Noord

of the verb zagen (to saw). For this reason, a computer program analysing the sentence
in (4-a) will need to decide which reading of zagen was intended, in order to be able to
come up with the appropriate meaning. Ambiguities also arise in certain structural con-
figurations. In (4-b), for instance, the prepositional phrase in Vietnam could be attached
both to de oorlog or to luisteren. Both examples are taken from the Eindhoven corpus (den
Boogaart, 1975).

(4) a. Mijn vader zagen we niet meer
My father saw we not anymore
We don’t saw our father anymore
We didn’t see our father anymore
b. Zij luisteren naar de bezwaren tegen de oorlog in Vietnam], ...]
They listen to the arguments against the war in Vietnam
They listen to the arguments against the Vietnamese war
They listen in Vietnam to the arguments against the war

In many contexts the unintended readings are unlikely or even ridiculous, but it is
very difficult to spell out how information concerning the discourse, context, situation
and knowledge of the world enforce a particular reading. Therefore, a computer program
will come up with such ridiculous readings nonetheless. The phenomenon occurs very
frequently for even the most innocent examples. For longer sentences, hundreds or even
thousands of readings arise. An important problem therefore is disambiguation: how can
we quickly rule out the unintended readings?

We propose to tackle this disambiguation problem by investigating a variety of gram-
mar specialisation techniques. These techniques optimise a given grammar on the basis of
corpora of representative linguistic behaviour. Such corpora will contain implicit knowl-
edge concerning situations and contexts which can be extracted by means of statistical
techniques in order to be helpful in disambiguation. Such specialisation techniques should
be able to conclude that certain readings of lexical entries, and certain combinations of
readings, are unlikely in certain contexts.

In the example (4-a) above, each reading could be the right one. However, in the
absence of any further information, it seems that our best ‘bet’ is to guess that the second
interpretation holds, since fathers are not sawed very often. In this perspective, the use of
statistics is an aid to reasoning in circumstances where not enough information is available
to infer which reading must have been the correct one.

Innovative aspects

Progress in computational linguistics will not only be important in terms of improving our
understanding of human language, but it will also have an important effect by furthering
human language technology.

It will be possible to develop natural language interfaces which will drastically improve
the accessibility of large amounts of information (especially for people without computer

Algorithms for Linguistic Processing 9

training). It will enable and improve linguistic applications such as grammar checkers,
dictation systems, language instruction, documentation systems and linguistic aids to the
handicapped. Human language technology is one of the key actions of Fifth Framework Pro-
gramme of the European Community for research, technological development and demon-
stration activities.

An innovative aspect of the proposal is that it focuses on the Dutch language, and hence
on Dutch linguistics and language technology. A recent overview on Dutch Language and
Speech Technology conducted by de Nederlandse Taalunie (Bouma and Schuurman, 1998)
reports that there are many fewer language technology resources available for Dutch (as
compared to English). It is important that language technology is developed for Dutch in
addition to the current developments for languages such as English, German and French.
Language technology applications such as those mentioned above are cultural bonuses that
should accrue not only to the speakers of majority languages.

The project aims furthermore at significant spin-offs. The proposed project will devote
resources to extending existing Dutch grammars to experiment with the proposed tech-
niques and to test the hypotheses. An extensive Dutch grammar in the public domain
will be a major contribution to Dutch computational linguistics and to the international
community.

Moreover, we propose to apply some of the innovative techniques in a linguistic
research tool for searching bare text-corpora (called lgrep). This application is capable
of searching text corpora (including arbitrary Dutch texts on the Internet) on the basis
of linguistic criteria. It extends existing search tools with the possibility to specify
search patterns including linguistic criteria such as part-of-speech labels (such as noun,
verb, preposition, etc.), major syntactic category (noun phrase, verb phrase, subordinate
sentence, etc.), and grammatical relation (subject, direct-object, specifier, etc.). Such
a tool would be useful for researchers working with corpora such as researchers in
linguistics, applied linguistics, comparative literature and communication studies, but
perhaps also as an extension of traditional grammars as used by language learners, en-
abling them to obtain example sentences of particular linguistic constructions upon request.

A successful implementation of Algorithms for Linguistic Processing will not only pro-
vide new insights concerning the way in which natural language is processed, but it will
also provide new techniques which are crucial for human language technology, in particular
for Dutch.

10

Gertjan van Noord

Chapter 1

Background and Motivation

1.1 Computational Linguistics

Theoretical linguistics has developed extensive and precise accounts of the grammatical
knowledge implicit in our use of language. It has been able to adduce explanations of
impressive generality and detail. These explanations account for speakers’ discrimination
between different linguistic structures, their ability to distinguish well-formed from ill-
formed structures, and their ability to assign meaning to such well-formed structures.
Grammars are hypothesised which model the well-formed utterances of a given natural
language and the meaning representations which correspond with these utterances.

The smaller and younger field of computational linguistics has also been successful
in obtaining results about the computational processing of language. These range from
descriptions of dozens of concrete algorithms and architectures for understanding and pro-
ducing language (parsers and generators), to careful theoretical analysis of the underlying
algorithms. The theoretical analyses classify algorithms in terms of their applicability,
and the time and space they require to operate correctly. The scientific success of this
endeavour has opened the door to many new opportunities for applied linguistics.

However a number of important research problems have not been solved. An important
challenge for computational accounts of language is the observed efficiency and certainty
with which language is processed. The efficiency challenge is both theoretical and prac-
tical: grammars with transparent inspiration from linguistic theory cannot be processed
efficiently. This can be demonstrated theoretically, and has been corroborated experi-
mentally. In current practice, such grammars are recast into alternative formats, and are
restricted in implementation. Effectively, large areas of language are then set aside.

The certainty with which language is processed is not appreciated generally. But careful
implementation of wide-coverage grammars inevitably results in systems which regard even
simple sentences as grammatically ambiguous, even to a high degree. The computational
challenge is to incorporate disambiguation into processing.

There are two central leading hypotheses of the project. We shall explore approzimation
techniques which recast theoretically sound grammars automatically into forms which allow

12 Gertjan van Noord

for efficient processing. The hypothesis is that processing models of an extremely simple
type, namely finite automata, can be employed. The use of finite automata leads to
interesting hypotheses about language processing, as we will argue below.

Second, we test the hypothesis that certainty can be accounted for—at least to some
extent—by incorporating the results of language experience into processing. This will
involve the application of machine learning techniques to grammars in combination with
large samples of linguistic behavior, called corpora. Such techniques will ensure that a
given utterance, which receives a number of competing analyses if considered in isolation,
will receive a single analysis if the relevant context and situation are taken into account.

The project aims furthermore at significant partial results. In order to test its process-
ing claims, large scale grammars of some theoretical ambition must be tested. While these
exist now for English, the project will devote resources to extending existing Dutch gram-
mars to further test the claims. An extensive Dutch grammar in the public domain would
be a major contribution to Dutch computational linguistics and to the international com-
munity. Second, the processing techniques and concrete implementations are technology
which directly enables a number of interesting applications in spoken language information
systems, language instruction, linguistic research, grammar checking, and language aids to
the disabled.

Naturally there have been attempts to process theoretically well-informed grammars
using a range of grammar theories. For example, the Alvey project implemented a wide
coverage Generalized Phrase Structure Grammar (GPSG) (Briscoe et al., 1987; Grover,
Carroll, and Briscoe, 1993; Gazdar et al., 1985). The grammar illustrates both difficulties,
inefficient processing and ambiguity.

The Alvey grammar eschews the abstract formulation favoured by contemporary the-
orists. It is purely context-free in form, and makes use of a small number of mostly
atomic-valued features.! Most GPSG grammar principles are not represented directly at
all; rather, the grammarian is required to keep these in mind. In particular, the grammar-
ian should write no rules or lexical entries in violation of the principles, but there is no
mechanism for the grammarian to write principles which the parser will attend to. So on
the one hand the grammar makes concessions to processing difficulties.

Massive ambiguity on the other hand could not be circumvented. For longer sentences
hundreds and even thousands of readings are associated with a single sentence. One of the
test-sentences of the Alvey NL Tools grammar is the question In which abbey or message
with which he agrees did he see the crazy anzious abbot who was not appearing to see the
message with which kim agrees? The sentence is peculiar because the lexicon was minimal,
but its peculiarity does not explain how the grammar assigns it 2,736 distinct readings,
each of which is motivated linguistically. One of the parse-trees is given in figure 1.1.

Tt should be noted as well that GPSG attempted to get along with a very simple grammar formalism
as a matter of principle.

13

Algorithms for Linguistic Processing

/261D /pioouuea _/[urSnigermmm//:dypy 1e d[qe[IeAr dIe owop
poseq-gqom ® pur IeweIS AA[Y Oy, eouojuos Iod sosied (O] IoAO SeM 9)INS 1899 oY) 10 AymIrquie ogeroar oy} :ojdwrexs oy} Jo
Ayrermoad o) 09 anp j0U ST ANMNIIQUIR DAISSRW 9 JRY) 9j0U 0} Juestodwr st 1] *(L66] ‘ewWnog pue piooN uea) adexped Snipyg
UOSUIUOIY) oYY} SUISn pourejqo sem osied oyJ, "IRWWIRIS o[})M POINGLIJSIP 9IS 189} oY) Ul SINDD0 9IUOIUSS 9] ¢ (SUOIIOLIISIT
JYSLIAdod 07 oNp) WOIIXA[[[BUWIS © SUIRIUOD A[UO IRUWIMIRIL) AOATY oY) JO UOISIDA d[qe[rear ApIqnd asneosaq Iermood A[[edTjuewos SI
olduwrexo POALIIUOD O T, ;592460 wirdf yorym yum abvssows ayy 298 03 buravaddp jou svm oym 309qn snowzuv fiznid 2y3 295 2y Pip $99.46D
oY yowym ypum 2b60ssaw 40 fiaQqD YoIYM U SOUDIUSS O} 09 IewIRIL) AoA[y oY) Aq paugisse soox) osred 9¢) ‘g oy Jo ou) T 9InS3Iy

T/TyoIyM
oxd/+gu w UM

/

01 /189013 1/1uIny qdu/1d 1/ M
nyur/da :~L+N: ﬁnxmm oav+m: nga
.ﬁ/ &oa\mx ¢/ 108essour oH\Hﬂvo.%n ﬁ_ﬁw: g_%_{a
ﬂnz\%ﬁ\m/ \ :T: 1yut/da oxd/+gu ﬁaﬁma
Tpourr/Tu 1/110qq® ¢/Tsnorxue /AA gpour/gx ¢/ 1oSessour
-W: ¥/1o1) o/1sem 1/10UyM gpunoduion /u 1/147e10 Te[qApe/s LH:
+gu 0g/T190s oxd/da oxd/+gu gpunoduron /u Tpourp1/Tu 1/140qqe

govel TP

?ﬁ:&u@ \N\Hop /ix/ \H:\ LH: -wﬁ \A\TO :.wﬁ:

0}/da 9/18utreadde Tpourpar gu/od
quris/da M 10U -gu ¥/1o1 rEPIO0D /g1 G/ M
moﬁ\a\// vﬁ 0T/ 1008 H_ﬁv: mawﬁ\.__ﬁ: 9/Tut
(eyysersur)gurao/da oxd/+gu ¢/1pIp qdu/1d
(res)Top/da \ 1d/ed
/ gopn-dd/s

b

14 Gertjan van Noord

1.2 Grammar Approximation and Grammar Special-
isation

How shall we deal with inefficiency and massive ambiguity? We propose to investigate
solutions to these problems along the following two dimensions.

To prevent inefficiency we shall explore automated grammar approximation. Techniques
will be investigated in which natural language grammars expressed in powerful constraint-
based grammatical formalisms are approximated by devices of a much more simple form
(typically by finite-state devices). Progress in this area would explain the relation of lin-
guistic competence and linguistic performance; at the same time it would facilitate the
practical application of more advanced natural language processing techniques in practi-
cal applications. Contributions are foreseen not only from theoretical and computational
linguistics, but also from mathematical linguistics and psycholinguistics.

To account for the certainty of human communication, we shall investigate automated
grammar specialisation, a means of optimising a theoretical grammar on the basis of a
corpus of representative linguistic behavior. Applications of specialisation will yield spe-
cialised, less ambiguous grammars but in a manner which does not rely on the grammar-
ians’ intuitions. Such specialised grammars may be expected to take the form of hybrid
systems which combine rules with statistical information. Contributions are foreseen from
theoretical linguistics, computational linguistics, information theory and machine learning.
Progress in this area will contribute to our theoretical understanding of disambiguation
and will facilitate the portability of natural language processing components.

1.3 Innovation

The most important innovation of the proposed project is the combination of linguistically
sound grammars on the one hand with corpus-based techniques on the other hand. The
area of computational linguistics has seen a shift of perspective over the last ten years.
After a period in which ‘knowledge-based’ approaches towards computational linguistics
dominated the field, in combination with applications which only had a long-term potential
(such as fully automatic, high quality translation), the last ten years corpus-based and
probabilistic techniques have become quite popular, together with more emphasis on less
ambitious applications with short-term potential.

