Reversibility in Natural Language Processing

Gertjan van Noord

[phon : “negen neven negen”]

sum - cat : s

I subcat - ()
[pred : bow]
?-sign(quant : [pred : nine])-
sem: | argl: pred : cousin
arg :
number : pl

i | tense : past]

Reversibility in Natural Language Processing

Omkeerbaarheid in natuurlijke-taalverwerking
(met een samenvatting in het Nederlands)

Proefschrift ter verkrijging van de graad van doctor
aan de Rijksuniversiteit te Utrecht
op gezag van Rector Magnificus, Prof.dr. J.A. van Ginkel
ingevolge het besluit van het College van Dekanen
in het openbaar te verdedigen
op 15 januari 1993 des namiddags te 14.30 uur

door
Gerardus Johannes Maria van Noord
geboren op 8 mei 1961, te Culemborg

promotoren:

Prof.dr. D.J.N. van Eijck, Faculteit der Letteren, Rijksuniversiteit Utrecht; Centrum
voor Wiskunde en Informatica, Amsterdam.

Prof.ir. S.P.J. Landsbergen, Faculteit der Letteren, Rijksuniversiteit Utrecht; Insti-
tuut voor Perceptie Onderzoek, Eindhoven.

I was partially supported by the European Community and the NBBI through
the Eurotra project, and the German Science Foundation in its Special Collaborative
Research Programme on Artificial Intelligence and Knowledge Based Systems (SFB
314, Project N3 BiLD).

CIP-GEGEVENS KONINKLIJKE BIBLIOTHEEK, DEN HAAG
Noord, Gerardus Johannes Maria van

Reversibility in natural language processing / Gerardus
Johannes Maria van Noord. - [S.l. : s.n.]

Proefschrift Rijksuniversiteit Utrecht. - Met lit. opg. -
Met samenvatting in het Nederlands.

ISBN 90-9005661-0

Trefw.: natuurlijke taalverwerking.

Contents

1 Introduction 9
1.1 Motivation for reversible grammars 10
1.1.1 Linguistic motivation 11
1.1.2 Language technological motivations 11

1.1.3 Psychological motivation 13

1.2 Utterances and meaningo 14
1.2.1 Logical equivalence problem 15
1.2.2 Unification-based semantics 17
1.2.3 Example semantic structures L. 18

1.3 Reversibility Lo 20
1.4 Overview e e e e e e 22
1.4.1 Towards reversible grammars 22
1.4.2 The other chapters 24

2 A Powerful Grammar Formalism 27
2.1 The constraint language: L 29
2.1.1 Constraintso 29
2.1.2 Feature graphso 30
2.1.3 Solutions of constraintso 32
2.1.4 Determining satisfiabilityo 000, 33

2.2 Adding definite relations 39
2.2.1 Definite clauses of R(L) 39
2.2.2 R(L)-grammars 43

2.3 Procedural Semantics oL 45
2.3.1 Solving a queryo 45
2.3.2 Meta-interpretero oo 53

2.4 Parsing and generation Lo 54
2.4.1 Unrestricted parsing problem 54
2.4.2 Problems with the unrestricted parsing problem 59
2.4.3 A restricted version of the parsing problem 56
2.4.4 Other versions of the parsing problem Y

2.5 Post Correspondence problem 58
2.6 Conclusion oL 62

3 Head-driven Generation 65
3.1 Introduction 65
3.2 A simple grammar for Dutch 66
3.3 Problems with existing approaches 73

3.3.1 Top-down generators and left recursion 73
3.3.2 Shieber’s chart-based generator 79
3.4 Head driven bottom-up generation 81
3.5 Some Possible Extensions L. 88
3.5.1 Restrictionson heads0 88
3.5.2 Extending the predictionstep 89
3.5.3 Memo relations Lo 91
3.5.4 Delay of lexical choice 0. 93
3.5.5 Other improvements 94
3.6 Problems for BUG 95
3.6.1 Verb-second Lo 95
3.6.2 Raising-to-object oL 97
3.7 Conclusion 99

4 Head-corner Parsing 101

4.1 Introductiono 101
4.1.1 Discontinuous Constituency and Reversibility 101
4.1.2 OVerview e e e 102

4.2 Beyond concatenation 103
4.2.1 Head wrapping 105
4.2.2 Johnson’s ‘combines’o, 106
4.2.3 Sequence UNIONo e 107
4.2.4 Tree Adjoining Grammars 108
4.2.5 Linear and non-erasing grammars 116

4.3 A sample grammar 119

4.4 'The head corner parser 125

4.5 Head-driven parsing for TAGs 132
4.5.1 Representing auxiliary and initial trees 134
4.5.2 Adjunction. 136
4.5.3 String concatenation L L0000 137
4.5.4 Spurious ambiguityo oo Lo 138
4.5.5 Unification of bottom and top. 139
4.5.6 Examples 142
4.5.7 Semi-lexicalized TAG, 146

4.6 Discussion and Extensions 147
4.6.1 Representation of bags. Lo 148
4.6.2 Indexingofrules 149
4.6.3 ‘Order-monotonic’ grammars 150
4.6.4 Delaying the extra constraint 150

4.6.5 Memo relationso 151

4.7 Conclusion L e e e 152

5 Reversible Machine Translation 153
5.1 Linguistically possible translation 153
5.2 The subset problem 0oL 155
5.3 The architecture of MiMo2 oo 157
5.3.1 Other constraint-based approaches to MT 159

5.4 Constraint-based transfero L0000, 160
5.4.1 Simple transfer rules o o000 160

5.4.2 Translating reentrancies 164

5.5 Reversible transfer L o 167
5.6 Context-sensitive Translations 169
5.7 Conclusion e 171
Summary 173
Samenvatting 181
Bibliography 189
Curriculum Vitae 198

Acknowledgments 199

Chapter 1

Introduction

Constraint-based grammars have become increasingly popular within the field of nat-
ural language processing. One of the reasons for this success is that constraint-based
grammars are completely declarative; that is, the grammar only states facts of the
language it describes, without stating how such a grammar should be used for parsing
or generation. Such declarative grammars, for this reason, provide for an abstract
level of language description, and are easy to understand, and hence relatively easy
to debug, extend, and re-use in other applications.

Because constraint-based grammars do not enforce a specific processing regime,
it is possible to conceive of constraint-based grammars, which can be used both for
parsing and generation. Such grammars may be called reversible (Kay, 1975). Sec-
tion 1.3 defines the notion reversibility somewhat more precisely, and discusses some
of its properties. I define a reversible grammar as a grammar for which parsing and
generation are both guaranteed to terminate. The notion of a grammar that can be
used both for parsing and generation is intuitively appealing; but I provide explicit
motivation for the use of reversible grammars in section 1.1.

Although declarative grammars can, in principle, be used in a reversible way, it
turned out that from a practical point of view, several problems remained to be solved,
in order for this ideal to be realized. Historically, constraint-based grammars often
were used for parsing only. Attempts to use such grammars (written with parsing
in mind) for generation, failed. Some of the problems are discussed in chapter 3.
Specialized generation algorithms had to be developed, to be able to use constraint-
based grammars for generation successfully.

In chapter 3 I present a generation technique, known as semantic-head-driven
generation, which has some interesting properties. Firstly, the algorithm is goal-driven
in that the order of processing is geared towards the input (semantic structures).
Secondly, the algorithm is lexicon-driven, in that the algorithm proceeds in a bottom-
up fashion. These two properties imply that the generation technique is most useful
for theories, such as unification-based versions of categorial grammars (CUG, UCG,
HPSG), in which semantic structures are defined in a lexical, and head-driven fashion.

I present some evidence that semantic-head-driven generation faces problems in the
case of some types of discontinuous constituency. Most notably, in certain analyses of

10 CHAPTER 1. INTRODUCTION

so-called ‘head-movement’, as in straightforward analyses of verb-second phenomena in
languages such as German and Dutch, the algorithm faces severe problems. Although
I discuss some restricted techniques to repair the problem, a more general solution
does not seem available, for grammars which are concatenative.

Linguistic evidence for more powerful operations on strings than concatenation, is
presented by various authors. Some proposals are discussed in chapter 4. I argue that
analyses, which were problematic from a generation point of view, can be avoided in
grammars which allow for more powerful operations on strings. Furthermore, as long
as these operations on strings are linear and non-erasing (these terms will be explained
later), it might still be possible to define efficient parsing algorithms. Chapter 4
presents such a parsing algorithm: the head-corner parser. The head-corner parser
for non-concatenative grammars generalizes Martin Kay’s head-driven parser, which
in turn is a variation of the left-corner parser. In the head-corner parser, processing
proceeds in a head-driven and bottom-up fashion. Furthermore, the bag of words
occurring in the input sentence functions as the guide, rather than the sequence of
words. I argue that this order of processing provides for a goal-driven, and lexicon-
driven flow of control.

Summarizing, the argument can be rephrased as follows. Constraint-based gram-
mars can be used in principle both for parsing and generation. However, to use such
grammars in a practically interesting way, the grammars need to be restricted in some
way. Historically, the restriction has been (in order for parsing to be efficient), that
phrases are built by concatenation. No restriction for generation was assumed, as
generation played a minor role. However, once grammars are to be used reversibly, I
argue that this division of labor (a strict restriction for parsing, and no restriction for
generation) cannot be maintained. To make generation feasible at all, some assump-
tions about how semantic structures are combined are necessary. In the approach of
chapter 3, semantic structures are built in a lexical and head-driven fashion. In order
for these assumptions to make linguistic sense, it is also necessary to have more free-
dom in the way phonological structures are combined. Thus, instead of concatenative
grammars, linear and non-erasing grammars are called for.

