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The paper discusses the problem of determinising finite-state automata containing large
numbers of ε-moves. Experiments with finite-state approximations of natural language
grammars often give rise to very large automata with a very large number of ε-moves.
The paper identifies and compares a number of subset construction algorithms which treat
ε-moves. Experiments have been performed which indicate that the algorithms differ con-
siderably in practice, both with respect to the size of the resulting deterministic automaton,
and with respect to practical efficiency. Furthermore, the experiments suggest that the av-
erage number of ε-moves per state can be used to predict which algorithm is likely to be the
fastest for a given input automaton.

1 Introduction

1.1 Finite-state Language Processing
An important problem in computational linguistics is posed by the fact that the
grammars which are typically hypothesised by linguists are unattractive from the
point of view of computation. For instance, the number of steps required to anal-
yse a sentence of n words is n3 for context-free grammars. For certain linguistically
more attractive grammatical formalisms it can be shown that no upper-bound to
the number of steps required to find an analysis can be given. The human lan-
guage user, however, seems to process in linear time; humans understand longer
sentences with no noticeable delay. This implies that neither context-free gram-
mars nor more powerful grammatical formalisms are likely models for human lan-
guage processing. An important issue therefore is how the linearity of processing
by humans can be accounted for.

A potential solution to this problem concerns the possibility of approximating
an underlying general and abstract grammar by techniques of a much simpler sort.
The idea that a competence grammar might be approximated by finite-state means
goes back to early work by Chomsky (Chomsky, 1963; Chomsky, 1964). There are
essentially three observations which motivate the view that the processing of nat-
ural language is finite-state:

1.humans have a finite (small, limited, fixed) amount of memory available
for language processing

2.humans have problems with certain grammatical constructions, such as
center-embedding, which are impossible to describe by finite-state means
(Miller and Chomsky, 1963)

3.humans process natural language very efficiently (in linear time)
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1.2 Finite-state Approximation and ε-moves
In experimenting with finite-state approximation techniques for context-free and
more powerful grammatical formalisms (such as the techniques presented in Black
(1989), Pereira and Wright (1991), Rood (1996), Pereira and Wright (1997), Evans
(1997), Nederhof (1997), Nederhof (1998), Johnson (1998) ) we have found that
the resulting automata often are extremely large. Moreover, the automata contain
many ε-moves (jumps). And finally, if such automata are determinised then the re-
sulting automata are often smaller. It turns out that a straightforward implementa-
tion of the subset construction determinisation algorithm performs badly for such
inputs. In this paper we consider a number of variants of the subset-construction
algorithm which differ in their treatment of ε-moves.

Although we have observed that finite-state approximation techniques typi-
cally yield automata with large amounts of ε-moves, this is obviously not a ne-
cessity. Instead of trying to improve upon determinisation techniques for such au-
tomata it might be more fruitful, perhaps, to try to improve these approximation
techniques in such a way that more compact automata are produced. 1 However,
because research into finite-state approximation is still of an exploratory and ex-
perimental nature, it can be argued that more robust determinisation algorithms
do still have a role to play: it can be expected that approximation techniques are
much easier to define and implement if the resulting automaton is allowed to be
non-deterministic and to contain ε-moves.

Note furthermore that even if our primary motivation is in finite-state approx-
imation, the problem of determinising finite-state automata with ε-moves may be
relevant in other areas of language research as well.