We feel that this shift of attention was beneficial because of its emphasis on evaluation
and ‘real-world’ problems. We also feel, however, that this ‘no-nonsense’ attitude has
neglected some of the potential that linguistics has to offer. We believe that in order to
be able to extend the state of the art to larger domains of applicability it is necessary
to import linguistic insights again. And furthermore, such a connection with theoretical
linguistics is warranted from a theoretical point of view.

The innovative aspect of the current proposal therefore is that it combines a corpus-
based evaluation methodology with a sound linguistic basis.

Algorithms for Linguistic Processing 15

Another innovative aspect of the proposal is that it focuses on the Dutch language, and
hence on Dutch linguistics, and Dutch language technology. This is an important aspect
of the proposal, since we believe it is important that language technology is developed for
Dutch in addition to the current developments for languages such as English, German and
French. Language technology applications such as grammar checkers, dictation systems,
documentation systems and aids to the handicapped are cultural bonuses that should
accrue not only to the speakers of majority languages.

A recent overview on Dutch Language and Speech Technology (Bouma and Schuurman,
1998) reports that there are many fewer language technology resources available for Dutch
(as compared to English). In particular, the report signals a need for implemented Dutch
grammars. The present proposal accords with one of the report’s recommendations:
fundamental and applied research in language and speech technology in Dutch should be
stimulated.

1.4 Overview

The research project aims to answer the question of how it is that knowledge of language is
applied in communication. Two major concerns can be identified. Firstly, it is important
to understand how it is possible that knowledge of language is applied so efficiently by
humans when they understand and produce natural language. We propose to investigate
the hypothesis that natural language processing is finite-state in nature. This hypothesis
is explained in more detail in section 2.

Secondly, humans are also very good at disambiguation; natural language users quickly
discard ridiculous readings of a given sentence by taking into account the context and
situation of the utterance. We propose to investigate techniques which are capable of
augmenting the knowledge of language (modelled in the form of a grammar) with a theory
of how this knowledge of language is usually applied. Below, in section 3, we refer to such
techniques as grammar specialisation in order to stress the fact that we take a linguistic
grammar (the model of the knowledge of language) as an important point of departure for
such techniques.

Although the proposed research aims at general answers to the above-mentioned ques-
tions we believe strongly in a methodology in which concrete proposals are developed and
compared. For this reason we want to be able to apply and evaluate such concrete proposals
on a specific grammar of Dutch. This aspect of the proposal is defined in section 4.

Moreover, we propose to apply some of the approximation and disambiguation tech-
niques in lgrep: a linguistic search tool for bare text-corpora (section 5). Such a tool
would be useful for (computational) linguists working with corpora, but also as an exten-
sion to traditional grammars as used by language learners, to be able to obtain example
sentences of particular constructions upon request. The tool will also be useful for the
proposed research itself; for each of the proposed research areas corpus exploration is im-
portant and therefore such a corpus exploration tool will be a useful tool.

16

Gertjan van Noord

Chapter 2

Finite-state Language Processing

2.1 Arguments for Finite-state Language Processing

A major research question concerns the possibility of approrimating an underlying general
and abstract grammar by techniques of a much simpler sort. The idea that a competence
grammar might be approximated by finite-state means goes back to early work by Chomsky.
For instance, in Chomsky (1964) it is proposed that, among other things, the theory of
grammar should make available a function g which returns for a given grammar G; and a
given amount of memory n, the description of a finite automaton that takes sentences as
input and gives structural descriptions as output. Chomsky then continues (page 121):

[this] would take us one step closer to a theory of the actual use of language. We
can attempt to construct g in such a way that g(i, n) will be a reasonable model
for the production (or recognition) of sentences by the speaker (or hearer) who
has internalised the grammar G; and who has a memory capacity determined
by the value of n. Notice that although the grammar G; mastered by the
user of a language is of course finite, it is not to be expected (and, in the
case of natural languages, it is not in fact true) that a finite automaton can
be constructed which will be able to accept (or generate) all and only the
sentences generated by G;, or which will be able to “understand” just these
sentences |...]. This is no stranger than the fact that someone who has learned
the rules of multiplication perfectly (perhaps without being able to state them)
may be unable to calculate 3,872 x 18,694 in his head, although the rules that
he has mastered uniquely determine the answer.

There are essentially three observations which motivate the view that the processing of
natural language is finite-state:

1. humans have a finite (small, limited, fixed) amount of memory available for language
processing

18 Gertjan van Noord

2. humans have problems with certain grammatical constructions, such as center-
embedding, which are impossible to describe by finite-state means

3. humans process natural language very efficiently (in linear time)

The first argument is expressed in Chomsky (1963) on page 390 as follows:

[...] we must conclude that the competence of the native speaker cannot be
characterised by a finite automaton [...]. Nevertheless, the performance of the
speaker or hearer must be representable by a finite automaton of some sort.
The speaker/hearer has only a finite memory, a part of which he uses to store
the rules of grammar (a set of rules for a device with unbounded memory), and
a part of which he uses for computation in actually producing a sentence or
“perceiving” its structure and understanding it.

These considerations are sufficient to show the importance of gaining a bet-
ter understanding of the source and extent of the excess generative power of
context-free grammars over finite automata (even though context-free gram-
mars are demonstrably not fully adequate for the grammatical description of
natural languages).

Pulman (1986) comments as follows (page 198):

Expressed in this way, the claim that the parsing abilities of speaker-hearers can
be modelled in finite-state terms is fairly trivial: the performance of any cog-
nitive ability by any mortal organism with finite powers is likewise guaranteed
to be finite state in character.

We could add that not just mortal organisms face this restriction, but any physical
object, including modern computers. Pulman then introduces strict finite state devices
which are finite state devices with a “fairly small” amount of fixed memory, and suggests
that Chomsky (and others) had this in mind, when stating the finite-state requirement
above.

The second argument, concerning center-embedding, is perhaps the best-known argu-
ment for the hypothesis that natural language processing is finite-state in nature. Gram-
matical constructions involving center-embedding are very hard to process by humans
(Miller and Chomsky, 1963; Chomsky, 1965). For example, the following sentences are
grammatical, but hard to understand:

(1) a. %I called the man who put the book that you told me about down up
b. %The man who the boy who the students recognised pointed out is a friend of mine
c. %The man the boy the students recognised pointed out is a friend of mine
d. %The rat the cat the dog chased bit ate the cheese

Algorithms for Linguistic Processing 19

(2) %De de de oude schuur bewonende boer toebehorende kat haat ratten
The the the old shed living farmer owned cat hates rats
The cat owned by the farmer living in the old shed hates rats

If the embedding occurs at the edge of a word group, the examples are easy to understand,
indicating that the observed difficulty in understanding is not of a semantic nature:

(3) a. I called the man up who put the book down that you told me about
b. [This friend of mine is [the man who was pointed out by [the boy who was recognised
by the students]]]
c. [This friend of mine is [the man pointed out by [the boy recognised by the students]]]
d. This is [the dog that chased [the cat that bit [the rat that ate the cheese]||

(4) De kat die toebehoort aan de boer die de oude schuur bewoont haat ratten
The cat that is-owned by the farmer who the old shed lives-in hates rats
The cat owned by the farmer living in the old shed hates rats

Such observations find natural description in a finite-state approach, since finite-

state devices are incapable of describing such center-embedded constructions (of arbitrary
depth).

Of particular interest for a Dutch audience is the observation that the famous Dutch
cross-serial dependency construction becomes extremely hard to understand if the number
of argument selecting verbs which take part in the construction is larger than 3. This
construction has been the basis of the most convincing argument to date that natural
languages cannot be described by context-free means (Huybrechts, 1984; Shieber, 1985).

(5) a. dat de inspectie de bewaker de gevangenen zag helpen ontsnappen
that the inspection the guard the prisoners saw help escape
that the inspection saw that the guard help the prisoners to escape
b.?%dat de directie de inspectie de bewaker de gevangenen liet zien helpen
that the management the inspection the guard the prisoners let see help

ontsnappen

escape

that the management let the inspection see the guard help the prisoners to escape
c. %dat het hele land de directie de inspectie de bewaker de

that the whole country the management the inspection the guard the
gevangenen hoorde laten zien helpen ontsnappen

prisoners heard let see help escape

that the whole country heard the management let the inspection see the guard help
the prisoners to escape

Similar sentences in which the recursion occurs at the edge of the word-group are much
easier to understand:

20 Gertjan van Noord

(6) a. dat de inspectie zag dat de bewaker de gevangenen hielp ontsnappen

that the inspection saw that the guard the prisoners helped escape
that the inspection saw the guard help the prisoners to escape

b. dat de directie de inspectie liet zien dat de bewaker de gevangenen
that the management the inspection let see that the guard the prisoners
hielp ontsnappen
helped escape
that the management let the inspection see the guard help the prisoners to escape

c. dat het hele land hoorde dat de directie de inspectie liet zien dat
that the whole country heard that the management the inspection let see that
de bewaker de gevangenen hielp ontsnappen
the guard the prisoners helped escape
that the whole country heard the management let the inspection see the guard help
the prisoners to escape

Again, such a limit might easily be explained in a finite-state approach, because finite-state
devices are uncapable of describing such crossing dependencies.

Finally, let us consider the third argument, concerning the observed efficiency of lan-
guage processing for humans. For a given grammar or grammatical formalism, computa-
tional efficiency is expressed by stating the number of steps that is required to compute
the analysis of a sentence of length n. In the simple case, the number of steps will increase
proportionally with n. In such cases the complexity is said to be linear. For more complex
grammatical formalisms, the number of steps will increase faster than n, e.g. it increases
proportionally with n? for context-free grammars. This implies that such more powerful
grammatical formalisms are unlikely models of human language, since humans display no
noticeable delay in understanding longer sentences.

2.2 Previous Work in Finite-state Language Process-
ing

Finite-state techniques have been used extensively in language processing. For instance, it
has been shown that phonological models consisting of sets of context-sensitive rewrite-rules
are, given some reasonable assumptions, finite-state (Johnson, 1972; Koskenniemi, 1983;
Kaplan and Kay, 1994). Recently, a similar result has been obtained for more modern
phonological models expressed in Optimality Theory (Karttunen, 1998).

Syntactic research has almost always followed Chomsky’s arguments against finite-state
grammars as a competence model, but there are some exceptions (Krauwer and des Tombe,
1981; Gross, 1997).

In linguistic applications the use of finite-state techniques is very wide-spread; the
following overview only lists a small number of recent publications:

Algorithms for Linguistic Processing 21

tokenization (Grefenstette and Tapanainen, 1994; Silberztein, 1997) Tokenization is con-
cerned with relatively superficial problems such as the determination of sentence
boundaries and word boundaries in a given text (which, however, are challenging in
languages with writing systems with poor marking of boundaries, e.g., Japanese).
The techniques are comparable to the lexical analysis phase of the compilation of
programming languages (such as provided by the UNIX tool lex): regular expres-
sions are defined for words, sentences, and possibly some further special categories
such as dates, numbers, etc.

lexicography (Mohri, 1996; Daciuk, 1998) Recent interest has focused around compact
implementations of dictionaries using finite-state minimisation techniques; such tech-
niques yield smaller results than the traditional ¢rie data-structure. Other applica-
tions of finite-state techniques in lexicography concerns the representation of subcat-
egorisation properties of words by means of finite-state patterns (Gross, 1989).

spell checking Spell checking is naturally described as an application of finite-state au-
tomata (Oflazer, 1996; Daciuk, 1998).

part-of-speech tagging Part-of-speech tagging can be implemented by means of finite-
state transducers. Roche and Schabes (1995) describe a method to compile a rule
set produced by the application of the rule-based tagger by Eric Brill (Brill, 1992;
Brill, 1995) into a deterministic finite-state transducer. As a result, an extremely
fast tagger is obtained.

speech recognition Language modelling for speech recognition is almost always per-
formed with finite-state models, in particular hidden Markov models (Jelinek, 1998).
Further applications of finite-state techniques for speech recognition are described in
Pereira and Riley (1996); Mohri et al. (1998).

phonology and morphology The phonology and morphology of natural languages is
often implemented by means of finite-state devices; for instance the popular ‘two-
level” system of Koskenniemi (1983) is finite-state. As we already mentioned above,
Kaplan and Kay (1994) show that the context-sensitive rule systems traditionally
used in phonology are finite-state in expressive power as well. Further improvements
concerning the compilation of such sets of context-sensitive rules into finite-state
automata are described in Karttunen (1995) and Mohri and Sproat (1996).

syntax A number of proposals exist for the treatment of natural language syntax by means
of finite-state devices. The best-known example probably is the Constraint Grammar
approach (Voutilainen and Tapanainen, 1993; Karlsson et al., 1995; Voutilainen,
1997; Tapanainen, 1997). Other approaches can be found for instance in Joshi and
Srinivas (1994); Abney (1995); Chanod and Tapanainen (1996); Grefenstette (1996);
Roche (1997). Finite-state approximation techniques are described below.

22 Gertjan van Noord

If we restrict our attention to finite-state approaches to natural language syntax in
which a distinction is maintained between a competence grammar (expressed in a formalism
with at least context-free power) and language performance, then two different approaches
can be identified as methods to realize the link between competence and performance.