In chapter 5, T describe a possible application of reversible grammars. This chap-
ter provides motivation that such grammars can be used to implement the relation
‘linguistically possible translation’. The results of the other chapters were devel-
oped partly in the context of the construction of a reversible M'T prototype, called
MiMo2. This prototype was developed by the author and colleagues at the Univer-
sity of Utrecht. In this architecture, translation is simply defined by a series of three
reversible, constraint-based grammars.

1.1 Motivation for reversible grammars

Motivations for reversible grammars can be divided into linguistic, language tech-
nological, and psychological motivation. The different kinds of motivation are now
discussed in turn.

1.1. MOTIVATION FOR REVERSIBLE GRAMMARS 11

1.1.1 Linguistic motivation

If we assume a reversible grammar, then we make two claims. The first claim is that
language should be described by a single grammar (rather than a different grammar
for understanding and a different grammar for production). The second claim is that
this single grammar, moreover, can be used effectively both for parsing and generation.

The first claim can be motivated linguistically as follows. The primary goal of
(theoretical) linguistics is to characterize languages. How such languages are used
by humans (or computers) are different questions. Thus, given a language such as
English, the primary goal of linguistics is to define the possible English utterances
and their corresponding meanings. Thus a single language should be described by a
single grammar.

The second claim, that this single grammar should moreover be (effectively) re-
versible, can be motivated as follows. Given that the goal of linguistics is to define
the relationship between utterances and meanings, it seems that, to check a possible
theory, we should be able to find out the predictions such a theory makes. That is,
for a given utterance it should be possible to ‘know’ what the possible meanings are,
according to the grammar (and vice versa). Thus, for each grammar, we want to be
able to compute the corresponding meaning representations for a given utterance, and
to compute the corresponding utterances for a given meaning representation.

1.1.2 Language technological motivations

In order to build practical NLP systems, the use of reversible grammars can be mo-
tivated, both on methodological ground (as a means to obtain ‘better’ systems) and
practical grounds (as a means to obtain systems in a more efficient way).

Methodological. An important motivation for reversible grammars in NLP is of a
methodological nature. If we are to use grammars both for parsing and generation we
are forced to write grammars declaratively. This in turn implies that a more abstract
analysis of the linguistic facts is necessary in the general case. If we are to write a
declarative grammar which is used only for, say, parsing, it is quite easy to ‘cheat’
and ‘adapt’ the grammar to the parsing algorithm that is being used. In a reversible
grammar this is much harder because at any moment there are two algorithms for
which the grammar must be applicable.

The claim is that the use of reversible grammars will eventually lead to better
grammars. For example, a grammar that is written for parsing will typically over-
generate quite a lot; i.e. it will assign logical forms to sentences that are in fact
ungrammatical. Not only is such a state of affairs undesirable if we are interested in
describing the relation between form and meaning, it can also be argued that over-
generation of parsing is a problem, even if we are only interested in parsing well-formed
utterances, because over-generation typically leads to ‘false ambiguities’.

An example may clarify this point (this example was actually encountered in the
development of a working system). Consider a grammar for English that is intended
to handle auxiliaries. Suppose that the English auxiliaries are analyzed as verbs that

12 CHAPTER 1. INTRODUCTION

take an obligatory VP-complement. Moreover each auxiliary may restrict the vform
(participle, infinite) of this complement. This allows the analysis of sentences such as

(1) Graham will have been traveling with his aunt

However, the possible order of English auxiliaries (eg. ‘have’ should precede ‘be’) is
not accounted for and the analysis sketched above will for example allow sentences
such as

(2) *Graham will be having traveled with his aunt

In the case of a reversible grammar such constructions should clearly not be generated,
hence the analysis will be changed accordingly. However, even if the grammar is only
used for parsing, this analysis runs into problems because it will assign two meanings
to the sentence:

(3) Graham is having grilled meat
The meanings that are assigned, roughly correspond to the sentences:

(4) a. Graham ordered grilled meat
b. Graham has been grilling the meat

where only the first reading is acceptable. Thus, over-generation is not acceptable,
even for grammars which are used only for parsing, because over-generation typically
implies that ‘false ambiguities’ are produced.

In some cases, the over-generation may also lead to an explosion of local possibil-
ities during parsing. If the grammar is more constrained, then this may sometimes
be good from an efficiency point of view, because in that case there are less local
ambiguities the parser has to keep track of.!

Thus, a reversible architecture may be a useful methodology to obtain a good
parsing system.

Similarly, a grammar that is built for generation will usually under-generate; i.e. it
will only generate a canonical sentence for a given logical form, even if there are several
possibilities. Again, from a theoretical perspective this is clearly undesirable. It can
be argued that a reversible architecture also leads to a better generation system. It has
often been argued that, in particular situations, a generation system should produce
an un-ambiguous utterance. In other situations, however, ambiguous utterances are
harmless because the hearer can easily disambiguate the utterance. In Neumann and
van Noord (1992) we propose a model of language production in which a generator
instructs its grammatical component whether or not it should check for ambiguity of
its proposed utterance. The grammatical component, quite independently, computes
an un-ambiguous utterance if so desired. For this model to be possible at all, it must

! Clearly this is not necessarily the case: a finite state grammar, which recognizes a superset of
English need not be constrained at all, but can be parsed very efficiently ...

1.1. MOTIVATION FOR REVERSIBLE GRAMMARS 13

be the case that the grammatical component has at its disposal several utterances for
a given semantic structure in order to find in a given situation the most appropriate
one. Note that ‘ambiguity’ might be only one of several parameters that may or may
not be instantiated in a given situation. Summarizing this point, the claim is that
under-generation is undesirable from the point of view of extendability.

Consistency. Consider an NLP system which is used both to convey messages to a
user, and to understand the requests of the user. Necessarily, the sentences the system
is able to produce and to understand are somewhat limited, given the state of the art.
This may not be problematic for a user, as she might adapt herself to this restriction.
However, a user will invariably assume that she can use the sort of sentences the system
produces itself. That is, a reasonable constraint for such a system is that the sentences
it produces is a subset of the sentences it is able to understand. In a reversible
grammar the problem to check that the parser and generator are consistent in this
respect (i.e. that the system should be able to understand those types of sentences,
which it produces itself) is solved automatically; hence no special consistency checking
device needs to be considered.

Practical. From a practical point of view it may be argued that it is cheaper to
construct one reversible grammar than two separate grammars. The same argument
can then be applied to the costs of maintaining the grammars. These two arguments
of course extend to the lexical entries in the grammar: in a reversible architecture
only one lexicon needs to be built and maintained, although clearly non-reversible
grammars may share their lexicon too.

Furthermore, a reversible grammar provides grammar writers with a very effective
debugging tool. To check whether the grammar does accept ungrammatical sentences
it is possible to use the generator to see whether such ungrammatical sentences are
being produced. Clearly, this technique cannot be used to ensure that a grammar
does not produce ungrammatical sentences, however in practice such a tool turns out
to be quite useful, as many errors in the grammar are detected this way.

1.1.3 Psychological motivation

An interesting question might be whether humans base their language production
and language understanding on a single body of grammatical knowledge. Clearly, this
would explain why humans speak the same language they understand and vice versa.
However, in practice speakers often understand sentences they would never produce.
This observation may have several reasons.

Many differences are due to the fact that people often are able to understand
otherwise mysterious utterances, because of the context and situation — using intelli-
gence rather than grammatical knowledge. For example, hearers may understand an
utterance even if the utterance contains a word they hear for the first time (and hence
they could never have produced such an utterance), provided the situation or context

14 CHAPTER 1. INTRODUCTION

makes it clear what this word means. Thus ‘learning’ often takes over from natural
language understanding proper.

Alternatively, it may simply be the case that people understand sentences, they
never utter, because they do not come up with the meaning in the first place. This
situation might occur, either because they are not able to come up with the meaning
(Einstein’s case), or because they do not want to come up with that meaning (Dan
Quayle’s case) 2. The first time that Einstein explained to his colleagues the relativity
theory they were probably able to understand him. However none of them would
have been able to produce Einstein’s utterances. As another example, consider the
case where someone uses special stylistic effects. A hearer may recognize the social
register associated with these effects; this thus will be part of the ‘meaning’ of the
utterances of that speaker. However, the hearer may belong to a different social
class, and hence its language components will generally be instructed with a different
‘meaning’ representation to that effect. Thus, it seems that some of the differences
between understanding and production are not to be explained linguistically, but are
due to a difference at another level of cognitive behavior.

Thus, maybe it is possible to maintain that the grammatical part of language
understanding and production can be modeled by assuming it is based on a reversible
grammar. On the other hand, if it is not possible to maintain this claim in its full
generality, then I believe that the model proposed here provides a good starting point
for a more realistic model of language behavior.

1.2 Representation of utterances and meaning

I will characterize a language as a relation between ‘form’ and ‘meaning’. In the case
of spoken natural languages, the ‘form’ consists of ‘sound’. Understanding a language
means to be able to assign meaning to utterances from that language; speaking a
language means to be able to produce the appropriate utterances of that language
for a given meaning. In grammars, ‘form’ and ‘meaning’ need to be represented in
some way or other. A grammar represents the meaning and sound between which
it defines a relation, by some sort of representation. To represent natural language
utterances, a grammar may define phonological representations. The denotation of
these phonological representations are utterances. In current computational linguistic
practice, such representations often simply take the form of a list of words, i.e. written
language is used to represent spoken language. Given that written language is so
common in our culture no problem arises here. If one is interested in spoken language,
however, the relation between written and spoken language should be defined as well
(or rather the relation between spoken language and the phonological representations).