1.3 Subset construction and ε-moves
The experiments were performed using the FSA Utilities. The FSA Utilities
tool-box (van Noord, 1997; van Noord, 1999; Gerdemann and van Noord,
1999; van Noord and Gerdemann, 1999) is a collection of tools to manipu-
late regular expressions, finite-state automata and finite-state transducers. Ma-
nipulations include determinisation, minimisation, composition, complementa-
tion, intersection, Kleene closure, etc. Various visualisation tools are available
to browse finite-state automata. The tool-box is implemented in SICStus Pro-
log, and is available free of charge under Gnu General Public License via
anonymous ftp at ftp://ftp.let.rug.nl/pub/vannoord/Fsa/, and via the web at
http://www.let.rug.nl/˜vannoord/Fsa/. At the time of our initial experiments
with finite-state approximation, an old version of the tool-box was used, which
ran into memory problems for some of these automata. For this reason, the sub-
set construction algorithm has been re-implemented, paying special attention to
the treatment of ε-moves. Three variants of the subset construction algorithm are
identified which differ in the way ε-moves are treated:

per graph The most obvious and straightforward approach is sequential in the fol-
lowing sense. Firstly, an equivalent automaton without ε-moves is con-
structed for the input. In order to do this, the transitive closure of the graph
consisting of all ε-moves is computed. Secondly, the resulting automaton
is then treated by a subset construction algorithm for ε-free automata. Dif-
ferent variants of per graph can be identified, depending on the implemen-
tation of the ε-removal step.

per state For each state which occurs in a subset produced during subset construc-

1 Indeed, a later implementation by Nederhof avoids construction of the complete non-determistic
automaton by minimising sub-automata before they are embedded into larger sub-automata.
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tion, compute the states which are reachable using ε-moves. The results of
this computation can be memorised, or computed for each state in a pre-
processing step. This is the approach mentioned briefly in Johnson and
Wood (1997).2

per subset For each subset Q of states which arises during subset construction,
compute Q′ ⊇ Q which extends Q with all states which are reachable from
any member of Q using ε-moves. Such an algorithm is described in Aho,
Sethi, and Ullman (1986).

The motivation for this paper is the experience that the first approach turns out
to be impractical for automata with very large numbers of ε-moves. An integration
of the subset construction algorithm with the computation of ε-reachable states
performs much better in practice for such automata.

Section 2 presents a short statement of the problem (how to determinise a
given finite-state automaton), and a subset construction algorithm which solves
this problem in the absence of ε-moves. Section 3 defines a number of subset con-
struction algorithms which differ with respect to the treatment of ε-moves. Most
aspects of the algorithms are not new and have been described elsewhere, and/or
were incorporated in previous implementations; a comparison of the different al-
gorithms had not been performed previously. We provide a comparison with re-
spect to the size of the resulting deterministic automaton (in section 3) and prac-
tical efficiency (in section 4). Section 4 provides experimental results both for ran-
domly generated automata and for automata generated by approximation algo-
rithms. Our implementations of the various algorithms are also compared with
AT&T’s FSM utilities (Mohri, Pereira, and Riley, 1998), to establish that the experi-
mental differences we find between the algorithms are truly caused by differences
in the algorithm (as opposed to accidental implementation details).

2 Subset Construction

2.1 Problem statement
Let a finite-state machine M be specified by a tuple (Q, Σ, δ, S, F ) where Q is a
finite set of states, Σ is a finite alphabet, δ is a function from Q × (Σ ∪ {ε}) → 2Q.
Furthermore, S ⊆ Q is a set of start states and F ⊆ Q is a set of final states. 3

Let ε-move be the relation {(qi, qj)|qj ∈ δ(qi, ε)}. ε-reachable is the reflexive
and transitive closure of ε-move. Let ε-CLOSURE: 2Q → 2Q be a function which is
defined as:

ε-CLOSURE(Q′) = {q|q′ ∈ Q′, (q′, q) ∈ ε-reachable}

Furthermore, we write ε-CLOSURE−1(Q′) for the set {q|q′ ∈ Q′, (q, q′) ∈
ε-reachable}.

For any given finite-state automaton M = (Q, Σ, δ, S, F ) there is an equivalent
deterministic automaton M ′ = (2Q, Σ, δ′, {Q0}, F ′). F ′ is the set of all states in 2Q

containing a final state of M , i.e., the set of subsets {Qi ∈ 2Q|q ∈ Qi, q ∈ F}. M ′

has a single start state Q0 which is the epsilon closure of the start states of M , i.e.,
Q0 = ε-CLOSURE(S). Finally,

δ′({q1, q2, . . . , qi}, a) = ε-CLOSURE(δ(q1, a) ∪ δ(q2, a) ∪ . . . ∪ δ(qi, a))

2 According to Derick Wood (p.c.), this approach has been implemented in several systems,
including Howard Johnson’s INR system.