Firstly, some have proposed parsing algorithms which interpret such a grammar. The
parser, however, is associated with a fixed maximal amount of memory. Publications such
as Johnson-Laird (1983); Pulman (1986); Resnik (1992) are examples of this interpreter
approach. Resnik (1992) shows how a left-corner parser (Rosenkrantz and Lewis-I1, 1970),
augmented with an operation of “eager” composition, and formalised as a push-down au-
tomaton, leads to a parser which utilises its stack only for center-embedding constructions.
Left-recursive and right-recursive structures, on the other hand, can be processed without
exploiting the stack. In contrast, a purely bottom-up or top-down parser formalised in
a similar fashion requires to use its stack for right-recursive (respectively left-recursive)
structures.

In contrast, in finite-state approximation a finite-state grammar is explicitly con-
structed, often on the basis of a specific parsing algorithm restricted with some mecha-
nism to limit its recognising power to finite-state languages. This approach, exemplified in
Pereira and Wright (1991); Rood (1996); Pereira and Wright (1997); Nederhof (1997) and
Johnson (1998) could then be called a compilation approach.

Chomsky (1964), footnote 10, discussing finite-state devices, quite rightly warns us that

The assumption that sentences are produced or recognised by a device of this
sort, tells us almost nothing about the method of processing.

In this context, it is worth mentioning the result by Stearns (1967) that it is possible
to determine whether a deterministic push-down machine recognises a regular language.
Furthermore Stearns shows that if the push-down machine recognises a regular language,
then the number of states of a finite-state automaton recognising the same language may
be bounded by an expression of the order tqqq, where ¢ is the number of states, and ¢ the
size of the alphabet of the push-down automaton. Stearns concludes that!

If this bound cannot be improved significantly, then it would appear profitable
in some cases to maintain a pushdown design for a recogniser even if a finite-
state design is possible.

In light of these observations, it may be difficult to choose between the interpreter or
compiler approach, or still other approaches that may be designed (for instance finite-state
automata augmented with a finite number of registers (Krauwer and des Tombe, 1981;
Beesley, 1998)). Minimised finite-state automata are an appropriate normal form for regu-
lar languages; but they are only ‘minimal’ in the sense that there isn’t a smaller automaton
in that representation. For example, suppose you have a very complicated language X. Fur-
thermore, you want to have an automaton for the language union(aXa, bXb). The minimal

Lrefer to Valiant (1975) for later results. Also note that the result applies to deterministic push-down
automata. For general push-down automata no such upper-bound exists (Ullian, 1967).

Algorithms for Linguistic Processing 23

a,set(a) a,get(a)

Figure 2.1: Two representations of the language union(aXa,bXb) where X is some given lan-
guage and M (X) is its corresponding automaton. In the classical representation, two copies of
M(X) are required. If a register is used to keep track of the first input symbol, then a single
copy of M(X) suffices. Here we use the operation set(x) to set the register, and get(x) to check
the value of the register.

automaton for that language will essentially need to have a copy of the automaton for X in
it, as in the first automaton of figure 2.1. However, if you had a single global memory cell
containing the value of the first letter you read, then you would only need one copy of X,
as in the second automaton of figure 2.1. So even if the two representations are formally
equivalent, their sizes may vary dramatically.

As a starting point, the minimal deterministic finite-state automata constructed in
the compiler approach may provide a normal-form; a representation that we can use to
compare different approaches.

2.3 Research Questions in Finite-state Language Pro-
cessing

2.3.1 Finite-State Calculus

In order to experiment with finite-state techniques, it is very important to have available
an implementation of the Finite-state Calculus, i.e., implementations of all the important
finite-state operations such as union, concatenation, Kleene closure, difference, intersection,
complementation, etc. An operation such as union takes two finite-state languages /; and
Iy (expressed as regular expressions or as finite-state automata) and produces the union of
the sentences in these languages (this is defined as [;Ul, = {s|s € [Vs € l3}). Such regular
operations are crucial building blocks of approximation algorithms and other finite-state
language processing algorithms.

24 Gertjan van Noord

Furthermore, such an implementation should make available various tools for perform-
ing operations such as determinisation and minimisation of automata. A number of imple-
mentations exist (Karttunen, 1995; Kiraz, 1997; Evans, Kiraz, and Pulman, 1996; Mohri
and Sproat, 1996). The sources of these implementations are not available however. Since
we expect that fruitful research in this area will lead to extensions and/or alternative imple-
mentations it is important that an implementation of the finite-state calculus is available
that can be easily extended.

Therefore it is proposed that the FSA Utilities toolkit (van Noord, 1997; van Noord,
1998) is adopted, and actively maintained and developed as part of this project. The
toolkit consists of a collection of utilities to manipulate regular expressions, finite-state
automata and finite-state transducers. Manipulations include automata construction from
regular expressions, determinisation (both for finite-state acceptors and finite-state trans-
ducers), minimisation, composition, complementation, intersection, Kleene closure, etc.
Furthermore, various visualisation tools are available to browse finite-state automata. An
illustration of the tool-box is given in figure 2.2. Some of the functionality of the toolkit is
available through the World Wide Web. A first demonstration version was developed by the
University of Karslruhe (http://il12www.ira.uka.de/Visualisierung.endlicher. Automaten/).
Peter Kleiweg has developed a demonstration version of some of the regular expression
features of the toolkit (http://www.let.rug.nl/ vannoord/fsademo/).

2.3.2 Methods of Finite-state Approximation

Many of the existing finite-state approximation techniques are defined on the basis of a
specific parsing algorithm restricted with some mechanism to limit its recognising power
to finite-state languages. For instance, whereas the approach of e.g. Pereira and Wright
(1997) is based on an LR parser, Johnson (1998) proposes a finite-state approximation
technique based on a left-corner parser. The result can be seen as an explicit compilation
of the parser in Resnik (1992) into a finite-state automaton, by providing a maximum
depth to the stack size. An alternative approach is described in Evans (1997).

As far as we know, the finite-state approximation approaches mentioned before have not
yet been applied in practice; on the other hand, the finite-state parsing approaches known
as chunking have already been applied successfully. In these latter approaches exemplified
in publications such as Abney (1995); Chanod and Tapanainen (1996); Grefenstette (1996)
and Roche (1997), a grammar is defined by a sequence of levels (or stages). Each level
consists of a number of ‘grammar rules’ which apply to a given string. The result of a level
is then passed on to the next level. Lower levels are used to create phrases. These phrases
are then combined into more extensive analyses by later levels. Since rules do not apply
recursively at a level, and there is only a finite number of levels, the resulting cascade is
finite-state.

The drawback, from our perspective, of the finite-state chunking method is that such
finite-state grammar rules are defined directly as such, and are not derived in some way from
a more powerful grammatical model. We will therefore investigate whether it is possible to
obtain finite-state approximations by automatically dividing the grammar rules of a given

25

Algorithms for Linguistic Processing

"S1OSUO OARY ISIIUI SO[R[AS 1Y) JUIRIISUOD
o[} syuesaldor 10erodo suo-eavy, oY, "(£661 ‘Afsusjomg pue oourlJ) A1o0ey T, Aeryd() Ut sisAeur woryeoyIqeriAs oyl Jo ((8661)
UOUN))IRY U0 Pask() SNNO[RD 9)R)S-091UY Ul uorpejuawo[dur ue Jo 1red st 10yerodo suo-oary, oy], "PoAe[dsIp ST uojewiojne oJe)s-ojruy
POIRIDOSSR S)1 pUR SUO~0ARY, 10jRI0d0 UOIssoadxe re[ngor oy ojdwrexo s1y) Uy “J1y[00} SAIII) VS 9Y) JO UORIISU[[] 7 G 9IN31g

_ ul-wooz 10— W00Z ayaen Jeap B4 Juno) e4 Aeydsig ewhig Aeydsig 0e _._ "muzﬂm_uuxE :ajbiuny abip3
z E— >
4

[zxmaydwhppreg [IN e

ZXA ﬁ..ﬂd—w._n—:.ﬁﬂ:-ﬁm‘m

zxeaydwbreppeqlig

Ad

_ BINPSUEL M _ BINPSUEL) _ 1daaoe _"szm

suo”aey| :xefiay

diaf uonezienziq ainpodd suonedadg shumas ang
EHEE

26 Gertjan van Noord

grammar into such a finite-state cascade approximating the original grammar. In order to
be able to do this, static grammar analysis techniques will be employed, in combination
with certain limits on recursive rule application.

2.3.3 Qualitative Evaluation of Finite-state Approximation

Finite-state approximation techniques can be evaluated by comparing the language of the
underlying grammar, and the language defined by the approximation. Some techniques
always produce a superset of the language of the input grammar (such techniques are
useful in applications where the finite-state approximation is used as a pre-processor);
other techniques always yield a subset of the language of the input grammar (for instance
in approaches which are psycholinguistically motivated). For some techniques neither
characterisation holds.

Furthermore, techniques can be characterised by evaluating their results for certain sub-
classes. For instance, an interesting result would be if a certain approximation technique
would be ezact i.e., always find an equivalent finite-state automaton, for cases in which
the input describes a regular language. However, it turns out that this is impossible; it is
an unsolvable problem in general to transform a given context-free grammar generating a
regular language into an equivalent finite-state automaton (Ullian, 1967).

Other sub-cases are for instance the left-linear and right-linear grammars. The tech-
nique described in Pereira and Wright (1997) is exact in these cases. The case of left-linear
and right-linear grammars is generalised somewhat in Nederhof (1997) to the strongly
regular grammars. His method is exact for those grammars.

Another interesting question is to compare a given finite-state approximation with the
psycholinguistic observations discussed in the previous chapter. For instance, what kind
of center embedding is allowed in the approximation? How does this compare with human
abilities? Similar questions can be asked with respect to other types of construction which
are difficult for humans such as crossing dependencies. Obviously, constructions humans
have no difficulty with should be treated without problems.

2.3.4 Experimental Evaluation of Finite-state Approximation

Apart from a qualitative evaluation of finite-state approximation techniques it is worth
evaluating how such approximations work out in practice, i.e. for realistic grammars on
realistic corpora. As far as we know such an empirical evaluation has not been performed
before. Therefore, we propose to set up experiments for a number of different approxima-
tion techniques, in order to compare their effects.

Such an empirical, quantitative evaluation will start out by selecting an appropriate
source grammar and an appropriate corpus. Hopefully some of the sub-corpora developed
in the corpus initiative ‘Corpus Gesproken Nederlands’ will be useful for this purpose (cf.
section 4.4.1). Implementations of a number of existing approximation techniques will be
required. These techniques can then be applied to the grammar and the resulting finite-
state automata can be compared. Such a comparison should not only take into account

Algorithms for Linguistic Processing 27

the loss of accuracy that results from the approximation, but will also take into account
computational issues, such as the size of the resulting automaton, the difficulty of the
production of the automaton, and other properties of the automaton.

2.3.5 Approximation of constraint-based grammars

Most finite-state approximation techniques assume that the input grammar is a context-
free grammar. Preliminary experiments with feature-based grammars are described in
Black (1989). Furthermore, certain approximation techniques generalise to feature-based
grammars in a natural way (Johnson, 1998). In other cases the assumption is that a
constraint-based grammar is first approximated by a context-free grammar, which can
then be approximated by a finite-state grammar in turn.

Each of these methods have in common that distinct complex categories in the input
grammar are mapped to the same category in the approximation. This leads to an approx-
imation which will allow sentences not allowed by the input grammar (the superset case).
One important research question in the proposed project is the question how approxima-
tions of constraint-based grammars can be defined which yield an interesting subset of the
sentences allowed by the input grammar.

2.3.6 Finite-state Approximation and Interpretation

At first sight, the concept of finite-state approximation of e.g. context-free grammars seems
to ignore an important aspect of such grammars. Context-free grammars not only charac-
terise the grammatical sentences of a language, but also assign structural descriptions to
such sentences. These structural descriptions are crucial for the interpretation of sentences.

Different approaches can be identified with respect to this issue. It has been suggested
(Pereira and Wright, 1997) that the original grammar should still be used for the purpose
of interpretation. In such a set-up the finite-state approximation is used as a quick filter to
rule out (possibly many) impossible analyses. For a few succeeding analyses the original
grammar is then applied to obtain interpretations.

In Nederhof (1998) this approach is extended by letting the finite-state approximation
produce a finite-state transducer rather than a recogniser. The transducer produces a table,
in linear time, which can then be used (in a second phase) to recover all parse-trees with
respect to the original grammar.

The drawbacks of these methods is that the original grammar is still crucial for language
understanding. We envision a more elegant approach in which a finite-state transducer
is constructed as a finite-state approximation; this transducer should directly produce
structures which can be used for language interpretation. There should be no need to refer
to the input grammar in the semantic interpretation component. Some interesting ideas
are presented in Krauwer and des Tombe (1981).

28 Gertjan van Noord

2.3.7 Finite-state Approximation in Language Generation

Finite-state approximation is a technique which has been exclusively applied to language
understanding. An interesting question is whether it is fruitful to regard language genera-
tion as a finite-state process as well. If it is a fundamental property of human language that
its processing is limited by finite-state means, then a natural question to ask is whether
language production can be characterised by limitations of a similar nature.