On the other hand, there is much less agreement as to what the ‘meaning’ of nat-
ural language utterances is, and how that meaning should be represented. In a model
theoretic view on meaning, the meaning of utterances is represented by logical formu-

2This characterization is due to Jim Barnett. It may be possible to understand the things D.Q.
says, but one would never want to talk like him.

1.2. UTTERANCES AND MEANING 15

las. The interpretation of these formulas then constitute (model-theoretic) meaning.
However, what kind of logic is needed to describe meanings of natural language is a
matter of debate. I will not take part in this debate, but abstract away from the details
of the choice of natural language semantics. The assumption I will make is that such
logical formulas (semantic representations) can be described by feature structures. In
order to provide for some exemplification, I will use simple semantic structures, which
are defined in subsection 1.2.3.

1.2.1 Logical equivalence problem

It is not problematic to assume that feature structures can be used to represent se-
mantic representations of any sort. However, it is problematic to assume that the
constraint-language we define feature structures with, is rich enough to capture the
intrinsic properties of the logic. The problem that arises in this context is called the
logical equivalence problem (Appelt, 1987). A logic defines logical equivalences be-
tween formulas. If such equivalences are not taken into account by the grammatical
formalism, unexpected results may occur. For example, consider a grammar that re-
lates some utterance w with the meaning representation m. Suppose, furthermore,
that in the logical language from which m is taken, m’ is equivalent to m. What
should happen if we ask a system based on that grammar to generate an utterance for
the semantic structure m’? In the ideal case, the system should indeed produce u as
a possible utterance. This is so, because the ‘form’ of the formulas should not really
matter; such formulas stand for a piece of meaning, and if two formulas describe the
same piece of meaning then these two formulas should behave in the same way.

However, in the general case one cannot expect from a generation system, that
it is indeed capable of producing an answer in the previous example. The problem
whether two expressions are logically equivalent is undecidable for any ‘interesting’
logic. Therefore, it is not to be expected that it is possible to devise a serious logic
for natural language semantics, in which logical equivalence is decidable.

Furthermore, even simple kinds of equivalences may give rise to an enormous in-
crease of computational complexity. For example, Calder et al. (1989) mention that
the equivalence problem with only the axioms of commutativity and associativity for
their ‘Indexed Language’ has factorial complexity.

Shieber (1988) mentions that, from the standpoint of natural language generation,
“the class of equivalent logical forms [...] is not really closed under logical equiva-
lence”. He claims that a finer-grained notion of intentional equivalence is required,
such that for example p and p A (¢ V —¢) would not necessarily be intentionally equiv-
alent; and these formulas might correspond to different utterances, one about p only,
the other about p and ¢q. Clearly it depends on the actual logic whether or not a dif-
ferent form of equivalence is called for. It may also be the case that in an appropriate
natural language semantics those two formulas are not logically equivalent anyway.

Another point raised by Shieber (1988) is that even for logics in which each formula
has a (unique) canonical form, a problem remains unless these canonical forms corre-
spond exactly to those derived by the natural language grammar. Shieber mentions:

16 CHAPTER 1. INTRODUCTION

We might use a logic in which logical equivalence classes of expressions are
all trivial, that is, any two distinct expressions mean something different.
In such a logic, there are no artifactual syntactic remnants in the syntax
of the logical language. Furthermore, expressions of the logic must be
relatable to expressions of the natural language with a reversible grammar.
Alternatively, we could use a logic for which canonical forms, corresponding
exactly to the natural language grammar’s logical forms, do exist.

The difference between the two approaches is only an apparent one, for
in the latter case the equivalence classes of logical forms can be identified
as logical forms of a new logical language with no artifactual distinctions.
Thus, the second case reduces to the first. The central problem in either
case, then, is discovery of a logical language which exactly and uniquely
represents all the meaning distinctions of natural language utterances and
no others. This holy grail, of course, is just the goal of knowledge repre-
sentation for natural language in general; we are unlikely to be able to rely
on a full solution soon.

For the reasons mentioned above, we cannot expect the generator in the previous
example to produce v’ in the general case. Indeed, the generation systems that have
been proposed all impose a stronger condition on the generation task. Not only
is the generator required to produce an utterance which is assigned an equivalent
logical form by the grammar, but, moreover, the ‘syntax’ of the logical form must
be the same as well. For a theoretical perspective on this, c¢f. van Deemter (1991);
van Deemter (1990). This definition of the generation problem will be used throughout
this thesis as well, and made precise in chapter 2.

Clearly, this is a somewhat disappointing result. Even though the problem of
logical equivalence in general is undecidable, it may be the case that we can devise
techniques which solve at least part of the problem; i.e. are able to recognize certain
equivalences. I believe that the techniques developed in the remainder of this thesis
can be augmented with such techniques once these become available, as follows. In a
constraint-based grammar logical forms are defined by constraints. In the constraint-
language to be defined in chapter 2, the only equivalence relation is the one we obtain
by the equality of our constraint language. However, the general way in which I define
a constraint-based formalism, along the lines of Hohfeld and Smolka (1988), allows for
more powerful constraints, if appropriate constraint-solving mechanisms are available.

The principal way to enrich the equivalence notion in a constraint-based formalism
is to enrich the constraint-language. Thus, if we take p & ¢ to be equivalent to g @ p,
then we should add some axioms to the constraint language to this effect. The result
of this approach will then be that p ® ¢ will ‘unify’ with ¢ @ p. Note that the parsing-
and generation algorithms defined in this thesis can be viewed as abstracting away
from the particular constraint-language that is being used. Thus, given appropriate
constraint-solving techniques (unification algorithms), more powerful constraints can
easily be imported.

The point then is, that even though we have not much to say about the logical

1.2. UTTERANCES AND MEANING 17

equivalence problem, we argue that the results of this thesis are not dependent on
the way in which this problem is solved eventually. This is so, because on the one
hand we abstract away from the actual choice of semantic representations, and on the
other hand provide for a hook in which equivalences can be defined (in the constraint-
language); the techniques developed in this thesis can easily be adapted to more
powerful constraint-languages as well.

1.2.2 Unification-based semantics

In constraint-based grammars, of the sort I will be assuming throughout, semantic
structures are usually composed by constraint-solving, rather than by functional ap-
plication (with lambda expressions and lambda reductions). For the simple constraint
language, which consists solely of path-equations, which I define in the next chapter,
this comes down to a unification-based semantics. This technique has become quite
popular in work on computational semantics. A theoretical perspective on the use of
unification to construct semantic structures, is presented in Moore (1989).

Motivation for the use of unification, rather than functional application, using
complex lambda expressions and lambda reductions, partly is of a computational
kind. For example, van Eijck and Moore (1992), state that:

It is simpler and more efficient to use the feature system and unification to
do explicitly what lambda expressions and lambda reduction do implicitly,
that is, assign a value to a variable embedded in a logical form expression.

and Alshawi and Pulman (1992) furthermore notice, when comparing unification-
based semantics with more traditional semantics, for the purpose of generation:

[...] If the semantic rules had been more in the style of traditional Mon-
tague semantics, generation from structures that had undergone lambda
reductions would have presented search difficulties because the reductions
would have to be applied in reverse during the generation process. This
turns out to be an important practical advantage of unification-based se-
mantics over the traditional approach.

Nerbonne (1992) also discusses some advantages of constraint-based semantics.
Using constraints to define semantic structures is motivated because it allows that
relations with syntax, phonology, and context can be stated in a simple way, by the
interaction of the constraints from the different domains. Nerbonne (1991) claims:

There are several advantages of the unification-based view of the syn-
tax/semantics interface over the more familiar (Montagovian) view of this
interface, which is characterized by a homomorphism from syntax into se-
mantics. The unification-based view sees the interface as characterized by
a set of constraints to which non-syntactic information may contribute,
including phonological and pragmatic information. Let the semantics of
intonation and that of deixis serve as examples of the two sorts. The

18 CHAPTER 1. INTRODUCTION

feature-based view furthermore allows syntactic and semantic information
to be bundled in complex, but useful ways.

Other examples and discussion of the use of constraints in order to define the se-
mantics, are for example Fenstad et al. (1987), Pereira and Shieber (1987), Halvorsen
and Kaplan (1988), Rupp (1991).

1.2.3 Example semantic structures

The techniques to compute the relation between phonological and semantic structures
(in parsing and generation), and between semantic structures of different languages
(in machine translation) are supposed to abstract away from the particularities of
these phonological and semantic structures. However, for concreteness and expository
purposes I will define very simple semantic structures which are used throughout the
example grammars and rules in this thesis. These semantic structures are feature
structures, of the sort to be introduced in chapter 2. The reader unfamiliar with
feature structures is advised to consult that chapter first.