3 Note that a set of start states is required, rather than a single start state. Many operations on
automata can be defined somewhat more elegantly in this way (including per grapht discussed
below). Obviously, for deterministic automata this set should be a singleton set.
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funct subset construction((Q, Σ, δ, S, F ))
index transitions() ; Trans := ∅; Finals := ∅; States := ∅;
Start := epsilon closure(S)
add(Start)
while there is an unmarked subset T ∈ States do

mark (T )
foreach (a, U) ∈ instructions(T ) do

U := epsilon closure(U)
Trans[T, a] := {U}
add(U)

od
od
return (States, Σ, Trans, {Start}, Finals)

end

proc add(U) Reachable-state-set Maintenance
if U /∈ States

then add U unmarked to States
if U ∩ F then Finals := Finals ∪ {U} fi

fi
end

funct instructions(P ) Instruction Computation
return merge(

⋃
p∈P transitions(p))

end

funct epsilon closure(U) variant 1: No ε-moves
return U

end

Figure 1
Subset-construction algorithm.

An algorithm which computes M ′ for a given M will only need to take into
account states in 2Q which are reachable from the start state Q0. This is the reason
that for many input automata the algorithm does not need to treat all subsets of
states (but note that there are automata for which all subsets are relevant, and
hence exponential behaviour cannot be avoided in general).

Consider the subset construction algorithm in figure 1. The algorithm main-
tains a set of subsets States. Each subset can be either marked or unmarked (to in-
dicate whether the subset has been treated by the algorithm); the set of unmarked
subsets is sometimes referred to as the agenda. The algorithm takes such an un-
marked subset T and computes all transitions leaving T . This computation is per-
formed by the function instructions and is called instruction computation by Johnson
and Wood (1997).

The function index transitions constructs the function transitions: Q → Σ × 2Q

which returns for a given state p the set of pairs (s, T ) representing the transitions
leaving p. Furthermore, the function merge takes such a set of pairs and merges all
pairs with the same first element (by taking the union of the corresponding second
elements). For example:

merge({(a, {1, 2, 4}), (b, {2, 4}), (a, {3, 4}), (b, {5, 6})}) =
{(a, {1, 2, 3, 4}), (b, {2, 4, 5, 6})}
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The procedure add is responsible for ‘reachable-state-set maintenance’, by en-
suring that target subsets are added to the set of subsets if these subsets were not
encountered before. Moreover, if such a new subset contains a final state, then this
subset is added to the set of final states.

3 Variants for ε-Moves

The algorithm presented in the previous section does not treat ε-moves. In this
section, possible extensions of the algorithm are identified to treat ε-moves.

3.1 Per graph
In the per graph variant two steps can be identified. In the first step, efree, an equiv-
alent ε-free automaton is constructed. In the second step this ε-free automaton is
determinised using the subset construction algorithm. The advantage of this ap-
proach is that the subset construction algorithm can remain simple because the
input automaton is ε-free.

An algorithm for efree is described for instance in Hopcroft and Ullman
(1979)[page 26-27]. The main ingredient of efree is the construction of the func-
tion ε-CLOSURE, which can be computed by using a standard transitive closure
algorithm for directed graphs: this algorithm is applied to the directed graph con-
sisting of all ε-moves of M . Such an algorithm can be found in several textbooks
(see, for instance, Cormen, Leiserson, and Rivest (1990)).