2.3.8 Compact Formats for Finite-state Approximations

Deterministic finite-state automata (DFA) constitute only one formalisation of regular lan-
guages. The advantages of this particular formalisation are that it can be implemented
extremely efficiently (in linear time, and independent of the size of the actual automaton),
and that for each given deterministic finite-state automaton an equivalent but minimal
automaton can be automatically computed. The drawback of deterministic finite-state
automata as a formalisation of regular languages is that such DFA are in general not very
compact. In fact, this is the reason that in many implementations of large DFA a some-
what less efficient but much more compact format is chosen (Daciuk, 1998; Kowaltowski,
Lucchesi, and Stolfi, 1993).

Many other formalisations of regular languages exist. For instance, reqular expressions
are another very popular device to present regular languages. Such regular expressions can
be implemented fairly efficiently as well (for instance, the regular expression matching in
Perl is done without compilation to DFA), but there is no concept of a ‘minimal’ regular
expression.

In Beesley (1998) finite-state automata are augmented with a finite number of registers.
This allows for a much more compact representation. Moreover, efficiency of implemen-
tation is hardly affected. However, the drawback is that there is little known about the
construction of a minimal representative for such augmented finite-state devices.

In Kowaltowski, Lucchesi, and Stolfi (1993) binary automata are introduced as a rep-
resentation for regular languages. Again, very compact and fairly efficient representations
are possible. The authors discuss a few heuristics to minimize such binary automata. No
general algorithms are known though.

An important question therefore is whether there exist a representation of finite au-
tomata which combines efficiency and compactness with the possibility to construct mini-
mal representatives automatically.

Chapter 3

Grammar Specialisation

3.1 Motivation

Humans are very good at disambiguation; natural language users quickly discard ridiculous
readings of a given sentence by taking into account the context and situation of the utter-
ance. In fact, humans typically are unaware of the alternative readings of an utterance.
Only in special circumstances (for instance in jokes) the ambiguity property of natural
language becomes obvious. A computational theory of language use therefore will have
to explain how it is that the appropriate reading in a given situation is selected from the
space of possible readings provided by the grammar.

We propose to investigate techniques which are capable to augment the knowledge of
language (modelled in the form of a grammar) with a theory of how this knowledge of lan-
guage is applied in a given situation. We refer to such techniques as grammar specialisation
in order to stress the fact that we take a linguistic grammar (the model of the knowledge
of language) as an important point of departure for such techniques.

Problems of disambiguation are often avoided in natural language processing by focus-
ing on a limited domain. In such a domain, utterances can often be understood unam-
biguously. The grammar used in such an approach is heavily tuned towards the domain.
This tuning is performed by human experts. It is unclear what the relation is between this
tuned version of the grammar and the underlying, more general grammar. Moreover, such
a tuned grammar is only useful for the intended application and cannot be used without
major investments for other domains: the grammar is not extendible.

The investigation will focus on possibilities to perform such grammar tuning automat-
ically. Such automated grammar specialisation techniques would constitute a potential
answer to the question how the desiderata of suitability for a specific domain (on the one
hand) and ease of portability (on the other hand) can be combined. Such techniques in-
corporate some elements from the data-driven parsing approach, yet it differs from pure
data-driven parsing in that a general and abstract linguistically inspired grammar is still
essential as the starting point of development of the parser.

The expected practical gain from such techniques is that the grammar can be made

30 Gertjan van Noord

more general, i.e. suited for several domains, without loss of parsing accuracy for a specific
domain of application. This is because the grammar can be automatically specialised for
such an application, omitting from consideration all language phenomena that do not
occur in corpora for the corresponding domain.

It may be worthwhile to explain more carefully the role of such specialisation techniques.
We assume that a grammar provides for a set of linguistically possible meanings for a given
utterance. This is the set of meanings that could be assigned to a given utterance if only
linguistic constraints are taken into account. In real life, almost every utterance receives
only a single meaning: the situation or context typically is such that the other readings do
not make sense. Only in the case of jokes or other language games is ambiguity intended.

The purpose of grammar specialisation techniques is to formalise at least certain aspects
of the interaction between what is linguistically possible, and what is appropriate in a given
situation.

It may be argued that, rather than specialising the grammar, some extra-grammatical
reasoning mechanism should be employed. In such an argument, it is assumed that knowl-
edge of the situation and context is available, and that a given candidate meaning is
somehow first checked for consistency with the available information. Apart from the
consideration that the sophisticated knowledge representation and automated reasoning
techniques that would be required are not yet readily available, there are a number of the-
oretical reasons why we believe that it is worthwhile to consider specialisation techniques
(perhaps as a supplement to such reasoning techniques).

Firstly, in many cases not enough information will be available to base the relevant
inference on. It is typically extremely hard to spell out precisely why a certain reading
should be avoided in a certain context or situation, because typically not enough informa-
tion is available to base the decision on. Therefore, the specialisation techniques that we
propose to investigate are are a means to aid reasoning in circumstances where not enough
information is available.

Secondly, it seems that it is quite unlikely that extra-grammatical inference techniques
are employed to solve all disambiguation tasks. Such an hypothesis seems to predict
that all of the linguistically possible readings of a given sentence are to be constructed,
before inference filters most of these; that would lead to the expectation that we should be
somehow conscious of the other possible readings. Consider the example:

(1) We saw the man with a telescope

People tend to be surprised if the alternative reading where saw is understood as the
present tense of the verb to saw is explained to them, suggesting that these readings were
never actually constructed. Moreover, given the fact that there can be exponentially many
different readings for a given utterance, such a setup would also lead to efficiency problems
(both from a practical and a theoretical point of view).

In the grammar specialisation approach that we propose here, the integration of
disambiguation techniques into the grammar, in combination with standard best-first

Algorithms for Linguistic Processing 31

search techniques, will in general avoid the computation of all linguistically possible
meanings, but instead return only the most plausible one.

Obviously, humans quickly adapt their language use to varying situations and domains.
In an appropriate context our examples of ambiguous sentences might be understood dif-
ferently. It is thus clear that disambiguation techniques should be able to model these
dynamic aspects of natural language. In this proposal, however, we will not immediately
concentrate on these dynamic aspects but we will start with the assumption that useful
insights can already be gained with a simpler static approach. Given this limitation we
will focus mostly on examples which can be explained under fairly stable domain charac-
teristics; we will focus less on dynamic aspects such as pronoun resolution beyond sentence
boundaries.

3.2 Previous Work in Grammar Specialisation and
Disambiguation

A number of preliminary attempts have been carried out in this area. In the last few years,
probabilistic disambiguation techniques have become increasingly popular. As a beneficial
side-effect of the application of such probabilistic techniques, the corpus-based evaluation
of parsing systems has become much more important. In the present proposal we want to
combine such a corpus-based methodology with a solid theoretical linguistic basis.

In Grishman et al. (1984) a full coverage grammar is applied to a given corpus of
utterances. After removing incorrect analyses this analysed corpus is then inspected to
see which grammar rules are actually used. A specialised grammar is constructed which
contains the subset of the rules used in the analysis of the corpus.

An obvious extension of this idea consists in adding probabilities to rules, depending
on how often a particular rule is used in the analysis of the corpus. This is different from
the inside-outside algorithm for stochastic context-free grammars (Baker, 1979) which is
used to estimate probabilities from an unannotated corpus; but which has not been very
successful in practice.! In Pereira and Schabes (1992) a more promising technique is
described which adapts the inside-outside algorithm to partially bracketed corpora.

In Briscoe and Carroll (1993) a technique is described in which the actions in an LR
parsing table are augmented with probabilities. As a further step, Rayner and Carter
(1996) introduce a pruning technique which filters out very unlikely actions during the
parsing process. Again, a corpus of analysed examples is used to determine what actions
count as unlikely.

A promising alternative means of specialisation consists of the application of
explanation-based generalization techniques to natural language parsing (Rayner, 1988;
Rayner and Samuelsson, 1990; Samuelsson, 1994; Srinivas and Joshi, 1995). A full cov-
erage grammar is used to analyse a given set of examples. From the analysed corpus a

! For instance, the technique is not even mentioned in Jelinek (1998).

32 Gertjan van Noord

specialised grammar is constructed which typically only analyses a subset of the language
analysed by the general grammar. However, it does so very efficiently. Moreover, and
more importantly, it often favours more likely analyses. If all goes well, the specialisation
removes useless analyses, while retaining the appropriate ones.

Another approach towards disambiguation is the data-oriented approach described in
Scha (1990) and Bod (1995). Preliminary experiments on the ATIS corpus of the Penn Tree-
bank (Marcus, Santorini, and Marcinkiewicz, 1993) were very promising. In this model, a
stochastic tree substitution grammar is created by taking into account (almost) all possible
sub-trees of the trees present in an annotated corpus.

A very successful approach consists of the application of decision tree algorithms to
parsing. For instance, very good parsing performance on the Penn Treebank Wall Street
Journal corpus (Marcus, Santorini, and Marcinkiewicz, 1993; Marcuss et al., 1994) has
been reported for these techniques (Jelinek et al., 1994; Magerman, 1995). These methods
make heavy use of lexical information. In Black et al. (1997) a different system based on
statistical decision tree modelling is described which is also capable of capturing linguistic
dependencies. Remarkable results are presented on the ATR/Lancaster Treebank of Gen-
eral English (Black et al., 1996). The interesting aspect of this work is the central role
played by a detailed and linguistically motivated grammar of English.

Very good results on the Penn Treebank Wall Street Journal corpus have also been
reported in Collins (1996); Collins (1997). A number of lexicalised probabilistic models
are compared. These models are sensitive to the lexical head of constituents. Moreover,
probabilities over subcategorisation frames are incorporated; complement/adjunct distinc-
tions are important, and WH-movement constructions are treated separately. Somewhat
similar techniques are described in Eisner (1996) and Eisner (1997), expressed in terms
of Dependency Grammar, where it is very natural to express lexical dependencies of a
statistical nature.

Disambiguation of prepositional phrase attachment is the subject of a number of other
experiments in which phrases with prepositional phrase attachments were extracted from
the Penn Treebank Wall Street Journal corpus consisting of the sequence verb noun-phrase
prepositional-phrase. Of these, only the verb, head noun of the first noun phrase, preposi-
tion and head noun of the noun phrase contained in the prepositional phrase were recorded.
Thus, in these experiments the lexical heads are deemed important. Experiments with a
variety of techniques have been reported, including a Decision Tree model and a maxi-
mum entropy model (Ratnaparkhi, Reynar, and Roukos, 1994); a transformation-based
learning model (Brill and Resnik, 1994); a relatively simple back-off model (Collins and
Brooks, 1995); and a number of models using memory-based learning techniques (Zavrel
and Daelemans, 1997). The adequacy of these models is roughly between 80 and 84%.
Collins and Brooks (1995) moreover performed an experiment suggesting that humans, if
given the same pieces of evidence, get about 88% correct; for full sentences accuracy of 93%
is obtained. These facts suggests, again, that the (head) words are of extreme importance.

Finally, Lee and Choi (1998) report results indicating that a language model which takes
into account lexical dependencies between head words improves upon N-gram language
models, for the purpose of determining the most probable continuation of an utterance.

Algorithms for Linguistic Processing 33

I want to go home

0.0031 0.00074 0.0026

Figure 3.1: Trigrams capture dependencies between neighbouring words. Trigrams are unable
to capture dependencies that are more than 2 words apart, such as the dependency between the
subject I and the embedded verb o go.

3.3 Research Questions in Grammar Specialisation
and Disambiguation

The central question is to what extent it is possible to adapt a linguistically motivated and
general grammar of Dutch to a particular domain. Important evaluation criteria are how
adequate the resulting, specialised, grammar is. Another important evaluation criterion
is how much effort is required for the specialisation. For instance, many of the proposed
specialisation techniques assume the existence of an annotated corpus of examples. In such
cases, the evaluation should consider the required detail of annotation and the required
amount of corpus material.

Apart from the importance of a corpus-based methodology, another important con-
clusion to be drawn from previous work is the importance of the actual words. For this
reason, we propose to apply disambiguation techniques on lexical dependency structures
rather than on syntactic parse trees. The focus on the actual words is now motivated as
follows.

3.3.1 The Importance of Words for Disambiguation

In speech-recognition systems, a language model is responsible for the prediction of the
‘next’ word in an utterance. N-gram statistical models are almost exclusively used for this
task. In such a model, the probability of the next word w is dependent only on the last
N — 1 words just seen. As a typical example, consider the case in which N = 3. For such
a trigram model, a large corpus is used to count the frequency of occurrence of all possible
triples of words. If w;, w; were the last two words seen so far, then the probability that
the next word is wy, is estimated to be the frequency of the trigram (w;, w;, wy) divided by
the frequency of the pair (w;, w;) (for low frequency counts often special arrangements are
necessary). In the simple sentence:

(2) T want to go home

the probability that the word home follows after I want to go is thus estimated by the
number of times to go home occurs in the corpus, divided by the number of times to go
occurs in the corpus.