The semantic structures to be described here are essentially predicate argument
structures decorated with some syntactic features. Similar structures were used in the
MiMo?2 translation prototype (this prototype is described in van Noord et al. (1990);
van Noord et al. (1991), and in chapter 5). Semantic structures come in several ‘sorts’.
A semantic structure has a label sort of which the value is one of

{nullary, unary, binary, ternary, modifier }

Other attributes of semantic structures include pred, mod, argl, arg2 and arg3 of
which the values are semantic structures themselves. The convention is that structures
with sort ‘ternary’ are specified for argl, arg?2 and arg3, whereas structures with sort
‘binary’ are not specified for arg3, and so on. The attribute pred takes constants
as its values (these constants often represent content words). Furthermore semantic
structures are decorated with labels such as neg, number, tense, aspect, def,. .. of which
the values are atomic and of which the intention will be clear. These syntactic labels
play a minor role in this thesis, and are often left out. For example, the sentence ‘the
priest drinks wine’ is associated with argument structure:

sort : binary

pred : drink

[sort : nullary
pred : priest
number : sg

| def : def

[sort : nullary
pred : wine
def : indef

| number : mass

argl :

arg? :

tense : present
neg : nonneg

1.2. UTTERANCES AND MEANING 19
Furthermore, modifier structures such as noun-adjective constructions are represented
by a semantic structure of sort ‘modifier’, with labels mod and arg! of which the

values are semantic structures. Therefore, the semantic structure of a noun phrase
‘very strong whisky’, may look as follows:

[sort : modifier i
[sort : modifier

mod. l sort : nullary]
pred : very

sort : nullary
pred : strong

mod :

argl : l
[sort : nullary

pred : whisky

def : indef

| number : mass

argl :

As a more complex example the logical form of

(5) The soldiers did not open fire on the Columbian prime minister

is the following feature structure:

[sort : binary]
pred : open_fire_on
[sort : nullary
| pred : soldier
GIL5 | def - def
| number : pl
[sort : modifier 1
| sort:nullary
mod : l pred : columbian]
[sort : modifier]
sort : nullary
arg2 : mod : l pred : prime]
argl : sort : nullary
| pred : minister
G915 def « def
number : sg
| neg: neg |

To encode for example control relations I introduce a special semantic structure of
which the sort is ‘refer’ and of which the only other attribute is index. Furthermore,
other semantic structures may also be specified for the indez attribute. Sharing of the

index attribute then can be used to indicate control, as in the following example for
the sentence

20 CHAPTER 1. INTRODUCTION

(6) The soldiers try to shoot the whisky priest

sort : binary

pred : try

sort : nullary
pred : soldier

argl : number : pl
index : 1
[sort : binary |
pred : shoot
argl : [§0rt : refer
arg? : | indez : 1

[sort : nullary
arg2 : | pred : whisky_priest
| number : sg

In examples throughout this thesis I will often abbreviate the semantic structures
presented above (somewhat informally for expository purposes) as follows. Seman-
tic structures of which the sort attribute is ‘nullary’ are abbreviated by Pred where
Pred is the (atomic) value of the pred attribute. Semantic structures of type ‘unary’,
‘binary’, and ‘ternary’ are abbreviated resp. by Pred(Argl), Pred(Argl,Arg2) and
Pred(Argl,Arg2,Arg3) where Pred is the (atomic) value of the pred attribute and
Argl, Arg2 and Arg3 are resp. the (abbreviated) values of the arg!, arg2 and arg3 at-
tributes. Semantic structures of sort ‘modifier’ are abbreviated as [Mod]|(Argl) where
Mod is the abbreviation of the value of the mod attribute, and Argl the abbreviation
of the value of the argl attribute. Semantic structures of sort ‘refer’ are abbreviated
by ref. Finally, for each of these abbreviations, if the value I of their corresponding
indez attribute occurs more than once in a structure, the abbreviated semantic struc-
ture is prefixed with I:. The values of other attributes will be abstracted away from
in such abbreviated semantic structures.

As an example, I write the semantic structure corresponding to ‘The soldiers tried
to shoot the very brave columbian minister’ as

try(I:soldier,shoot(I:ref,[[very](brave)]([columbian](minister))))

1.3 Reversibility

Intuitively, we call a program ‘reversible’ if it is capable of both parsing and generation
on the basis of a single characterization of the relation between semantic structures
and phonological structures. The following definitions of reversibility are meant to
be independent of the way we go about achieving a reversible natural language pro-
cessing component. Furthermore, the definitions abstract away from the actual rep-
resentations between which we are defining relations. In chapter 5 we propose to use
constraint-based grammars for a transfer component of an MT system. In that case

1.3. REVERSIBILITY 21

the relation defined by the grammar is between semantic representations of different
languages; the following definitions are generalized in order to be applicable for such
usages as well.

A program or system will be called r-reversible iff it computes a binary relation
r in both directions. The idea is that, given an element of a pair in the relation, the
program computes the corresponding element(s) of that pair. To encode the ‘direction’
of the relation I assume that the input for the program consists of a pair {dir, z) where
dir represents the direction which the program should compute. The value of dir is
either 0 or 1. If the value is 0, then the program computes the relation from left to
right; if the value is 1 then the program computes the relation from right to left. 3

Definition 1 (Compute a relation in both directions) A program P computes
a relation r in both directions, iff P enumerates for a given input (dir, e) the set

(e,z) erNdir=0V
{z] (x,e) er Ndir =1 }

Definition 2 (Reversible)

e A program P is r-reversible iff P computes r in both directions.

e A relation r is reversible iff there exists an r-reversible program.

Consider the case where r is the relation between phonological and semantic rep-
resentations defined by some grammar. In this case a program is said to compute
this relation in both directions (i.e. the program is reversible w.r.t. this relation)
iff for a given phonological representation the program returns the corresponding se-
mantic representation; for a given semantic representation the program returns the
corresponding phonological representations. Such a program may consist of a parser
and a generator (depending on the value of dir), or alternatively the program consists
of a single uniform algorithm. For example in the case of the meta-interpreter for
R(L)-grammars to be presented in chapter 2, the value of dir defines to which path
(eg. phon or sem) the input has to be assigned, otherwise the parser and generator
are equivalent.

Systems in which the relation between phonological and semantic representations
is defined procedurally are seldom reversible in this respect, because it is very difficult
to make sure that the program indeed computes the same relation in both directions.
On the other hand, a system based on a single declarative grammar necessarily is
reversible.

Arguably, the above defined notion of reversibility is somewhat weak. According
to the definition above, any recursively enumerable relation is reversible. However, in
practice it is often the case that a grammar that is developed from a single perspec-
tive (eg. parsing perspective) is completely useless in the other direction because it

3Note that it usually will be quite clear from the input in which direction the relation is to be
computed.

22 CHAPTER 1. INTRODUCTION

simply fails to terminate in all interesting cases (let alone efficiency considerations).
Therefore, I define what it means for a relation to be effectively reversible. A rela-
tion is effectively reversible if it can be effectively computed in both directions, i.e.
there exists a program computing the relation in both directions, and furthermore the
program always halts. In the terminology of Hopcroft and Ullman (1979), we require
that there exists an algorithm computing the relation.

Definition 3 (Effectively reversible)

e A program P is effectively r-reversible iff

— P is r-reversible; and

— P is guaranteed to terminate (for every input).

e A relation r is effectively reversible iff there exists an effectively r-reversible
program.

If T use the term reversible in the remainder of this thesis, then I will invariably
mean effectively reversible.

Next I show that the composition of (effectively) reversible relations is (effectively)
reversible. This proposition motivates the use of a series of grammars, each defining
an (effectively) reversible relation, to obtain an (effectively) reversible MT system
(chapter 5).

Definition 4 (Composition) The composition of two relations 7, o7y is the relation
{{a, c)|{a,b) € r; and (b,c) € 3}.

Proposition. The composition of two effectively reversible relations is effectively
reversible.

Proof. Assume r and 7’ are reversible. We need to show that r o r’ is reversible.
Let P and P’ compute resp. r and 7’ in both directions. Construct the program as
in figure 1.1 which computes the series of P and P’, the order of which is dependent
on the direction. Each element of the output of the first program is taken as the
input to the second program. As both P and P’ terminate, the two programs in series
terminate too. Another, intuitively more attractive way to think about the above
construction is pictured in figure 1.2.

1.4 Overview

1.4.1 Towards reversible grammars

An interesting goal for this thesis might have been to devise an interpreter for reversible
grammars. This interpreter should indeed compute the relation r for any given r-
reversible grammar. However, it is not clear that such an interpreter actually can be

1.4. OVERVIEW 23

Piir=o Pl—o output

dir =0

input
dir =1

Figure 1.1: Program computing composition.

i/()<—> P P/ <—>1/0

Figure 1.2: Series of reversible programs

built. Even though for each of the r-reversible grammars, programs can be built that
compute r, it is not clear that a universal program can be built that accomplishes that
task for any given grammar. In other words, even though the p-parsing problem (this
notion will be defined in chapter 2) is solvable, by definition, for a fixed reversible
grammar, it is not clear that the universal p-parsing problem for reversible grammars
is solvable.

The goal of this thesis is more modest. Most attention in the next chapters will
be devoted to the development of parsing and generation techniques which improve
upon existing techniques with respect to the following two, related, dimensions:

e Applicability. The parsing and generation techniques are applicable for a larger
class of constraint-based grammars than some other techniques. Furthermore,
this extended domain of applicability is motivated from a linguistic perspective.
Thus, the proposed techniques are applicable for constraint-based grammars
such as these are actually written by (computational) linguists.

e Linguistic Deduction. The parsing and generation techniques follow certain
linguistic principles. That is, the techniques are motivated from a linguistic
perspective. It is hoped that such linguistically motivated techniques improve
upon the efficiency as compared with other deduction methods.

Chapter 3 discusses methods for (grammatical) generation on the basis of constraint-
based grammars. A method for generation, called ‘semantic-head-driven’ generation,
is introduced and compared with some ‘top-down’ generation techniques, as for exam-
ple proposed by Wedekind (1988) and Dymetman and Isabelle (1988), and with the
chart-based technique of Shieber (1988). With respect to the dimensions mentioned
above, semantic-head-driven generation is motivated because:

24 CHAPTER 1. INTRODUCTION

e Applicability. Certain linguistically motivated left-recursive analyses are prob-
lematic for the approaches of Wedekind (1988) en Dymetman and Isabelle (1988),
but are handled without problems in a semantic-head-driven generator. Fur-
thermore, certain analyses of idiomatic constructions are impossible in Shieber’s
chart-based generator. These analyses pose no problem for semantic-head-driven
generation.

e Linguistic Deduction. The semantic-head-driven generation strategy defines a
mixed bottom-up and top-down search procedure. The search is guided by
the input semantic structure through the use of the notion ‘semantic-head of
a construction’. Furthermore, the search is guided as much as possible by the
information available in lexical entries. This implies that the algorithm is most
useful for constraint-based grammars based on lexicalistic linguistic theories with
a constraint-based semantics, such as UCG and HPSG.