For a given finite-state automaton M = (Q, Σ, δ, S, F ) efree computes M ′ =
(Q, Σ, δ′, S′, F ′), where S′ = ε-CLOSURE(S), F ′ = ε-CLOSURE−1(F ), and
δ′(p, a) = {q|q′ ∈ δ(p′, a), p′ ∈ ε-CLOSURE−1(p), q ∈ ε-CLOSURE(q′)}. Instead
of using ε-CLOSURE on both the source and target side of a transition, efree can be
optimised in two different ways by using ε-CLOSURE only on one side:

• efreet: M ′ = (Q, Σ, δ′, S′, F ), where S′ = ε-CLOSURE(S), and
δ′(p, a) = {q|q′ ∈ δ(p, a), q ∈ ε-CLOSURE(q′)}.

• efrees: M ′ = (Q, Σ, δ′, S, F ′), where F ′ = ε-CLOSURE−1(F ), and
δ′(p, a) = {q|q ∈ δ(p′, a), p′ ∈ ε-CLOSURE−1(p)}.

Although both variants appear very similar, there are some differences. Firstly,
efreet might introduce states which are not co-accessible: states from which no path
exists to a final state; in contrast, efrees might introduce states which are not acces-
sible: states from which no path exists from the start state. A straightforward mod-
ification of both algorithms is possible to ensure that these states are not present
in the output. Thus efreet,c ensures that all states in the resulting automaton are
co-accessible; efrees,a ensures that all states in the resulting automaton are accessi-
ble. As a consequence, the size of the determinised machine is in general smaller
if efreet,c is employed, because states which were not co-accessible (in the input)
are removed (this is therefore an additional benefit of efreet,c; the fact that efrees,a

removes accessible states has no effect on the size of the determinised machine
because the subset construction algorithm already ensures accessibility anyway).

Secondly, it turns out that applying efreet in combination with the subset-
construction algorithm generally produces smaller automata than efrees (even if
we ignore the benefit of ensuring co-accessibility). An example is presented in fig-
ure 2. The differences can be quite significant. This is illustrated in figure 3.

Below we will write per graphX to indicate the non-integrated algorithm based
on efreeX .
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Figure 2
Illustration of the difference in size between two variants of efree. (1) is the input
automaton. The result of efreet is given in (2); (3) is the result of efrees. (4) and (5) are the
result of applying the subset construction to the result of efreet and efrees, respectively.
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Difference in sizes of deterministic automata constructed with either efrees or efreet, for
randomly generated input automata consisting of 100 states, 15 symbols, and various
numbers of transitions and jumps (cf. section 4). Note that all states in the input are
co-accessible; the difference in size is due solely to the effect illustrated in figure 2.
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funct closure(T )
D := ∅
foreach t ∈ T do add t unmarked to D od
while there is an unmarked state t ∈ D do

mark (t)
foreach q ∈ δ(t, ε) do

if q /∈ D then add q unmarked to D fi
od

od
return D

end

Figure 4
Epsilon-closure Algorithm

3.2 Per subset and per state
Next we discuss two variants (per subset and per state) in which the treatment of ε-
moves is integrated with the subset construction algorithm. We will show later that
such an integrated approach is in practice often more efficient than the per graph
approach if there are many ε-moves. The per subset and per state approaches are
also more suitable for a lazy implementation of the subset construction algorithm
(in such a lazy implementation subsets are only computed with respect to a given
input string).

The per subset and the per state algorithms use a simplified variant of the tran-
sitive closure algorithm for graphs. Instead of computing the transitive closure of
a given graph, this algorithm only computes the closure for a given set of states.
Such an algorithm is given in figure 4.

In both of the two integrated approaches, the subset construction algorithm is
initialised with an agenda containing a single subset which is the ε-CLOSURE of
the set of start-states of the input; furthermore, the way in which new transitions
are computed also takes the effect of ε-moves into account. Both differences are
accounted for by an alternative definition of the epsilon closure function.