34 Gertjan van Noord

np/0.3\Vp
e

0.1 \)
/0.2\

A% np
want (00001 0.0001

/ |

to 80 home

0.001

I 0.0001

Figure 3.2: Parse-tree augmented with probabilities provided by a stochastic context-free gram-
mars. Such models are unable to express the dependency between words such as go and home.

In practice, trigrams are much more accurate for the purpose of predicting the prob-
ability of a sentence than, for instance, stochastic context-free grammars which aim to
model syntactic regularities (an observation which usually surprises syntacticians). Yet, it
is immediately clear that many linguistically significant dependencies cannot be captured
by such simple models. The success of simple models such as the trigram model strongly
suggests that the actual words are extremely important.

The disappointing results of stochastic context-free grammars can be explained, be-
cause such stochastic context-free grammars are typically unable to express (statistical)
dependencies between words. In stochastic context-free grammars, grammar rules are aug-
mented with probabilities. Such probabilities can be automatically derived from a corpus.
Simplifying matters somewhat, the probability of a rule such as vp — v, np is estimated
by the number of times the rule vp — v, np occurs in the corpus divided by the number of
times the category vp occurs in the corpus (i.e. the proportion of cases that this particular
vp rule was used to derive a vp). An important limitation of such usage of stochastic
context-free grammars is their inability to express (probabilistic) dependencies between
words. In the example, there is no way the system can express the fact that to go home is
a frequent expression in English. It is not surprising, therefore, that other techniques have
been investigated which are capable to incorporate such lexical dependencies. Some of the
most successful of these techniques have been discussed already in the previous section.

Note, however, that the lack of expressiveness with respect to lexical dependencies is
not an inherent property of stochastic context-free grammars, but rather a property of their
typical use. For instance, it is quite possible to envision stochastic context-free grammars

Algorithms for Linguistic Processing 35

want
0.0003

/N
I g0
0.03 0.00018

home
0.067

Figure 3.3: Dependency structure augmented with probabilities. In such dependency structures,
probabilistic dependencies between dependent words can easily be expressed.

of lexical dependency structures in which each of the non-terminal nodes in the stochastic
context-free grammar relates to a word in the input sentence. Obviously, the relation
between input sentences and tree structure is different in such an approach. In such a set-
up, some other grammatical device might produce such a dependency structure for which
we can then compute its probability according to the stochastic context-free grammar
(which defines all grammatical dependency structures and their associated probability).
The example might for instance give rise to the dependency structure given in figure 3.3.

3.3.2 Disambiguation of Lexical Dependency Structures

A very promising line of research therefore consists of applying statistical techniques (such
as stochastic context-free grammar) to lexical dependency structures, as opposed to tra-
ditional syntactic structures. Therefore, we propose to compare a number of probabilistic
techniques which are sensitive to lexical dependencies.

In order to be able to do so, lexical dependency structures need to be defined. For
instance, questions such as whether there should be a link in examples such as in figure 3.3
between the verb go and the matrix subject I should be answered. The construction of
such lexical dependency structures is either performed explicitly by the grammar, or else
can be straightforwardly derived from the structures the grammar derives. All modern
grammatical theories exploit the notion linguistic head in one way or the other. Lexical
dependency structures can be derived from such headed representations.

The following lists a number of approaches towards disambiguation:

e variants of stochastic CFG for lexical dependency structure
e maximum entropy models of lexical dependencies
e decision tree models of lexical dependencies

e inductive logic programming techniques for lexical dependencies

36 Gertjan van Noord

e data-oriented parsing of lexical dependency structures
e memory-based learning

For each of these approaches, an initial feasibility study will be conducted, in order to
find out how such an approach can be combined with a given general grammar of Dutch.
Based on this feasibility study a selection will be made from this list of a number of
disambiguation techniques. The selected techniques will then be specified and implemented
in detail, and carefully evaluated on an annotated corpus.

3.3.3 Evaluation of Disambiguation Techniques

An important aspect of the study of disambiguation techniques concerns their success
on a human-annotated test-corpus. At the moment there is relatively little syntactically
and/or semantically annotated corpus material available for Dutch. Hopefully, the recently
initiated corpus initiative ‘Corpus Gesproken Nederlands’ (Levelt, 1998) will help to remedy
this situation (cf. section 4.4.1). Furthermore, the test bank developed as an evaluation
tool for the grammar development work (cf. section 4) can be used to perform a more
qualitatively oriented evaluation.

Chapter 4

Grammar Development for Dutch

The proposed research aims at general answers to the above-mentioned questions of ef-
ficiency and disambiguation. In order to achieve such answers, we believe strongly in a
methodology in which concrete proposals are developed and compared. For this reason we
want to be able to apply and evaluate such concrete proposals on a specific grammar of
Dutch.

Such a grammar of Dutch should describe a large fragment of the Dutch language,
in such a way that it is able to treat the large majority of sentences of a given corpus of
Dutch. The grammar should include a detailed and linguistically sophisticated treatment of
constructions such as cross-serial dependencies (verb-clusters) and various types of nested
dependencies (which potentially give rise to center-embedding, e.g. noun-phrases within
adjectival phrases within noun-phrases), because these constructions are crucial for the
qualitative evaluation of finite-state language processing techniques. The grammar should
also provide a treatment of government and headed projections, in order to be able to use
the grammar for disambiguation experiments for techniques which are based on lexical
dependency structures. For the same reason, the grammar should treat various kinds
of modification constructions including prepositional phrase attachments. Moreover, a
large lexicon should be available in order to be able to experiment realistically with such
disambiguation techniques.

In this section we describe a number of tasks aimed at the development of such a
linguistically motivated grammar for Dutch.

4.1 Towards a linguistically motivated grammar for
Dutch

Computational grammars for English, which are based, more or less directly, on linguis-
tic theories are the Alvey (Briscoe et al., 1987; Grover, Carroll, and Briscoe, 1993) and
CLE (Alshawi, 1992) grammars (both based on GPSG), XTAG (based on TAG (Group,
1998)), the Parallel Grammar Project at Xerox (based on LFG, for English, French and
German (LFG ParGram, 1998)), and ERGO (Ergo, 1998) and ALE (Carpenter and Penn,

38 Gertjan van Noord

1998) grammars (both based on HPSG). Typically, such grammars account for phenom-
ena such as subcategorisation, agreement, auxiliary inversion, copula and small-clause
constructions, passives, long-distance dependencies, relative clauses, extra-position, PP-
attachment, anaphoric binding, adverb placement, etc. The implemented grammars are
intended as faithful, yet computationally feasible, implementations of a given linguistic the-
ory. Linguistic processing of such systems requires, at least, the ability to handle complex
data-structures (usually (typed) feature structures), under-specification and unification,
highly under-specified syntactic schemata (in which the order and number of the daugh-
ters may be under-specified), (recursive) lexical rules, and, sometimes, the ability to handle
default mechanisms of various kinds.

Below, we propose to develop a linguistically motivated computational grammar for
Dutch, comparable in coverage to systems available for English. At the moment, there is
no such grammar available for Dutch, although a non-trivial grammar fragment has been
developed within the NWO Priority Programme Language and Speech Technology (TST).

Note that developing such a grammar will involve implementing accounts for a number
of phenomena which do not occur, or occur to a lesser extent, in English, such as cross-
serial dependencies, the word order differences between (verb-final) subordinate clauses
and (verb-initial or verb-second) main clauses, and the relative free order of adjuncts in
the “Mittelfeld”.

We propose to take the TST fragment as a starting point for a more general grammar.
Before we explain what is involved in the development of such a grammar, we will first
motivate this choice as follows.

4.2 Motivation for TST Grammar

The TST grammar fragment has been developed within the NWO Priority Programme
Language and Speech Technology. The immediate goal of the Programme is the devel-
opment of a demonstrator of a public transport information system, which operates over
ordinary telephone lines. This demonstrator is called OVIS, Openbaar Vervoer Informatie
Systeem (Public Transport Information System). The language of the system is Dutch.

The TST grammar is based on Head-driven Phrase-structure Grammar (HPSG) (Pol-
lard and Sag, 1994). HPSG is a linguistic theory which is an ideal candidate to base a
computational grammar on, because it combines a sound linguistic base with a clear for-
malisation. The linguistic orientation can be inferred from the large number of publications
treating many of the world’s languages, paying attention to many of the phenomena that
have been treated in competing linguistic theories over the last few decades. It is possible
to get an idea of the existing body of work by browsing the electronic HPSG bibliography
available from http://www.dfki.de/1t/HPSG/hpsg _bib.html. A further advantage of
HPSG for the current proposal is the fact that Germanic languages, in particular German
and Dutch, have been treated extensively.

HPSG combines this theoretical linguistic base with a clear formalisation. Although
this does not imply that HPSG is a computational theory of language, or that HPSG

Algorithms for Linguistic Processing 39

grammars can be employed computationally as is, it does provide for many computational
advantages. Moreover, HPSG has been the starting point for a number of other computa-
tional grammars.

The TST grammar uses a high-level formalism (with feature structures, types and
inheritance) but is compiled into a Definite-Clause Grammar (DCG). There are a number
of benefits for choosing DCG as the basic formalism. Firstly, DCG’s provide for a balance
between computational efficiency on the one hand and linguistic expressiveness on the
other. Secondly, DCG’s are a (simple) member of the class of declarative and constraint-
based grammar formalisms. Such formalisms are widely used in linguistic descriptions
for NLP. Finally, DCG’s are straightforwardly related to context-free grammars. Almost
all parsing technology is developed for CFG; porting this technology to DCG is usually
possible (although there are many non-trivial problems as well).

Finally, the TST grammar is a successful combination of HPSG and DCG. Even if
certain aspects of the grammar have been tuned to the domain of application in TST, it
is fair to say that the basic architecture of the grammar is fully general. Moreover, the
grammar was successfully applied in a formal evaluation on the TST task: 95% concept
accuracy on (previously unseen) user utterances '.

The development of a general grammar for Dutch based on this fragment will involve a
re-implementation of certain parts of the grammar (e.g. the account of unbounded depen-
dencies, pp-attachment, and verb clustering), so as to make it compatible with linguistic
accounts, the addition of a number of syntactic construction types (such as passives and
relative clauses) which are currently not in the fragment, and expansion of the lexicon, so
as to cover the basic vocabulary of Dutch.

Below, we describe the current fragment in some detail, and then go on to describe the
activities we foresee in developing a general grammar.

4.3 Current Status

The design and organisation of the TST grammar, as well as many aspects of the particular
grammatical analyses, are based on Head-driven Phrase Structure Grammar (Pollard and
Sag, 1994). The grammar currently covers the majority of verbal subcategorisation types
(intransitives, transitives, verbs selecting a PP, and modal and auxiliary verbs), NP-syntax
(including pre- and post-nominal modification, with the exception of relative clauses), PP-
syntax, the distribution of vP-modifiers, various clausal types (declaratives, yes/no and
WH-questions, and subordinate clauses).

Most, if not all, linguistic theories used in computational linguistics (including GPSG
(Gazdar et al., 1985), HPSG (Pollard and Sag, 1994), LFG (Bresnan, 1982), and
unification-based versions of TAG (Vijay-Shanker, 1993), Dependency Grammar (Hell-
wig, 1986), and Categorial Grammar (Zeevat, Klein, and Calder, 1987; Uszkoreit, 1986))

!The details of this evaluation are described in Bonnema, van Noord, and van Zanten (1998)

40 Gertjan van Noord

employ feature-structures to represent linguistic information, and use unification as the
single operation to combine feature structures. Feature-structures may be under-specified,
and, depending on the computational formalism used, arbitrary complex constraints may
be used in the definition of such under-specified feature-structures. In these unification-
based or constraint-based grammar formalisms, each word or phrase in the grammar is
associated with a (possibly under-specified) feature-structure, in which phonological (or
orthographic), syntactic, and semantic information may be bundled. Within Head-driven
Phrase Structure Grammar (HPSG), such feature-structures are called signs.

The TST grammar makes use of 15 different types of sign, where each type roughly
corresponds to a different category in traditional linguistic terminology. For each type of
sign, a number of features are defined. For example, for the type NP, the features AGR,
NFORM, CASE, and SEM are defined. These features are used to encode the agreement
properties of an NP, (morphological) form, case and semantics, respectively.

Typical for lexicalist linguistic theories, such as HPSG and Categorial Grammar, is
the fact that they define subcategorisation lexically, by means of features representing
the list of elements for which they subcategorize. Such an encoding of valence makes it
possible to capture significant generalisations at the level of phrase structure, thus leading,
in principle, to a drastic reduction of the number of phrase structure rules that have to be
postulated. A property which HPSG shares with GPSG, is the fact that it accounts for
long-distance dependencies by means of feature-passing. The current implementation uses
a (restricted) version of the account of long-distance dependencies proposed in Pollard and
Sag (1994) and Sag (1997). The account of verb-initial and verb-second clauses follows
the transformational grammar tradition (Koster, 1975), in that it assumes that verb-initial
clauses are structurally similar to verb-final clauses, and by assuming that verbs in main
clauses are linked to an empty element (a phonologically empty verbal sign in this case)
occupying a clause-final position.