Chapter 4 is devoted to parsing. A method for parsing, called ‘head-corner’ parsing
is introduced. Again, this method is compared with competing approaches to parsing
along the dimensions of applicability and linguistic deduction:

e Head-corner parsing is applicable for constraint-based grammars in which op-
erations on strings are restricted to be non-erasing and non-copying. One such
operation is concatenation, but there are many others. For that reason head-
corner parsing is applicable for a strict superset of concatenative constraint-based
grammars, whereas most other algorithms are applicable only for concatenative
grammars. As an example it is shown how head-corner parsing can be employed
to parse lexicalized and constraint-based versions of Tree Adjoining Grammars.

e The order of processing in the head-corner parsing is bidirectionally in two
senses. Firstly, the parsing proceeds head-driven, rather than from left-to-right.
This implies that powerful top-down predictions are possible based on the usual
percolation of syntactic features between the mother and the (syntactic) head
of a construction. In many linguistic theories much syntactic information is
encoded in the lexicon. As the head-corner parser has an important flow of
bottom-up information, this lexical information is used to further reduce the
size of the search space. The combination of these two properties furthermore
ensures that, once the head of a construction is known, the parser also knows
what other phrases it should expect, using the subcategorization specifications

of that head.

1.4.2 The other chapters

The next chapter provides the basis of the other chapters of this thesis, by defining
a constraint-based formalism, called R(L). The constraint-language of the formalism
consists of the path-equations known from PATR II (Shieber et al., 1983). This may
seem somewhat restricted, as lately some results have been obtained in the area of dis-
junctive and negative constraints (see for example Johnson (1988) and Smolka (1989);

1.4. OVERVIEW 25

for an overview of other types of constraints cf. Wedekind et al. (1990)). However, the
way in which we define R(L), along the lines of Hohfeld and Smolka (1988), should
make it clear that more powerful constraint languages can be exchanged with the
simple constraint language we are assuming, provided appropriate constraint-solving
techniques are available for such more powerful constraint languages. Therefore, the
results presented in the other chapters of this thesis can easily be generalized to more
powerful constraint languages.

On the other hand, R(L) is more general than most grammar formalisms, in that
it does not prescribe that phrases are combined by concatenation. No assumptions
about string combination are enforced in the formalism. The motivation for this en-
richment is provided by certain analyses of discontinuous constituency constructions,
which employ other possible combinations of strings. Further motivation is provided
in chapter 3, where it turns out that certain analyses in concatenative grammars
are problematic for generation. These problems can be solved in non-concatenative
grammars. In chapter 4 the extra power of non-concatenative grammars will be in-
vestigated and exploited. Furthermore, this more general perspective allows the use
of the formalism for other tasks as well. In chapter 5 the formalism is used to define
transfer grammars in a machine translation system.

The formalism defined in chapter 2 is used in this thesis in two ways. Firstly, and
most importantly, we use the formalism to define grammars with. But furthermore,
we use the formalism to define meta-interpreters for such grammars in. For this reason
the formalism is provided with a simple procedural semantics (essentially as in Prolog).
However, a main theme of this thesis will be that for ‘linguistic deduction’ (parsing
and generation) different proof strategies are more appropriate. These will then be
defined in R(L) as meta-interpreters.

Constraint-based grammars can be used, in principle, both for parsing and gen-
eration. This is also true, for grammars defined in R(L). However, to use such
grammars in a practically interesting way, the grammars need to be restricted in some
way. Historically, the restriction has been (in order for parsing to be efficient), that
phrases are built by concatenation. No restriction for generation was assumed, as
generation played a minor role. But, generation on the basis of declarative grammars
is not without problems. For example, the simple top-down, left-to-right backtrack
search strategy leads to non-termination for linguistically motivated grammars. Chap-
ter 3 discusses several (linguistically relevant) problems for some obvious generation
techniques. Furthermore, that chapter provides motivation for a different process-
ing strategy, in which generation proceeds essentially bottom-up, and head-driven. A
simple version of this strategy is defined, and its properties and short-comings are
investigated. Several variants and possible improvements are discussed. Relying on
the notion ‘head’, has some implications for the way in which semantic structures
should be combined in the grammar. Essentially, the semantic-head-driven gener-
ation algorithm embodies the assumption that semantic structures are defined in a
lexical and head-driven fashion. It turns out that the head-driven generation strategy
faces problems with analyses in which this assumption is violated. As an important
example, the semantic-head-driven generation strategy faces problems, if the head of

26 CHAPTER 1. INTRODUCTION

a construction has been ‘displaced’. Such an analysis is often assumed for verb-second
phenomena in for example German and Dutch, if the grammars are restricted to be
concatenative. Thus, the assumption that semantic structures are built lexically and
head-driven, does not make linguistic sense, if phrases are to be built by concatena-
tion. In order for these assumptions to make linguistic sense, it is therefore necessary
to have more freedom in the way phonological structures are combined. Thus, instead
of concatenative grammars, non-concatenative grammars are called for.

In chapter 4 linguistic motivation for such powerful operations is discussed. A
number of proposals for operations like ‘head-wrapping’ and ‘sequence-union’ are de-
scribed, and a class of formalisms is introduced in which operations on strings are
allowed which are linear and non-erasing. Formalisms such as Head-Grammars (Pol-
lard, 1984) and Tree Adjoining Grammars (Joshi et al., 1975), are members of this
class. Clearly, parsing algorithms developed for concatenative formalisms cannot be
used for these more powerful formalisms. An important question thus is how to parse
with non-concatenative grammars. I describe a very general algorithm for this class
of grammars which proceeds, again, bottom-up, and head-driven. The motivation for
such a processing strategy is discussed. Furthermore, I describe possible extensions
and improvements of the basic algorithm. I also show how the parser can be ‘special-
ized’ for lexicalized, and constraint-based, versions of Tree Adjoining Grammars.

In chapter 5, I describe a possible application of reversible grammars. This chapter
provides evidence that such grammars can be used to implement a machine translation
system. The results of the other chapters in fact were developed partly in the context
of the construction of a reversible MT system, called MiMo2. In this chapter I discuss
the notion ‘linguistically possible translation’ On the basis of this discussion a spe-
cific architecture for an MT system is proposed, which has been implemented as the
MiMo2 prototype. This prototype was developed by the author and colleagues at the
University of Utrecht. In this architecture, translation is simply defined by a series of
three reversible, constraint-based grammars. It is shown how R(L£)-grammars can be
used to define ‘transfer’ relations as part of a Machine Translation system. Further-
more, a constraint on transfer grammars is proposed that ensures termination, while
certain context-sensitive translations are still possible. It is argued that reversible
transfer grammars provide an interesting compromise between expressive power and
computational feasibility.

Most of the material in this thesis is based on papers and articles that have
appeared elsewhere. The material on translation is partly based on van Noord et
al. (1990); van Noord (1990b); van Noord et al. (1991). The chapter on gen-
eration is based on van Noord (1989); Shieber et al. (1989); van Noord (1990a);
Shieber et al. (1990), and the material in the chapter on parsing has been published
as van Noord (1991b); van Noord (1991a).

Chapter 2

A Powerful Grammar Formalism

The grammar formalism I will define in this chapter is closely related to other for-
malisms currently in use in computational linguistics. These formalisms are known as
‘unification-based’, ‘constraint-based’, ‘information-based’ and ‘feature-logic based’.
Members of this class are for example Definite Clause Grammars (Pereira and War-
ren, 1980), PATR II (Shieber et al., 1983), Functional Unification Grammar (Kay,
1985) and formalisms underlying linguistic theories such as Generalized Phrase Struc-
ture Grammar (Gazdar et al., 1985), Lexical Functional Grammar (Bresnan, 1982),
Unification Categorial Grammar (Zeevat et al., 1987), Categorial Unification Gram-
mar (Uszkoreit, 1986) and Head-driven Phrase Structure Grammar (Pollard and Sag,
1987).

A general characterization of such constraint-based formalisms is given in Hohfeld
and Smolka (1988). They also show how the nice properties of logic programming lan-
guages carry over to a whole range of such constraint-based formalisms, by abstracting
away from the actual constraint language that is used. I define such a constraint-based
formalism in which the underlying constraint language, £, consists of path equations.
The most important characteristics of the formalism are:

e The formalism consists of definite clauses, as in Prolog; instead of first-order
terms the data structures of the formalism are feature structures.

e The formalism does not assume that concatenation is the sole string-combining
operation (in contrast to FUG, DCG, PATR II, LFG, GPSG and UCG).

e The formalism is defined in an abstract framework, which facilitates the extend-
ability of the techniques I develop in later chapters, to formalisms based on other
(more powerful) constraint-languages.

Each of these points will now be clarified in turn.

Firstly, the principal ‘data-structures’ of the formalism are feature structures,
rather than first-order terms such as in Prolog. The motivation is that such feature
structures are closer to the objects usually manipulated by linguists. Furthermore, in
writing grammars the use of first-order terms becomes rather tiresome because it is
necessary to keep track of the number of arguments functors take, and the position of

27

28 CHAPTER 2. A POWERFUL GRAMMAR FORMALISM

sub-terms in such terms. Using path equations to define feature structures achieves
some sort of data abstraction. As an example consider a program which manipulates
terms such as the following

sign(syn(Loc,Sc,head(Agr,Cat)),sem(Pred,Args),phon(In,Cut))

and suppose furthermore we want to refer to a specific part Cat of such a term T. In
Prolog we are then forced to mention all intermediate functors, and for each functor
we need to mention all its arguments (possibly using the ‘anonymous’ variable ‘’):

sign(syn(_,_,head(_,Cat)),_,.)