The approach in which the transitive closure is computed for one state at a time
is defined by the following definition of the epsilon closure function. Note that we
make sure that the transitive closure computation is only performed once for each
input state, by memorising the closure function; the full computation is memorised
as well. 4

funct epsilon closure(U) variant 2: per state
return memo(

⋃
u∈U memo(closure({u})))

end

In the case of the per subset approach, the closure algorithm is applied to each
subset. We also memorise the closure function, in order to ensure that the closure
computation is performed only once for each subset. This can be useful since the
same subset can be generated many times during subset construction. The defini-
tion simply is:

funct epsilon closure(U) variant 3: per subset

4 This is an improvement over the algorithm given in a preliminary version of this paper (van
Noord, 1998).
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return memo(closure(U))
end

The motivation for the per state variant is the insight that in this case the closure
algorithm is called at most |Q| times. In contrast, in the per subset approach the
transitive closure algorithm may need to be called 2|Q| times. On the other hand,
in the per state approach some overhead must be accepted for computing the union
of the results for each state. Moreover, in practice the number of subsets is often
much smaller than 2|Q|. In some cases, the number of reachable subsets is smaller
than the number of states encountered in those subsets.

3.3 Implementation
In order to implement the algorithms efficiently in Prolog, it is important to use ef-
ficient data-structures. In particular, we use an implementation of (non-updatable)
arrays based on the N+K trees of O’Keefe (1990, pp.142-145) with N=95 and K=32.
On top of this datastructure, a hash array is implemented using the SICStus library
predicate term hash/4 which constructs a key for a given term. In such hashes,
a value in the underlying array is a partial list of key-value pairs; thus collisions
are resolved by chaining. This provides efficient access in practice, although such
arrays are quite memory-intensive: care must be taken to ensure that the determin-
istic algorithms indeed are implemented without introducing choice-points during
runtime.

4 Experiments

Two sets of experiments have been performed. In the first set of experiments, ran-
dom automata are generated according to a number of criteria based on Leslie
(1995). In the second set of experiments, results are provided for a number of (much
larger) automata that surfaced during actual development work on finite-state ap-
proximation techniques. 5

Random automata. Firstly, we report on a number of experiments for randomly
generated automata. Following Leslie (1995), the absolute transition density of an
automaton is defined as the number of transitions divided by the square of the
number of states multiplied by the number of symbols (i.e. the number of transi-
tions divided by the maximum number of ‘possible’ transitions, or, in other words,
the probability that a possible transition in fact exists). Deterministic transition den-
sity is the number of transitions divided by the number of states multiplied by the
number of symbols (i.e. the ratio of the number of transitions and the maximum
number of ‘possible’ transitions in a deterministic machine).

In both of these definitions, the number of transitions should be understood
as the the number of non-duplicate transitions which do not lead to a sink state.
A sink state is a state from which there exists no sequence of transitions to a final
state. In the randomly generated automata, states are accessible and co-accessible
by construction; sink states and associated transitions are not represented.

Leslie (1995) shows that deterministic transition density is a reliable measure for
the difficulty of subset construction. Exponential blow-up can be expected for in-
put automata with deterministic transition density of around 2.6 He concludes
(page 66):

[. . . ] randomly generated automata exhibit the maximum execu-

5 All the automata used in the experiments are freely available from
http://www.let.rug.nl/˜vannoord/Fsa/.

6 Leslie uses the terms absolute density and deterministic density.
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tion time, and the maximum number of states, at an approximate
deterministic density of 2. Most of the area under the curve occurs
within 0.5 and 2.5 deterministic density—this is the area in which
subset construction is expensive.

Conjecture. For a given NFA, we can compute the expected num-
bers of states and transitions in the corresponding DFA, produced
by subset construction, from the deterministic density of the NFA.
In addition, this functional relationship gives rise to a Poisson-like
curve with its peak approximately at a deterministic density of 2.

A number of automata were generated randomly, according to the number of
states, symbols, and transition density. For the first experiment, automata were
generated consisting of 15 symbols, 25 states, and various densities (and no ε-
moves). The results are summarised in figure 5. CPU-time was measured on a HP
9000/785 machine running HP-UX 10.20. Note that our timings do not include the
start-up of the Prolog engine, nor the time required for garbage collection.