A restriction imposed by the current grammar-parser interface is that each rule must
specify the category of its mother and daughters. A rule which specifies that a head
daughter may combine with a complement daughter, if this complement unifies with the
first element on sc of the head (i.e. a version of the categorial rule for functor-argument
application) cannot be implemented directly, as it leaves the categories of the daughters
and mother unspecified. Nevertheless, generalisations of this type do play a role in the
grammar. We have adopted an architecture for grammar rules similar to that of HPSG, in
which individual rules are classified in a hierarchy of structures (e.g. head-complement and
head-modifier structures), which are in turn defined in terms of general principles (such as
the HEAD FEATURE PRINCIPLE and the VALENCE PRINCIPLE).

The TST lexicon is a list of clauses associating a word (or sequence of words) with a
specific sign. Constraint-based grammars in general, and lexicalist constraint-based gram-
mars in particular, tend to store lots of grammatical information in the lexicon. This is
also true for the TST grammar. A lexical entry for a transitive verb, for instance, not
only contains information about the morphological form of this verb, but also contains the
features sc and suBJ for which quite detailed constraints may be defined. Furthermore,
for all lexical signs it is the case that their semantics is represented by means of a feature-

Algorithms for Linguistic Processing 41

structure. This structure can also be quite complex. To avoid massive reduplication of
identical information in the lexicon, multiple inheritance has been used extensively. This
architecture should enable the construction of a lexicon of a much bigger size.

4.4 Development Plans

In van Noord et al. (1999), a detailed account of the syntactic coverage of the TST grammar
is given. Although inspired by linguistic theory and designed as much as possible as a
general grammar of Dutch, the current fragment is not a general, wide-coverage, grammar
of Dutch. In particular, coverage in the lexical domain is limited, and several grammatical
constructions are not taken into consideration (e.g. passives) or accounted for only to a
certain extent (e.g. the grammar of Dutch verb clusters). The coverage of the grammar
is quite satisfactory for the TST application, however. For instance, when evaluating the
grammar on a corpus of 1000 transcribed test-sentences, we obtained a semantic concept
accuracy of 95%. The evaluation results are presented in detail in Bonnema, van Noord,
and van Zanten (1998).

Our development plans aim at building a general, wide-coverage, grammar of Dutch,
taking the TST grammar as a starting point. The inheritance-based set-up of the lexicon
and the rule set facilitates such a development. The resulting grammar will be used as
a concrete test-case for experiments and evaluation in the grammar specialisation and
grammar approximation projects.

Below, we give an overview of activities to be carried out as part of the grammar
development effort.

4.4.1 Corpus Exploration

Grammar development can benefit enormously from the availability of (annotated) corpora
(Skut et al., 1998). An annotated corpus can be used for various kinds of testing (ensuring
coverage does not decrease from one version of the grammar to the next), debugging
(spotting undesired derivations or rule interactions), and evaluation (measuring syntactic
and lexical coverage). Both raw corpora, corpora labelled with part-of-speech tags, and
tree-banks (corpora with syntactic annotation) can be used for this purpose. For Dutch,
there are a limited number of corpora available for this purpose, such as the corpora of the
Instituut voor Nederlandse Lezicografie, the Eindhoven (Uit den Boogaard) corpus (den
Boogaart, 1975), the TST corpus (Scha et al., 1996), and the Parole corpus (Kruyt, 1995;
Parole, 1998).

Furthermore, we expect the corpora within the project for a corpus of spoken Dutch
(Corpus Gesproken Nederlands) (Levelt, 1998) to be very valuable in this respect. The
project aims at the collection of 10 million words of spoken Dutch, annotated (among
others) with part of speech and lexical information. Some parts of the corpus will moreover
be syntactically annotated. Collaboration with the syntactic and semantic annotation
efforts in this corpus initiative will therefore be important. The first results of the Corpus

42 Gertjan van Noord

Gesproken Nederlands project will be available in 1999. If these corpora are not suitable for
our purposes, then steps will be taken to develop suitably annotated corpora in cooperation
with other interested parties.

In addition to the exploration of such corpora, effort will be devoted to the construction
of a more systematically constructed set of example sentences. Such test suites of consid-
erable sizes already exist for English, German and French (Lehmann et al., 1996). The
construction of such a test suite for Dutch will be a very useful evaluation tool both for
the proposed project and for other efforts aimed at the construction of Dutch grammars
and/or Dutch language technological applications.

4.4.2 Syntactic Coverage

It is clear that important syntactic constructions (such as passives and relative clauses) are
missing from the grammar. Furthermore, evaluation on corpora will reveal that a number
of other syntactic constructions are still missing in the grammar. These constructions will
have to be incorporated in a linguistically motivated fashion, and in a way compatible with
the overall architecture of the grammar.

4.4.3 Lexical Coverage

As a consequence of the fact that the TST grammar was used to interface with a speech
recogniser (which, for the given task, can typically handle up to a few thousand words), the
current lexicon is relatively small. To count as a wide-coverage grammar, it will be neces-
sary to expand the lexicon dramatically. (The XTAG grammar for English, for instance,
contains over 300.000 word forms.) Various resources can be used to facilitate lexicon de-
velopment. The Dutch part of the Celex lexical database (CELEX) (Baayen, Piepenbrock,
and van Rijn, 1993) contains morphosyntactic information for over 100.000 lemma’s and
over 300.000 word forms. Information about syntactic valence is not standardly included
in this database, but is available (R. Piepenbrock, p.c.), and is also provided by the lexica
developed as part of the projects RBN (Referentiebestand Nederlands) and Parole (Kruyt,
1995). Lexical semantic (conceptual) information is available to some extent in CELEX,
and will be available in the EuroWordNet database (Vossen and Bloksma, 1998).

4.4.4 Automated lexical acquisition

Apart from using existing lexical resources, we hope to experiment with techniques for
acquiring lexical information automatically. Given a syntactically analyzed corpus, it is
relatively straightforward to collect data about the valence of verbs and other lexical items.
However, syntactic annotation is not a prerequisite for obtaining this kind of knowledge.
For instance, Brent (1991); Manning (1991); Brent (1993); de Lima (1997); Carroll and
Rooth (1997) and Carroll, Minnen, and Briscoe (1998) investigate how one may obtain
(statistical) lexical (valence) information from an untagged corpus, using no or very coarse
grammar rules. Automated acquisition of lexical information is bound to be less precise

Algorithms for Linguistic Processing 43

than manually constructed lexica. However, the approach also has two distinct advantages.
First, acquisition can be done for a given domain or application area, thus opening up the
possibility of automatically tuning the lexicon for a given domain. Second, the lexical
information which is obtained in this way is probabilistic, i.e., not only provides us with
information about the possible subcategorisation frames for a given verb, but also tells
us which of these frames occurs most frequently. This could be an important aid for
disambiguation.

4.4.5 Linguistic Sophistication

The TST fragment contains an account of cross-serial dependency constructions, un-
bounded dependencies, and modifier attachment, but does not cover these phenomena
in their full generality. Furthermore, the grammar format imposes rather strict conditions
on the kind of rules that can be formulated. These limitations and constraints are partly a
consequence of the application for which the grammar has been developed (which contains
only relatively straightforward cases of the phenomena just mentioned) and partly a con-
sequence of restrictions imposed by processing. In order to obtain a general, linguistically
motivated, grammar, these phenomena will have to be dealt with in their full generality,
and, consequently, certain constraints which are a consequence of processing considerations
will have to be removed. It is obvious that this has implications for processing efficiency.
Thus, it will become important to investigate how efficiency may be restored, either by
approximation or specialisation. In other words, the Dutch grammar to be developed will
provide an ideal test-case for the other two research areas.

44

Gertjan van Noord

Chapter 5

Towards a linguistically-informed
search tool: lgrep

The proposal focuses on linguistic questions and therefore is part of humanities research,
and uses many of the tools and techniques developed in the physical and technical sciences.
We believe that in order for the proposed project to be conducted effectively, a methodology
should be adopted in which a small number of applications are constructed.

One of the applications that we propose is a linguistically-informed search tool for text
corpora (lgrep). This application concerns a tool which is capable of searching text cor-
pora (including arbitrary texts on the Internet) on the basis of syntactic criteria. This
application fits well with the approach of grammar approximation by finite-state tech-
niques. Such a tool should be useful for (computational) linguists working with corpora,
but also as an extension to traditional grammars as used by language learners, to be able
to obtain example sentences of particular constructions upon request. Moreover, the tool
will be useful for the research proposals discussed in the previous sections.

5.1 What is Igrep?

To start with a simple example, such a tool could be useful to search in text corpora for a
particular reading of a given word. For instance, the Dutch word bar is ambiguous. It can
be a noun (in which case the word means the same as in English), or it can be a degree
adverb, as in

(1) a. bar slecht
quite bad
b. bar vervelend
quite boring

In the latter case, bar is a negative polarity item. In order to collect example sentences of
such negative polarity items (for instance in order to investigate the various contexts in
which such negative polarity items can occur), a linguist now typically uses a tool to search

46 Gertjan van Noord

for a given word. The resulting set of sentences will then need to be checked by the linguist
in order to filter out all the unwanted sentences in which bar is used as a noun. Given
that in this particular case the wrong examples are much more frequent than the useful
examples, this is a time-consuming task. If the tool were to possess linguistic knowledge,
as we propose here, it could withdraw the wrong examples itself.

As a much more complicated example, one could ask (in some appropriate format) for
sentences in which a prepositional phrase argument has been extra-posed to the right of the
verbal group. Note that in order to find appropriate examples the tool should not only be
capable of recognising syntactic phrases such as root sentences and prepositional phrases,
but the analysis should be deep enough to recognise the difference between prepositional
phrases which function as adjuncts and as argument. The tool would then for example
return a set of examples:

(2) a. Zou Allende de parlementaire weg verlaten, dan kan hij waarschijnlijk niet meer

rekenen op het leger.
If Allende abolishes parliament, then he probably cannot rely on the army anymore.

b. De Ierse radio- en televisie-autoriteiten hebben medegedeeld dat zij wachten op
de beslissing van de Europese Omroep Unie voor zij plannen zullen gaan maken
voor de organisatie van het Eurosongfestival van volgend jaar.
Irish radio and television officials have announced that they will wait for a decision
by the European Broadcast Association before making plans for the organisation of
the Eurovision Song-contest of next year.

c. Zeker Nederlanders moeten rekenen op een hoogteverschil van gemiddeld
tweeduizend meter.
The Dutch in particular should expect a difference in altitude of about 2000 meters.

d. Misschien vanwege de duizenden dichters, schrijvers en schilders, studenten en
verliefden die hier komen en die allemaal hopen op iets onzegbaars.
Maybe because of the thousands of poets, writers, and painters and lovers who
come here and all hope for something unsayable

e. Andere vrouwen zullen haar gezag moeten aanvaarden om te kunnen rekenen op
haar genegenheid.
Other women will have to accept her authority in order to count on her sympathy.

Another example usage of the tool could be to identify examples of verb raising construc-
tions in which an adjunct takes narrow scope, i.e. it is an adjunct modifying one of the
verbs embedded in the verb cluster (cf. van Noord and Bouma (1994)):

(3) a. Dit vertelde onlangs Mamie Eisenhouwer, de weduwe van de 34e president van de
Verenigde Staten, die in haar periode in het Witte Huis dezelfde moeilijkheden
gehad schijnt te hebben als alle andere huisvrouwen overal op de wereld.

This was told by Mamie Fisenhouwer, the widow of the 34th president of the
United States, who seems to have had the same difficulties during her stay in the
White House as all other house wives around the world.

b. Een tweede belangrijke ingreep is het weglaten van de inleiding van het stuk

Algorithms for Linguistic Processing 47

waarin de God Indra zijn dochter toestemming geeft naar de aarde te vertrekken,
een inleiding die Strindberg overigens zelf pas vier jaar na het stuk schijnt te
hebben geschreven om zijn publiek enige achtergrond te geven voor het plotselinge
verschijnen van een godendochter.
A second important adaptation is the omission of the introduction of the piece in
which the God Indra allows his daughter to leave for the earth, an introduction that
Strindberg is said to have written only four years after the piece, in order to
provide the audience with some background knowledge for the sudden appearance of
the daughter of a God.

c. Zijn belangrijkste verzuim was dat hij een deel van zijn instructies op Cape
Kennedy heeft laten liggen.
His most important neglect was that he left part of his instructions at Cape
Kennedy.

d. Ook al een echte Wieringa, die zich niet in een hoekje wil laten drijven ?
Another real Wieringa, who doesn’t want to be pushed in a corner?

It should be clear however that this tool only has limited knowledge of syntactic construc-
tions (otherwise creating the tool would presuppose knowledge that the use of the tool
seeks to discover). We envisage that the tool provides an extension of regular expres-
sions capable of recognising matching syntactic brackets, major syntactic categories, and
grammatical functions such as subject, (in)direct object and modifier.

The novel feature of this application (in contrast with tools such as tgrep) will be
that it can search in text corpora which need not be syntactically annotated. This has the
obvious advantages that much more corpus material is available (especially now that large
amounts of text corpora are available through the Internet). A further possible advantage
is that it might be easier to change linguistic analyses in a grammar, rather than in an
annotated corpus. Of course, the challenge is to make this application fast enough for
it to be of any practical use. Moreover, we believe that even if only a small fraction of
the described functionality can be achieved, then this could be a useful tool for linguists
working with large text corpora.