On the other hand, using path equations, it is possible to refer to such an embedded
term by its path, in this case the value of Cat is obtained by the equation Cat =
T syn head cat.

This said, it should be stressed though that the difference between the two ap-
proaches is not very decisive. In fact first-order terms may be used in an implemen-
tation of such graph-based formalisms (Hirsch, 1988), and data-abstraction can also
be achieved by other means such as syntactic macro’s, or by auxiliary predicates.

From a linguistic point of view, the second characteristic is the most salient one.
The formalism to be proposed, does not enforce that concatenation is the sole opera-
tion to combine strings. This choice can be motivated by:

e Increased symmetry of parsing and generation
e Increased expressive power
e Other applications

Dropping the concatenative base can be motivated from the desire to use grammars
in a reversible way. From a reversible viewpoint, it is attractive to view a grammar
simply as a definition of the relation between strings and logical forms. To give a
different status to the phonology attribute, seems to destroy the inherent symmetry
somewhat. Thus, the formalism does not prescribe how the value of the phonology
attribute is to be composed, just as it does not prescribe how the value of the semantics
attribute is composed.

If we do not incorporate a concatenative base, then we allow for investigation of
other types of string combinations in natural language grammars. Several researchers,
see for example Bach (1979), Pollard (1984), Reape (1989) and Dowty (1990), have
noted that analyses of a whole range of linguistic phenomena (most notably those
involving discontinuous constituents) may be simplified by assuming other types of
string operations. Some of the proposals are discussed in chapter 4.

As I will demonstrate below, if no assumptions about the construction of phono-
logical representations, or semantic representations, are defined, then the parsing and
generation problem of the formalism is generally not decidable. An important theme

2.1. THE CONSTRAINT LANGUAGE: L 29

of this thesis is, to investigate parsing and generation procedures which can be ap-
plied usefully, for linguistically motivated grammars. In chapter 4 I describe a parsing
algorithm for a subset of R(L), in which strings are constructed by operations which
are to linear and non-erasing. This algorithm thus imposes some requirements on the
ways strings are built, but these requirements are less restrictive than concatenation.

Another reason for developing a formalism which is not based on concatenation is
the observation that other (non-linguistic) problems can be encoded in a unification-
grammar as well, if we are not forced to manipulate strings. In chapter 5 I show how
the resulting formalism can be used to define relationships between language specific
logical form encodings (chapter 5), as the transfer component of a machine translation
system. Furthermore, the formalism is also used to define meta-interpreters in — this
usage of the formalism also entails that no assumptions about string construction are
built-in.

The third characteristic states that the resulting formalism is a member of a class
of constraint-based formalisms. Therefore, results that hold for this class carry over
to the present formalism. In the other direction, it is easy to see how the current
formalism can be extended to allow for other, perhaps more complex constraints. This
is very useful as in the last few years a whole family of different constraints have
been proposed that do extend formalisms such as PATR II. An overview of these
proposals can be found in Wedekind et al. (1990). The formalization of Hohfeld
and Smolka (1988) makes it possible to see how these extended formalisms belong
together. In a somewhat idealized view, parsing and generation algorithms defined for
a member of the class of constraint-based formalisms, can be used for other members
of this class, provided the appropriate constraint-solving techniques are available for
the constraints incorporated in these other formalisms. For example, the generation-
and parsing algorithms to be presented in the chapters 3 and 4, can easily be used for
formalisms that include versions of negation and disjunction.

2.1 The constraint language: £

In this section I define £ as the underlying constraint language of R(L). The definition
is based on Shieber (1989) and Smolka (1989). This constraint language is used to
describe structured objects called ‘feature structures’. Its semantics will be defined
with respect to sets of ‘feature graphs’, which are directed, connected, labelled graphs.

2.1.1 Constraints

The formulas of the logic (constraints) are built from a set V of variables, a set C
of constants and a set L of labels (also called attributes or features). Variables are
thought of as referring to some specific feature structure. The labels are thought of
as pointing to a specific part of a feature structure. A path will be a (possibly empty)
sequence of such labels. Such a path can be viewed as the ‘address’ of some piece of

30 CHAPTER 2. A POWERFUL GRAMMAR FORMALISM

information in a specific feature structure. For example the path syn agr person will
point to the person part of the agr part of the syn part.

A descriptor is a sequence sp where s is either a variable or a constant, and p is a
(possibly empty) path. I write € to refer to empty paths. Examples of descriptors are

Xohlp
C ll
Xo

assuming that X is a variable, ; are labels and c is a constant. *
Atomic constraints (also called path equations) are equations of the form:

dy = dy

where d; and dy are descriptors. For example, the following expressions are atomic
constraints, assuming that {X;,Xs} C V, {syn, agr, number} C L and {singular} C
C:

Xy syn agr number = singular
X1 syn agr = Xy syn agr

An L-constraint is a set of such atomic constraints, i.e. a set of path equations. The
equations in such a constraint are interpreted conjunctively. I write such a constraint
as a sequence of equations separated by commas:

¢17"'a¢n

In the following, d is used to refer to descriptors in general, X; refers to variables,
l; refers to labels, c; refers to constants, s and ¢ refer to either constants or variables
and p and ¢ refer to paths.

2.1.2 Feature graphs

The semantics of £ employing labels L, constants C', and variables V' is defined with
respect to the domain of feature graphs, built from L, C, and V. A feature graph is a
directed graph which is finite, rooted, and connected. Furthermore, the labels of the
edges leaving a node must be pairwise distinct. Every inner node of a feature graph
is a variable, and every terminal node is either a variable or a constant. Edges are
triples X/t such that X is a variable, [is a label and t is either a variable or a constant.

Definition 5 (Feature graphs) A feature graph is

e a pair (¢,) where ¢ is a constant and () is the empty set; or

INote that, unlike in PATR II, the descriptor cl is syntactically allowed, but all constraints
containing such descriptors will be unsatisfiable. Such descriptors are allowed because this allows a
more elegant definition of the simplification rules defined later.

2.1. THE CONSTRAINT LANGUAGE: L 31

Xo

h

Figure 2.1: Feature graph F3

e a pair (X, E') where X is a variable (the root) and E is a set of edges such that

— if Xls and X/t are both in E then s = t; i.e. labels are functional; and

— if XIs is in E then X is reachable from X, by the edges in F; i.e. feature
graphs are connected.

Note that this definition implies that no edges leave constant nodes, because edges
always start with a variable. A node s is reachable from a node ¢ in a feature graph
Fiff t =% s where —7 is the transitive and reflexive closure of —p which is a binary
relation on the nodes occurring in F':

t —p s iff tls € the set of edges of F

The following notation to traverse feature graphs is introduced. If F' is a feature
graph and p is a path, then F'/p is the variable or constant that is reached from the
root of F' where the labels in the path correspond to the labels of the edges. For
example consider the following feature graph

F = (X07 {Xollcl, Xol2X1, X11302, X154C2})

which is graphically represented in figure 2.1. The expression F} /Ll denotes cy; and
Fi/l, = X;. Furthermore, F} /I3 is undefined.

More formally, for p = I, ...l a path, and ¢ a node (variable or atom), define ¢/p
to be the node given as follows. If £ = 0 then t/p =45 t. Otherwise, t/l ...} is
defined to be the node ¢’ if there is an edge labelled }; from t to " and t' =t"/ly.. .
(otherwise t/1; ...l is undefined). Furthermore, for F' a feature graph with root X,
F/p =gey Xo/p-

A feature graph F' is called a subgraph of a feature graph F' if the root of F is
a variable or atom occurring in F’ and every edge of F' is an edge of F'. If F'is a
feature graph and s a node of F', then F* denotes the unique maximal subgraph of F
of which the root is s. In that case, F'* has as its root the node s, and as its edges are
all those edges of the form ¢lt' present in F' such that both ¢,t' are reachable from s
in F'. For example, if F] is the feature graph in figure 2.1, then we have:

F1Xl = (Xl, {Xllacz,X1l402})

32 CHAPTER 2. A POWERFUL GRAMMAR FORMALISM

Xo

Figure 2.2: The feature graph F;

Furthermore, for F' a feature graph and p a path, F? denotes the subgraph F* where
F/p = s, if this is defined. For example:

Fll2 = (Xl, {X1Z3C2, X1Z4C2})

Otherwise FP is undefined.

2.1.3 Solutions of constraints

An interpretation Z of £ consists of a domain D? which is the set of all feature graphs
built from L,C and V, and a solution mapping -Z which will be defined below. An
T-assignment is a mapping from the set of variables to D. I write ASS? for the set
of all Z-assignments. Variables and constants will denote feature graphs, relative to
some assignment.