In order to establish that the differences we obtain later are genuinely due to
differences in the underlying algorithm, and not due to ‘accidental’ implemen-
tation details, we have compared our implementation with the determiniser of
AT&T’s FSM utilities (Mohri, Pereira, and Riley, 1998). For automata without ε-
moves we establish that FSM normally is faster: for automata with very small tran-
sition densities FSM is up to four times as fast, for automata with larger densities
the results are similar.

A new concept called absolute jump density is introduced to specify the num-
ber of ε-moves. It is defined as the number of ε-moves divided by the square of
the number of states (i.e., the probability that an ε-move exists for a given pair of
states). Furthermore, deterministic jump density is the number of ε-moves divided
by the number of states (i.e., the average number of ε-moves which leave a given
state). In order to measure the differences between the three implementations, a
number of automata has been generated consisting of 15 states and 15 symbols,
using various transition densities between 0.01 and 0.3 (for larger densities the
automata tend to collapse to an automaton for Σ∗). For each of these transition
densities, deterministic jump densities were chosen in the range 0 to 2.5 (again, for
larger values the automata tend to collapse). In figures 6 to 9 the outcomes of these
experiments are summarised by listing the average amount of CPU-time required
per deterministic jump density (for each of the algorithms), using automata with
15, 20, 25 and 100 states respectively. Thus, every dot represents the average for de-
terminising a number of different input automata with various absolute transition
densities and the same deterministic jump density.

The striking aspect of these experiments is that the integrated per subset and per
state variants are much more efficient for larger deterministic jump density. The per
grapht is typically the fastest algorithm of the non-integrated versions. However,
in these experiments all states in the input are co-accessible by construction; and
moreover, all states in the input are final states. Therefore, the advantages of the
per grapht,c algorithm could not be observed here.

The turning point is around a deterministic jump density of around 0.8: for
smaller densities the per grapht is typically slightly faster; for larger densities the
per state algorithm is much faster. For densities beyond 1.5, the per subset algorithm
tends to perform better than the per state algorithm. Interestingly, this generalisa-
tion is supported by the experiments on automata which were generated by ap-
proximation techniques (although the results for randomly generated automata
are more consistent than the results for ‘real’ examples).
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Comparison with the FSM library We also provide the results for AT&T’s FSM li-
brary again. FSM is designed to treat weighted automata for very general weight
sets. The initial implementation of the library consisted of an on-the-fly computa-
tion of the epsilon-closures combined with determinisation. This was abandoned
for two reasons: it could not be generalised to the case of general weight sets, and
it was not outputting the intermediate epsilon-removed machine (which might be
of interest in itself). In the current version ε-moves must be removed before deter-
minisation is possible. This mechanism thus is comparable to our per graph variant.
Apparently, FSM employs an algorithm equivalent to our per graphs,a. The result-
ing determinised machines are generally larger than the machines produced by
our integrated variants and the variants which incorporate ε-moves on the target
side of transitions. The timings below are obtained for the pipe

fsmrmepsilon | fsmdeterminize

This is somewhat unfair since this includes the time to write and read the interme-
diate machine. Even so, it is interesting to note that the FSM library is a constant
factor faster than our per graphs,a; for larger numbers of jumps the per state and per
subset variants consistently beat the FSM library.

Experiment: Automata generated by approximation algorithms The automata used in
the previous experiments were randomly generated. However, it may well be that
in practice the automata that are to be treated by the algorithm have typical proper-
ties which were not reflected in this test data. For this reason results are presented
for a number of automata that were generated using approximation techniques for
context-free grammars. In particular, automata have been used which were cre-
ated by Nederhof, using the technique described in Nederhof (1997). In addition, a
small number of automata have been used which were created using the technique
of Pereira and Wright (1997) (as implemented by Nederhof). We have restricted our
attention to automata with at least 1000 states in the input.