5.2 The construction of Igrep

The search tool we propose will be somewhat reminiscent of the UNIX tool grep. grep
can be used to search in text files for lines matching a given regular expression. In lgrep
there are two important differences:

e lgrep searches for sentences, rather than lines
e lgrep provides for a much richer regular expression language
e lgrep provides for an extendible regular expression language

e lIgrep has facilities to integrate it with Internet search engines

48 Gertjan van Noord

The tool will thus tokenize a given text file into a series of sentences, rather than lines.
The technology for this tokenization task exists, even if it is not perfect (for instance Grefen-
stette and Tapanainen (1994)). For this reason we will enable an architecture in which a
useful default tokenization scheme can be augmented with user specified alternatives.

The regular expression language that lgrep should support will be much more powerful
than the regular expression languages typically found in tools such as grep and Perl. For
instance, an interface with a part-of-speech tagger is foreseen which will provide for the
part-of-speech labels as nullary regular expression operators. For instance, the operator
noun will denote all words with part-of-speech noun.

On top of this, the regular expression language might define more complex linguistic
categories as regular expression operators such as np. As a very first approximation, np
could be defined as [det~,adj*, noun+] (in the FSA Utilities notation; this expression
denotes an optional determiner followed by any number (including zero) of adjectives,
followed by one or more nouns). Ultimately, we hope to be able to extract the definitions of
such operators by means of finite-state approximation techniques from a general grammar
of Dutch.

The regular expression operators provided by the regular expression language should
be considered default implementations of these. In order that the tool be easily adaptable
to different linguistic insights and/or different needs it is of extreme importance that the
regular expression operators can be redefined, and that new operators can be defined
(typically in terms of existing regular expression operators).

Finally, lgrep will be integrated with Internet search engines in order to be able to
regard the Internet as a large text corpus. We have already implemented a small tool
which is capable to search for sentences containing some given word on arbitrary web sites.
This works fully automatically as follows. Firstly a search query is sent to a search engine.
The resulting pages are automatically scanned for relevant links. These links are visited
and the corresponding pages are tokenised into sentences. The sentences are scanned for
occurrences of the search query. A similar idea is described in van Oostendorp and van der
Wouden (1998). We plan to integrate lgrep in a similar fashion in order to treat the
Internet as a large text corpus. As a more ambitious task, we propose to investigate the
possibilities of a search engine which is capable to search for linguistic patterns directly.

References

Abney, Steven. 1995. Partial parsing via finite-state cascades. In John Carroll, editor,
Workshop on Robust Parsing; Eight European Summer School in Logic, Language and
Information, pages 8-15.

Alshawi, Hiyan, editor. 1992. The Core Language Engine. ACL-MIT press, Cambridge
Mass.

Baayen, R. H., R. Piepenbrock, and H. van Rijn. 1993. The CELEX Lexical Database
(CD-ROM). Linguistic Data Consortium, University of Pennsylvania, Philadelphia,
PA.

Baker, J. K. 1979. Trainable grammars for speech recognition. In Jared J. Wolf and Den-
nis H. Klatt, editors, Speech Communication Papers Presented ath the 97th Meething
of the Acoustical Society of America, MI'T Cambridge.

Beesley, Kenneth R. 1998. Constraining separated morphotactic dependencies in finite-
state grammars. In Finite-state Methods in Natural Language Processing, pages 118—
127, Ankara.

Black, A.W. 1989. Finite state machines from feature grammars. In International Work-
shop on Parsing Technologies, pages 277285, Pittsburgh.

Black, E., S. Eubank, H. Kashioka, R. Garside, G. Leech, and D. Magerman. 1996. Be-
yond skeleton parsing: Producing a comprehensive large-scale general-english treebank
with full grammatical analysis. In Proceedings of the 16th International Conference on
Computational Linguistics (COLING), pages pages 107-112, Copenhagen.

Black, Ezra, Stephen Eubank, Hideki Kashioka, and David Magerman. 1997. Probabilistic
parsing of unrestricted english text, with a highly-detailed grammar. In Joe Zhou and
Kenneth Church, editors, Proceedings of the Fifth Workshop on Very Large Corpora,
Beijing and Hong Kong.

Bod, Rens. 1995. Enriching Linguistics with Statistics: Performance Models of Natural
Language. Ph.D. thesis, University of Amsterdam.

50 Gertjan van Noord

Bonnema, Remko, Gertjan van Noord, and Gert Veldhuizen van Zanten. 1998. Evalua-
tion results NLP components OVIS2. Technical Report 57, NWO Priority Programme
Language and Speech Technology.

den Boogaart, P. C. Uit. 1975. Woordfrequenties in geschreven en gesproken Nederlands.
Oosthoek, Scheltema & Holkema, Utrecht. Werkgroep Frequentie-onderzoek van het
Nederlands.

Bouma, Gosse and Ineke Schuurman. 1998. De positie van het Nederlands in taal- en
spraaktechnologie. De Nederlandse Taalunie.

Brent, Michael R. 1991. Automatic acquisition of subcategorization frames from untagged
text. In 29th Annual Meeting of the Association for Computational Linguistics, pages
209-214, Berkeley.

Brent, Michael R. 1993. From grammar to lexicon. Computational Linguistics, 19(2):243~
262.

Bresnan, Joan, editor. 1982. The Mental Representation of Grammatical Relations. MIT
Press, Cambridge Mass.

Brill, Eric. 1992. A simple rule-based part-of-speech tagger. In Proceedings Third Confer-
ence on Applied Natural Language Processing, pages 152-155, Trento, Italy.

Brill, Eric. 1995. Transformation-based error-driven learning and natural language process-
ing: A case study in part of speech tagging. Computational Linguistics, 21(4):543-566.

Brill, Eric and Philip Resnik. 1994. A rule-based appraoch to prepositional phrase attach-
ment disambiguation. In Proceedings of the 15th International Conference on Compu-
tational Linguistics (COLING), Kyoto.

Briscoe, Ted and John Carroll. 1993. Generalized probabilistic LR parsing. Computational
Linguistics, 19(1).

Briscoe, Ted, Claire Grover, Bran Boguraev, and John Carroll. 1987. A formalism and
environment for the development of a large grammar of english. In Proceedings of the
10th International Joint Conference on Artificial Intelligence, pages 703-708, Milan.

Carpenter, Bob and Gerald Penn, 1998. The Attribute Logic Engine User Guide. Version
3.1 Beta.

Carroll, Glenn and Mats Rooth. 1997. Valence induction with a head-lexicalized PCFG.
www.ims.uni-stuttgart.de/ mats.

Carroll, John, Guido Minnen, and Ted Briscoe. 1998. Can subcategorisation probabili-
ties help a statistical parser? In Proceedings 6th Workshop on Very Large Corpora,
Montreal.

Algorithms for Linguistic Processing 51

Chanod, Jean-Pierre and Pasi Tapanainen. 1996. A robust finite-state grammar for french.
In John Carroll, editor, Workshop on Robust Parsing, Prague.

Chomsky, Noam. 1963. Formal properties of grammars. In R. Duncan Luce, Robert R.
Bush, and Eugene Galanter, editors, Handbook of Mathematical Psychology; Volume II.
John Wiley, pages 323-418.

Chomsky, Noam. 1964. On the notion ‘rule of grammar’. In Jerry E. Fodor and Jerrold J.
Katz, editors, The Structure of Language; Readings in the Philosophy of Language.
Prentice Hall, pages 119-136.

Chomsky, Noam. 1965. Aspects of the Theory of Syntax. MIT press, Cambridge Mass.

Collins, Michael. 1996. A new statistical parser based on bigram lexical dependencies. In
34th Annual Meeting of the Association for Computational Linguistics, Santa Cruz.

Collins, Michael. 1997. Three generative, lexicalised models for statistical parsing. In 35th
Annual Meeting of the Association for Computational Linguistics and 8th Conference
of the European Chapter of the Association for Computational Linguistics, Madrid.

Collins, Michael and J. Brooks. 1995. Prepositional phrase attachment through a backed-

off model. In Proceedings of the Third Workshop on Very Large Corpora, Cambridge
MA.

Daciuk, Jan. 1998. Incremental Construction of Finite-state Automata and Transducers,
and their Use in the Natural Language Processing. Ph.D. thesis, Technical University
of Gdansk.

Eisner, Jason M. 1996. Three new probabilistic models for dependency parsing: An
exploration. In Proceedings of the 16th International Conference on Computational
Linguistics (COLING), pages 340-345, Copenhagen.

Eisner, Jason M. 1997. An empirical comparison of probability models for depen-
dency grammar. Technical report, CIS department, University of Pennsylvania. cmp-
1g/9706004.

Ergo. 1998. English resource grammar online; a multi-purpose broad-coverage computa-
tional grammar of english. hpsg.stanford.edu/hpsg/ergo.html.

Evans, Edmund Grimley. 1997. Approximating context-free grammars with a finite-state
calculus. In 35th Annual Meeting of the Association for Computational Linguistics
and 8th Conference of the Furopean Chapter of the Association for Computational
Linguistics, pages 452-459, Madrid.

Evans, Edmund Grimley, George Anton Kiraz, and Stephen G. Pulman. 1996. Com-
piling a partition-based two-level formalism. In Proceedings of the 16th International
Conference on Computational Linguistics (COLING), Copenhagen.

52 Gertjan van Noord

Gazdar, Gerald, Ewan Klein, Geoffrey Pullum, and Ivan Sag. 1985. Generalized Phrase
Structure Grammar. Blackwell.

Grefenstette, Gregory. 1996. Light parsing as finite-state filtering. In FACI 1996 Work-
shop Extended Finite-State Models of Language, Budapest.

Grefenstette, Gregory and Pasi Tapanainen. 1994. What is a word, what is a sentence?
problems of tokenization. Technical Report MLTT-004, Xerox Research Centre Europe,
MLTT.

Grishman, Ralph, Ngo Thanh Nhan, Elaine Marsh, and Lynette Hirschman. 1984. Au-
tomated determination of sublanguage syntactic usage. In Proceedings of the 10th

International Conference on Computational Linguistics and the 22nd Annual Meeting
of the Association for Computational Linguistics (COLING), Stanford.

Gross, Maurice. 1989. The use of Finite Automata in the Lexical Representation of Natural
Language. Lecture Notes in Computer Science. Springer Verlag, Berlin.

Gross, Maurice. 1997. Local grammars. In Emmanuel Roche and Yves Schabes, editors,
Finite-State Language Processing. MIT Press, Cambridge, pages 330-354.

Group, The XTAG Research, 1998. A Lerxicalized Tree Adjoining Grammar for English.
Institute for Research in Cognitive Science, University of Pennsylvania. ¢s.CL/9809024.

Grover, Claire, John Carroll, and Ted Briscoe. 1993. The ALVEY natural language
tools grammar (4th release). Technical Report 284, Computer Laboratory, Cambridge
University UK.

Hellwig, Peter. 1986. Dependency unification grammar. In Proceedings of the 11th Inter-
national Conference on Computational Linguistics (COLING), pages 195-198, Bonn.

Huybrechts, Riny. 1984. The weak inadequacy of context-free phrase structure grammars.
In Ger de Haan, Mieke Trommelen, and Wim Zonneveld, editors, Van Periferie naar
Kern. Foris.

Jelinek, F., J. Lafferty, D. Magerman, R. Mercer, A. Ratnaparkhi, and S. Roukos. 1994.
Decision tree parsing using a hidden derivation model. In Proceedings of the 199
Human Language Technology Workshop (ARPA), pages 272-277.

Jelinek, Frederick. 1998. Statistical Methods for Speech Recognition. MIT Press.

Johnson, C. Douglas. 1972. Formal Aspects of Phonological Description. Mouton, The
Hague.

Johnson, Mark. 1998. Finite-state approximation of constraint-based grammars using
left-corner grammar transforms. In COLING-ACL ’98. 36th Annual Meeting of the
Association for Computational Linguistics and 17th International Conference on Com-
putational Linguistics. Proceedings of the Conference, Montreal.

Algorithms for Linguistic Processing 53

Johnson-Laird, Philip N. 1983. Mental Models. Harvard University Press.

Joshi, Aravind K. and B. Srinivas. 1994. Disambiguation of super parts of speech (su-
pertags): Almost parsing. In Proceedings of the 15th International Conference on
Computational Linguistics (COLING), Kyoto, Japan.

Kaplan, Ronald M. and Martin Kay. 1994. Regular models of phonological rule systems.
Computational Linguistics, 20(3):331-378.

Karlsson, Fred, Atro Voutilainen, Juha Heikkila, and Atro Anttila. 1995. Constraint
Grammar, A Language-independent System for Parsing Unrestricted Text. Mouton de
Gruyter.

Karttunen, Lauri. 1995. The replace operator. In 33th Annual Meeting of the Association
for Computational Linguistics, M.I.'T. Cambridge Mass.

Karttunen, Lauri. 1998. The proper treatment of optimality theory in computational
phonology. In Finite-state Methods in Natural Language Processing, pages 1-12,
Ankara.