The denotation of a variable X w.r.t. assignment « is simply «(X). The denotation
of a constant c is the feature graph (c,®) (for any assignment). The denotation of a
descriptor sp is defined as F? where F' is the denotation of s; i.e. the denotation of
sp is the subgraph at p of the graph denoted by s. Note that the denotation of some
descriptors is undefined. Summarizing:

c =des (¢, 0)
Xa =der (X)
(sp)a =dges (53)7
As an example, consider the feature graph F; in figure 2.2. For an assignment
that maps X to the feature graph F5, the denotation of the descriptor X/ /3 is the
subgraph rooted at X,. Similarly, the denotation of Xkl is the feature graph (c3,).
Note that the denotation of the descriptor ¢ (i.e. ce) is the feature graph (c, 0).
An interpretation Z satisfies an atomic constraint ¢ = d; = ds, relative to an
assignment «a, written 7 =, ¢ if the denotation of descriptors d;, d; are both defined
and the same, i.e.:

T o di = dy iff (d1)L = (do)2

2.1. THE CONSTRAINT LANGUAGE: L 33

Hence, 7 satisfies the equation Xhl3 = X3 with respect to the assignment that
maps X to the feature graph F; defined above. As another example, 7 also satisfies
the equation X/l3l; = ¢y, with the same a.

The solutions of a constraint are all assignments that give satisfaction. Constraints
are thus seen as restrictions on the values the variables in the constraints can take.
The solutions of an atomic constraint ¢ are defined as follows:

¢* =4of {a € ASSH|T =, ¢}

The set of solutions of a constraint ¢y,..., ¢, is defined as the intersection of the
solutions of its atomic constraints:

(¢la s QSTL)I —def ﬂ (]5:2[

1<i<n

A constraint is satisfiable iff it has at least one solution. Two constraints are
equivalent iff they have the same solutions. A constraint is walid iff its solutions are
all possible assignments ASSZ.

2.1.4 Determining satisfiability

A constraint is satisfiable iff it has a solution. Not all constraints are satisfiable.
For example, the constraint c; = cy is unsatisfiable, because for all assignments the
denotation of ¢; will be the feature graph (c;,#) and the denotation of ¢y will be
(cq, M) which is not the same graph. Clearly a constraint may also define such a clash
indirectly, as in the constraint:

Xohh =Xy
Xih =¢
Xoly = ¢y

The problem whether a constraint is satisfiable is decidable. Algorithms deciding
satisfiability for more powerful feature logics (extending the current logic with disjunc-
tion and negation) are for example presented in Johnson (1988), Smolka (1989). The
present algorithm is an adaptation to £ of the algorithm presented in Smolka (1989).
The algorithm consists of a number of simplification rules. Rules are applied until
no rules can be applied anymore. In that case the constraint is said to be in normal
form or normal. For normal constraints it is trivial to check whether the constraint is
satisfiable (clash-free). A constraint is solved iff it is normal and clash-free.

The simplification algorithm is presented here in two steps. Firstly, I show how to
remove all complex paths (paths containing more than one label), by the introduction
of some new variables. The resulting constraint, which is called basic, is shown to
be satisfiable iff the original constraint was. The next step then rewrites constraints
without complex path expressions into normal form.

34 CHAPTER 2. A POWERFUL GRAMMAR FORMALISM

A basic constraint is a constraint in which each equation has one of the following
forms:
s=1
sl=t
An arbitrarily constraint ¢ can be mapped into a basic constraint ¢’ by the introduc-

tion of new variables. ¢’ is satisfiable iff ¢ is. We will say that two assignments agree
on a set of variables iff they assign the same elements in the domain to these variables.

Definition 6 (V-equivalence) Two constraints ¢, are V-equivalent, for V' a set
of variables, iff:

1. If « € ¢?, then there exist 8 € 9? such that o and 3 agree on V.

2. If « € Y%, then there exist 8 € ¢* such that o and 3 agree on V.

If constraints ¢ and 1 are V-equivalent then ¢ is satisfiable iff v is satisfiable (this
follows immediately from the definition).

In the following, C' is a constraint, [X|s|C is the constraint obtained from C by
replacing each occurrence of variable X with s.

Proposition (Computation of V-equivalent basic constraint). For every con-
straint ¢ one can compute a V-equivalent basic constraint.

Proof. The following algorithm computes for a given constraint ¢ a basic constraint
¢'. We will show that ¢’ thus obtained is V-equivalent with ¢.
Apply any of the rules, until the rules are not applicable:

T, sh...L=d A

L [, sl ly =X, X0, =d, A where n > 1, X; a new variable.
' d=si... A
2. T, X i,s - S li_l, é":’ X1 A where n > 1, X; a new variable.
I sl=tl A
3. > = ’ where X; a new variable.

T, s l=X;,t1=X;, A

It is easy to verify that if none of the rules is applicable, the resulting constraint is
indeed a basic constraint. Also observe that the algorithm terminates because each of
the steps replaces an atomic constraint with two new atomic constraints, one of which
already is basic, and the other has a shorter path than the previous constraint.

Each step of the algorithm preserves satisfiability, hence a sequence of steps pre-
serves satisfiability as well. Step 1 of the algorithm changes a constraint ¢ into . It
is straightforward to show that ¢ is V-equivalent with ¢ (and hence ¢ is satisfiable
iff ¢ is). Assume that Z, a € ¢’ then let 3 be the assignment which is exactly like
«, except that the newly introduced X; is mapped to the feature graph a(s)ll"'l”—l.
Clearly, 3 € ¥f. The other way around is similar. The same reasoning applies for the
steps 2 and 3.

2.1. THE CONSTRAINT LANGUAGE: L 35

Example 7 Consider the following constraint

é: Xohls = cy
© Xolh = Xohls

This constraint is simplified, according to the rules above, in the following three steps,
using respectively rule 1, 2 and 3:

. Xoh = X4

X()ll = X1 §0§1 : fj(l Xllg = Co

¢ = Xilz=cy = Xl 3;_X 2l = Xy = Xoh
Xob = Xohb 3% ol X=X

02 — 243 XOZZ - X3

Given a basic constraint, the following simplification rules rewrite this constraint
into its equivalent normal form.

Definition 8 (Normal form) Applying any of the following simplification rules to
a basic constraint until no rule is applicable, results in a normal form constraint:

I X=s A
1. : : if X i d X
X[sT, X =, [X\S]Al occurs in C' an # s
5 I[Lc=X, A
' I X=¢c, A
3 I, Xi=s5,Xl=tA
' L Xl=s,s=t A
[, s=s, A
4. I
| AN

To show that a normal form of a constraint C' computed by this algorithm is
equivalent to C observe that each of the simplification rules preserves equivalence. In
the first rule the variable X is ‘isolated’; in the rest of the constraint the variable is
replaced by the constant or variable it is equated with. Clearly in this case ¢ and
1 are equivalent, because, by definition a(X) = a(s), hence C* = C[X|s]*. As for
the third rule, note that the solutions of {X! = s, X{ =t} are those assignments such
that the descriptors X/, s,¢ have the same denotation. The same is the case for the
solutions of {XI = s,s = t}. Hence the third rule preserves equivalence. The second
rule and the fourth rule clearly preserve equivalence.

Furthermore, the simplification algorithm always terminates, because clearly there
cannot be an infinite sequence of simplification rules starting from any basic constraint
¢. To see this, note that there is only a finite number of variables in a given constraint.
The first rule ‘isolates’ such a variable, hence this rule can be applied at most once for
each variable; furthermore none of the other rules introduce new variables. The second
rule can only be applied a finite number of cases because the number of constants is
also finite, and not increased by any of the other rules. The third rule can only

36 CHAPTER 2. A POWERFUL GRAMMAR FORMALISM

be applied a finite number of times because it reduces the length of the paths in a
constraint; none of the other rules increase this length. The final rule can only be
applied a finite number of times because it reduces the number of equations in a
constraint, and none of the other rules increases this number.

The simplification algorithm is very similar to the ‘unification’ algorithms based
on the simplification rules for a system of term equations as presented for example in
Apt (1987). Note though that this system does not contain an ‘occur check’ as I did
not exclude cyclic structures.

A normal constraint is clash-free if it does not contain any of the following con-
straints:

e c/ = d (constant/compound clash)
e ¢; = ¢y (constant clash)

A normal and clash-free constraint is called solved. A solved constraint consists ex-
clusively of atomic constraints of the form:

e X]/=3s
e X =35

Furthermore, if an equation is of the second type then the variable X occurs only once
(the variable is said to be isolated). For this reason it is very easy to see that solved
constraints are satisfiable, because they can be interpreted as a recipe to define an
appropriate assignment. Such an assignment is called the principal solution. For ¢ a
solved constraint, a(z) =45 F'G[z, ¢] is a principal solution of ¢. The function FG is
defined as follows:

(s,0) if s is a constant
FG[s,¢] =aes { FGIt,) ifs=tce
(5, {XIt|XI =1t € ¢ and s — X}) otherwise

where —7 is the transitive and reflexive closure of —, which is a binary relation on
the variables occurring in ¢:

X5, Y XIZY €6

Example 9 Consider the following constraint 1, which was the result of example 7
of the computation of basic constraints:

Xoll = Xl
Xllg = Co
P Xy =Xoh
Xols = X3

Xolg = X3

2.1. THE CONSTRAINT LANGUAGE: L 37

This constraint can then be rewritten into normal form, for example in the following
steps, using the rules 3, 1, 3 and 1 of definition 8. The application of the rules 2 and
4 are performed implicitly in the example (for simplicity).

Xohh =Xy X1 =Xy X=Xy X=Xy

X1 =Xy Xolhh =Xy X3 =cy X3 =cy
Pv=> Xilg=cy = Xolz=cy = Xoh =Xy, = X¢h =X,

Xyl = X3 Xyl = X3 Xolz = ¢y Xylz = ¢y

Xoly = X3 Xoly = X3 Xoly = X3 Xoly = ¢

The principal solution « of this constraint is defined as follows:

a(Xo) = (Xo, {Xoh Xy, Xy55Xs5, XohX3})
a(Xy) = (X, {Xalca})

a(Xy) = (X, {Xal3ca})

a(X3) = (e, 0)

a(X) (X @) for X ¢ {XO,Xl,Xg,X;;}

The first two assignments «(Xy) and «(X;) can be illustrated as:

Xo
h
b Xy Xy
I3 I3
&) &)

Notation.