The automata typically contain lots of jumps. Moreover, the number of states
of the resulting automaton is often smaller than the number of states in the input au-
tomaton. Results are given in the tables 1 and 2. One of the most striking examples
is the ygrim automaton consisting of 3382 states and 9124 jumps. For this example,
the per graph implementations ran out of memory (after a long time), whereas the
implementation of the per subset algorithm produced the determinised automaton
(containing only 9 states) within a single CPU-second. The FSM implementation
took much longer for this example (whereas for many of the other examples it is
faster than our implementations). Note that this example has the highest number
of jumps per number of states ratio. This confirms the observation that the per sub-
set algorithm performs better on inputs with a high deterministic jump density.

5 Conclusion

We have discussed a number of variants of the subset-construction algorithm for
determinising finite automata containing ε-moves. The experiments support the
following conclusions:

• The integrated variants per subset and per state work much better for
automata containing a large number of ε-moves. The per subset variant
tends to improve upon the per state algorithm if the number of ε-moves
increases even further.

• We have identified four different variants of the per graph algorithm. In
our experiments, the per grapht is the algorithm of choice for automata
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Input Output
Id #states #trans #jumps #states

per graphs per grapht per grapht,c

per graphs,a per subset
FSM per state

g14 1048 403 1272 137 137 131
ovis4.n 1424 2210 517 164 133 107

g13 1441 1006 1272 337 337 329
rene2 1800 2597 96 846 844 844

ovis9.p 1868 2791 2688 2478 2478 1386
ygrim 3382 5422 9124 9 9 9

ygrim.p 48062 63704 109296 702 702 702
java19 54369 28333 51018 1971 1971 1855
java16 64210 43935 41305 3186 3186 3078
zovis3 88156 78895 68093 5174 5154 4182
zovis2 89832 80400 69377 6561 6541 5309

Table 1
The automata generated by approximation algorithms. The table lists the number of states,
transitions and jumps of the input automaton, and the number of states of the
determinised machine using respectively the efrees, efreet, and the efreet,c variants.

CPU-time (sec)
grapht grapht,c graphs graphs,a subset state FSM

g14 0.4 0.4 0.3 0.3 0.4 0.2 0.1
ovis4.n 0.9 1.1 0.8 1.0 0.7 0.6 0.6

g13 0.9 0.8 0.6 0.6 1.2 0.7 0.2
rene2 0.2 0.3 0.2 0.2 0.2 0.2 0.1

ovis9.p 36.6 16.0 16.9 17.0 25.2 20.8 21.9
ygrim - - - - 0.9 21.0 512.1

ygrim.p - - - - 562.1 - 4512.4
java19 55.5 67.4 52.6 45.0 25.8 19.0 3.8
java16 30.0 45.8 35.0 29.9 11.3 12.1 3.0
zovis3 741.1 557.5 - 407.4 358.4 302.5 325.6
zovis2 909.2 627.2 - 496.0 454.4 369.4 392.1

Table 2
Results for automata generated by approximation algorithms. The dashes in the table
indicate that the corresponding algorithm ran out of memory (after a long period of time)
for that particular example.
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containing few ε moves, because it is faster than the other algorithms, and
because it produces smaller automata than the per graphs and per graphs,a

variants.

• The per grapht,c variant is an interesting alternative in that it produces the
smallest results. This variant should be used if the input automaton is
expected to contain many non-co-accessible states.

• Automata produced by finite-state approximation techniques tend to
contain many ε-moves. We found that for these automata the differences
in speed between the various algorithms can be enormous. The per subset
and per state algorithms are good candidates for this application.

We have attempted to characterize the expected efficiency of the various al-
gorithms in terms of the number of jumps and the number of states in the input
automaton. It is quite conceivable that other simple properties of the input automa-
ton can be used even more effectively for this purpose. One reviewer suggests to
use the number of strongly ε-connected components (the strongly connected com-
ponents of the graph of all ε-moves) for this purpose. We leave this and other pos-
sibilities to a future occasion.
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