Kiraz, George Anton. 1997. Compiling regular formalisms with rule features into finite-
state automata. In 35th Annual Meeting of the Association for Computational Linguis-
tics and 8th Conference of the European Chapter of the Association for Computational
Linguistics, Madrid.

Koskenniemi, Kimmo. 1983. Two-level morphology: a general computational model for
word-form recognition and production. Technical Report 11, Department of General
Linguistics, University of Helsinki.

Koster, Jan. 1975. Dutch as an SOV language. Linguistic Analysis, 1.

Kowaltowski, Tomasz, Claudio L. Lucchesi, and Jorge Stolfi. 1993. Minimization of binary
automata. Technical Report Relatério Téchnico DCC-22/93, Departamento de Ciéncia
de Computa cao, Universidade Estudual de Campinas.

Krauwer, Steven and Louis des Tombe. 1981. Transducers and grammars as theories of
language. Theoretical Linguistics, 8:173-202.

Kruyt, J. G. 1995. Nationale tekstcorpora in internationaal perspectief. Forum der
Letteren, 36(1):47-58.

Lee, Seungmi and Key-Sun Choi. 1998. Automatic acquisition of language model based
on head-dependent relation between words. In 36th Annual Meeting of the Association
for Computational Linguistics and 17th International Conference on Computational
Linguistics, Montreal.

54 Gertjan van Noord

Lehmann, Sabine, Stephan Oepen, Sylvie Regnier-Prost, Klaus Netter, Veronika Lux, Ju-
dith Klein, Kirsten Falkedal, Frederik Fouvry, Dominique Estival, Eva Dauphin, Hervé
Compagnion, Judith Baur, Lorna Balkan, and Doug Arnold. 1996. Tsnlp—test suites
for natural language processing. cmp-lg/9607018.

Levelt, Pim. 1998. Corpus gesproken Nederlands. zie ook www.elis.rug.ac.be/cgn/.

LFG ParGram. 1998. Parallel grammar project. www.parc.xerox.com/istl/groups/nltt/-
pargram/.

de Lima, Erika F. 1997. Acquiring german prepositinal subcategorization frames from
corpora. In Joe Zhou and Kenneth Church, editors, Proceedings of the Fifth Workshop
on Very Large Corpora, Beijing and Hong Kong.

Linguistic Data Consortium. tgrepdoc—documentation for tgrep. University of Pennsyl-
vania, Philadelphia.

Magerman, David M. 1995. Statistical decision-tree models for parsing. In 33th Annual
Meeting of the Association for Computational Linguistics, MIT Cambridge.

Manning, Chris. 1991. Automatic acquisition of a large subcategorization dictionary from
corpora. In 29th Annual Meeting of the Association for Computational Linguistics,
pages 235242, Berkeley.

Marcus, Mitchell P., Beatrice Santorini, and Mary Ann Marcinkiewicz. 1993. Building
a large annotated corpus of english: The Penn treebank. Computational Linguistics,
19(2).

Marcuss, Mitchell, Grace Kim, Mary Ann Marcinkiewicz, Robert MacIntyre, Ann Bies,
Mark Ferguson, Karen Katz, and Britta Schasberger. 1994. The Penn treebank: An-
notating predicate argument structure. In Proceedings of the 1994 Human Language
Technology Workshop (ARPA), pages 110-115.

Miller, George and Noam Chomsky. 1963. Finitary models of language users. In R. Luce,
R. Bush, and E. Galanter, editors, Handbook of Mathematical Psychology. Volume 2.
John Wiley.

Mohri, Mehryar. 1996. On some applications of finite-state automata theory to natural
language processing. Natural Language Engineering, 2:61-80. Originally appeared in
1994 as Technical Report, institut Gaspard Monge, Paris.

Mohri, Mehryar, Michael Riley, Don Hindle, Andrej Ljolje, and Fernando Pereira. 1998.
Full expansion of context-dependent networks in large vocabulary speech recognition. In

Proceedings of the International Conference on Acoustics, Speech, and Signal Processing
(ICASSP ’98), Seattle.

Algorithms for Linguistic Processing 55

Mohri, Mehryar and Richard Sproat. 1996. An efficient compiler for weighted rewrite
rules. In 3/th Annual Meeting of the Association for Computational Linguistics, Santa,
Cruz.

Nederhof, Mark-Jan. 1997. Regular approximations of CFLs: A grammatical view. In
International Workshop on Parsing Technologies, pages 159-170.

Nederhof, Mark-Jan. 1998. Context-free parsing through regular approximation. In Finite-
state Methods in Natural Language Processing, pages 13—24, Ankara.

Nederlands, Referentiebestand. 1998. Referentiebestand nederlands (rbn).
www.taalunie.org/%5F %5F /werkt /rbn.html.

van Noord, Gertjan. 1997. FSA Utilities: A toolbox to manipulate finite-state automata.
In Darrell Raymond, Derick Wood, and Sheng Yu, editors, Automata Implementation.
Springer Verlag, pages 87-108. Lecture Notes in Computer Science 1260.

van Noord, Gertjan. 1998. The treatment of epsilon moves in subset construction. In
Finite-state Methods in Natural Language Processing, Ankara. cmp-lg/9804003.

van Noord, Gertjan and Gosse Bouma. 1994. Adjuncts and the processing of lexical
rules. In Proceedings of the 15th International Conference on Computational Linguistics
(COLING), pages 250256, Kyoto. cmp-1g/9404011.

van Noord, Gertjan and Gosse Bouma. 1997. Hdrug, A flexible and extendible develop-
ment environment for natural language processing. In Proceedings of the EACL/ACL
workshop on Environments for Grammar Development, Madrid.

van Noord, Gertjan, Gosse Bouma, Rob Koeling, and Mark-Jan Nederhof. 1999. Ro-
bust grammatical analysis for spoken dialogue systems. Journal of Natural Language
Engineering. To appear; 48 pages.

Oflazer, Kemal. 1996. Error-tolerant finite-state recognition with applications to morpho-
logical analysis and spelling correction. Computational Linguistics, 22(1):73-809.

van Oostendorp, Marc and Ton van der Wouden. 1998. Corpus internet. In Nederlandse
Taalkunde. to appear.

Parole. 1998. Le-parole, preparatory action for linguistic resources organisation for
language engineering. project summary. www2.echo.lu/langeng/en/le2/le-parole/le-
parole.html.

Pereira, Fernando and Yves Schabes. 1992. Inside-outside reestimation from partially
bracketed corpora. In 30th Annual Meeting of the Association for Computational Lin-
quistics, Newark, Delaware.

56 Gertjan van Noord

Pereira, Fernando C. N. and Michael D. Riley. 1996. Speech recognition by composition
of weighted finite automata. cmp-lg/9603001.

Pereira, Fernando C. N. and R. N. Wright. 1991. Finite-state approximation of phrase
structure grammars. In 29th Annual Meeting of the Association for Computational
Linguistics, Berkeley.

Pereira, Fernando C. N. and Rebecca N. Wright. 1997. Finite-state approximation of
phrase-structure grammars. In Emmanuel Roche and Yves Schabes, editors, Finite-
State Language Processing. MIT Press, Cambridge, pages 149-173.

Pollard, Carl and Ivan Sag. 1994. Head-driven Phrase Structure Grammar. University of
Chicago / CSLL

Prince, Alan and Paul Smolensky. 1993. Optimality theory: Constraint interaction in
generative grammar. Technical Report TR-2, Rutgers University Cognitive Science
Center, New Brunswick, NJ. MIT Press, To Appear.

Pulman, Steve. 1986. Grammars, parsers, and memory limitations. Language and Cogni-
tive Processes, 1(3):197-225.

Ratnaparkhi, A., J. Reynar, and S. Roukos. 1994. A maximum entropy model for prepo-
sitional phrase attachment. In Proceedings of the 1994 Human Language Technology
Workshop (ARPA).

Rayner, Manny. 1988. Applying explanation-based generalization to natural language pro-
cessing. In Proceedings of the International Conference on Fifth Generation Computer
Systems, Kyoto.

Rayner, Manny and David Carter. 1996. Fast parsing using pruning and grammar spe-
cialization. In 34th Annual Meeting of the Association for Computational Linguistics,
Santa Cruz.

Rayner, Manny and Christer Samuelsson. 1990. Using explanation-based learning to
increase performance in a large NL query system. In Proceedings DARPA Speech and
Natural Language Workshop. Morgan Kaufmann.

Resnik, Philip. 1992. Left-corner parsing and psychological plausability. In Proceedings of
the 14th International Conference on Computational Linguistics (COLING), Nantes.

Roche, Emmanuel. 1997. Parsing with finite-state transducers. In Emmanuel Roche and
Yves Schabes, editors, Finite-State Language Processing. MIT Press, Cambridge, pages
241-281.

Roche, Emmanuel and Yves Schabes. 1995. Deterministic part-of-speech tagging with
finite-state transducers. Computational Linguistics, 21(2).

Algorithms for Linguistic Processing 57

Rood, C.M. 1996. Efficient finite-state approximation of context free grammars. In A. Ko-
rnai, editor, Extended Finite State Models of Language, Proceedings of the ECAI'96
workshop, pages 58-64, Budapest University of Economic Sciences, Hungary.

Rosenkrantz, D. J. and P. M. Lewis-II. 1970. Deterministic left corner parsing. In IFEE
Conference of the 11th Annual Symposium on Switching and Automata Theory, pages
139-152.

Sag, Ivan. 1997. English relative clause constructions. Journal of Linguistics. to appear.

Samuelsson, Christer. 1994. Fast Natural-Language Parsing Using Ezplanation-Based
Learning. Ph.D. thesis, Swedish Institute of Computer Science, Kista.

Scha, Remko. 1990. Taaltheorie en taaltechnologie; competence en performance. In Com-
putertoepassingen in de Neerlandistiek. Landelijke Vereniging van Neerlandici (LVVN
Jaarboek), Almere.

Scha, Remko, Remko Bonnema, Rens Bod, and Khalil Simaan. 1996. Disambiguation and
interpretation of wordgraphs using data oriented parsing. Probabilistic natural language
processing in the NWO priority programme on language and speech technology. October
1996 deliverable. Technical Report 31, NWO Priority Programme Language and Speech
Technology. Chapter 4.

Shieber, Stuart M. 1985. Evidence against the non-context-freeness of natural language.
Linguistics and Philosophy, 8.

Silberztein, Max D. 1997. The lexical analysis of natural language. In Emmanuel Roche
and Yves Schabes, editors, Finite-State Language Processing. MIT Press, Cambridge,
pages 175-203.

Skut, Wojciech, Thorsten Brants, Brigitte Krenn, and Hans Uszkoreit. 1998. A linguisti-
cally interpreted corpus of german newspaper text. In ESSLLI-98 Workshop on Recent
Advances in Corpus Annotation, Saarbriicken. cmp-lg/9807008.

Srinivas, B. and A. Joshi. 1995. Some novel applications of explanation-based learning to
parsing lexicalized tree-adjoining grammars. In 33th Annual Meeting of the Association
for Computational Linguistics, MIT Cambridge.

Stearns, R.E. 1967. A regularity test for pushdown machines. Information and Control,
11:323-340.

Tapanainen, Pasi. 1997. Applying a finite-state intersection grammar. In Emmanuel Roche
and Yves Schabes, editors, Finite-State Language Processing. MIT Press, Cambridge,
pages 311-327.

Ullian, J.S. 1967. Partial algorithm problems for context free languages. Information and
Control, 11:80-101.

58 Gertjan van Noord

Uszkoreit, Hans. 1986. Categorial unification grammar. In Proceedings of the 11th Inter-
national Conference on Computational Linguistics (COLING), Bonn.

Valiant, L.G. 1975. Regularity and related problems for deterministic pushdown automata.
Journal of the ACM, 22(1):1-10.

Vijay-Shanker, K. 1993. Using descriptions of trees in a tree adjoining grammar. Compu-
tational Linguistics, 18(4).

Vossen, Piek and Laura Bloksma. 1998. Categories and classifications in eurowordnet. In
Proceedings of First International Conference on Language Resources and Evaluation,
Granada.

Voutilainen, Atro. 1997. Designing a (finite-state) parsing grammar. In Emmanuel Roche
and Yves Schabes, editors, Finite-State Language Processing. MIT Press, Cambridge,
pages 283-310.

Voutilainen, Atro and Pasi Tapanainen. 1993. Ambiguity resolution in a reductionist
parser. In Sizth Conference of the European Chapter of the Association for Computa-
tional Linguistics, Utrecht.

Zavrel, Jakub and Walter Daelemans. 1997. Memory-based learning: Using similarity for
smoothing. In #5th Annual Meeting of the Association for Computational Linguistics
and 8th Conference of the Furopean Chapter of the Association for Computational
Linguistics, pages 436-443, Madrid.

Zeevat, Henk, Ewan Klein, and Jo Calder. 1987. Unification categorial grammar. In
Nicholas Haddock, Ewan Klein, and Glyn Morrill, editors, Categorial Grammar, Uni-
fication Grammar and Parsing. Centre for Cognitive Science, University of Edinburgh.
Volume 1 of Working Papers in Cognitive Science.