Once constraints get more complicated they tend to be difficult to read. For that
reason I will often use a special representation, called matrix notation, to represent
the interpretation of a (satisfiable) constraint on some variable.

The matrix representation of a constraint on a variable is best introduced using
an example. For the result of example 9, the matrix representation for the constraints
on variable X, looks as follows:

L [I3 : ¢y]Xth
12 . Co

Xo

The names of variables only matter in case they are referred to more than once. In
the foregoing example, I therefore omit the variables and instead write:

4 [be]]
e

38 CHAPTER 2. A POWERFUL GRAMMAR FORMALISM

As another example of this notation, consider the following constraint:

Xo syn cat =s

Xo sem pred = visit

Xo sem sort = binary

Xo sem argl pred = graham
Xy sem argl sort = nullary
Xy sem arg2 pred = haiti
Xy sem arg2 sort = nullary
Xg phon in f= graham

Xy phon in r f= visited

Xo phon in r r f= haiti

Xo phon in r r r= Xy phon out

The matrix representation of the constraints on X, looks as follows:

_syn:[cat:s]]
[sort : binary]
pred : visit
arad - sort : nullary
sem - g+ pred : graham
| sort:nullary
arg2 : l pred : haiti]
[f: graham |
f: visited
mn: . - haiti
phon - rel o f' aiti
T HXl
| out: []X1]

Usually an empty feature structure will not be shown explicitly, but instead only the
corresponding variable will be shown, i.e. instead of

[T:HX]
I write
['I":X]

Furthermore, I use a special notation for parts of such matrices that are used to
encode lists and difference lists. If no confusion arises I use the HPSG (Pollard and Sag,
1987) convention of writing a list within angled brackets, where the comma separates
elements of the list, and the vertical bar may be used to separate the head from the tail
of the list. In path equations the elements of such lists are referred to with attributes
fand r (for first and rest), the empty list is represented with the constant (). In case
of difference lists I moreover write the ‘out’ part of the difference list right after the

2.2. ADDING DEFINITE RELATIONS 39
‘in’-part, separated by ‘-’. The attributes n and out are used in path equations to
refer to these parts. Moreover, in case of a difference list where the tail of the ‘in’ part
is reentrant with the ‘out’ part, I simply write the ‘in’ list within “”. As an example
I write “letters from mexico get lost” for (letters, from, mexico, get,lost|X;) — Xj.

As a further abbreviation I sometimes use the functor-argument notation for se-
mantic structures, as introduced in section 1.2.3. Using these abbreviations, the fore-
going constraint is written as:

syn:[cat:s]

sem : visited(graham,haiti)
phon : “graham visited haiti”

2.2 Adding definite relations

In this section I will apply the construction defined by Hohfeld and Smolka (1988) to
the constraint language defined in the preceding section to obtain R(L). It is shown
in Hohfeld and Smolka (1988) how the nice properties of logic programming languages
carry over to a whole class of formalisms built on top of arbitrary constraint languages.
The idea is to distinguish between the underlying constraint language (for example
&, where & consists of conjunctions of equations between first-order terms) and the
definite relations that are defined using constraints from the underlying constraint
language. In the case of £ this results in R(E), which is just first-order logic. From
the resulting logic we then take definite clauses, and in the case of £ we thus end
up with (pure) Prolog. The constraint language £ can be seen as another instance
of such a constraint language. To this constraint language I apply the construction
sketched above, resulting in R(L); R(L) is thus rather similar to pure Prolog, but
equations between first order terms are replaced by the path equations introduced
in the previous section. Instead of first order terms, our data structures are feature
structures. Furthermore, unlike PATR II I will not restrict the formalism by requiring
that phrases are built by concatenation. In figure 2.3 it is shown how the different
formalisms are related.

2.2.1 Definite clauses of R(L)

I follow the construction defined by Héhfeld and Smolka (1988) to extend £, giving
R(L), by adding a set of relation symbols R, conjunction, negation and existential
quantification. The syntax I use for these will be clear from the definition of the
interpretations of R(L) (essentially Prolog syntax where appropriate).

The interpretation A of R(L£) is defined in terms of the interpretation Z of £. The
expression afs < X] defines the assignment which is exactly like «, except possibly
for the variable X which gets assigned the element s. An interpretation A of R(L) is
obtained from Z (A is said to be based on Z) by choosing for every relation symbol
r € R a relation r* on D? taking the right number of arguments. Furthermore, let

1. DA =def DI;

40 CHAPTER 2. A POWERFUL GRAMMAR FORMALISM

& L

(term equations) (path equations)
is is
used in used in
the defi- the defi-
nition of nition of

R(£) R(£)
(first-order logic)
is a su- is a su-
perset of perset of

R(E) Definite clauses R(L) Definite clauses

(Pure Prolog)

is a su- is a su-
perset of perset of

4

R(E) Def. cl. + concat R(L) Def. cl. 4+ concat
(DCG) (PATR II)

Figure 2.3: Overview of the different formalisms

2.2. ADDING DEFINITE RELATIONS 41

2. ¢ =4y ¢7; for ¢ a L constraint.

3. 1(D)A =ges {o € ASSA|a(T) € T4Y;

4. for the empty conjunction @, P4 =4 ASS4;
5. (F,G)A =g4ef FAN G,

6. (~F)A =gy ASSA — FA;

7. (AX.) =45 {as — X]|a € F4, s € DA}

Implication, universal quantification and disjunction may be defined in terms of
these connectives. The formalism consists of definite clauses of R(L). I write such a
definite clause as:

p:_QIa"':Q'n,’QS'

where p, g, ...q, are atoms and ¢ is a £ constraint. Atoms look as 7(Xy,...,X,)
where r € R and X;...X, € V.

A partial order on the set of all R(L) interpretations is defined as follows: A C B
iff for all 7 € R,* C 75, The union of a set of R(L) interpretations is obtained by
joining the denotations of the relation symbols and is again an R(L) interpretation.
A model M of a set of definite clauses S is defined as an R(L) interpretation such
that M satisfies S, i.e., SM = ASSM,

The use of definite clauses is motivated by the following theorem, proven in Hohfeld
and Smolka (1988) for the general case.

Theorem Let S be a set of definite clauses in R(L), and Z a L interpretation.
Define for all r€ R

7A0 —def @a
A =y {al(n7):-G) € S Ao € GHY

This defines a chain Ay C A; C ... of R(L) interpretations, based on Z. Moreover,
the union

UA
i>0

is the least model of S extending 7.

This theorem says that if S is a set of definite clauses, then S uniquely defines the

relations of R; i.e. S defines unique minimal denotations for the relation symbols of
R.

Example 10 As an example, let C' = {c}, L = {I}, V = {XX;...} and R = {p, ¢}.
Furthermore, consider the following definite program:

42 CHAPTER 2. A POWERFUL GRAMMAR FORMALISM

l l l l
¢ b
l l l
c :
l l
c b
l
i C

Figure 2.4: Feature graphs fi, fs, f5...
(1) p(X):-X =c.

¢(X):-p(Xy), X = X;.
9(X):=q(Xy), Xl = Xj.
Clearly, p and g are both the empty set. Because the assignments are based on 7
we know the solutions of the constraints. Therefore, we obtain
= {aX)|ae (X =)}
= {aX)la e (X =c¢)"}
= {a(X)[Xa = ca}
= {(c,0)}
But the denotation of the relation ¢ is still empty. In the next round, it is clear that
pA2 = p. The denotation of the relation ¢ becomes interesting now:
¢ = {aX)]a e (p(Y), X =Y)"}
= {a(X)]aep(V)" n(X=Y)"}
= {aX)|a(Y) = (¢,0) A a(X) = a(Y)}
= {(c,0)}
The process continues like that, and we obtain the following diagram. The feature

graphs fi, fa, f3 ... are those given in figure 2.4. The denotation of the relation sym-
bols is given by the following figure, where I write ¢ for the feature graph (c,). 2

0 1 2 3 4 5
p|0 {c} {c} {c} {c} {c}
q|0 0 {C} {C,fl} {Caflaf2} {Caflaf2af3}

A goal or query is a possibly empty conjunction of R(L£)-atoms and a L-constraint,
written as:

TPy Dy P

2Note that in fact the variables in the feature graphs do not matter; hence each of f; represents
a class of feature graphs.

2.2. ADDING DEFINITE RELATIONS 43

An answer to a goal is a satisfiable constraint v, such that ¢ — p,...p,, ¢ is valid
(given a set of clauses &) in the minimal model of S. For example, for the previous
definite clause program a possible answer to the goal

7-¢(Xo)

is the answer:
Xol =c

because Xol = ¢ — ¢(Xp) is valid in the minimal model.

2.2.2 R(L)-grammars

The formalism defined so far will be used in this thesis in two ways. Firstly I use
the formalism to define grammars with. However, I also use the formalism to define
meta-interpreters in. This will become clear in the next section. To separate these two
usages, I define a grammar as follows. Without loss of generality I restrict a grammar G
to consist of definite clauses defining only one unary relation. Restricting grammars to
consist of only one relation enables us to distinguish between truly recursive relations
and relations that could (at least in principle) be compiled away by partial evaluation
techniques. I assume e.g. that the usual templates known from PATR II are already
compiled out in such a grammar. As an example of partial evaluation, observe that
the following definite clause specification:

(2) p(X):-
X =)
p(X):-
Xh=H,
Xt=T,
q(H)
p(T).
q(X):-
Xll = a,
Xl =b.

can automatically be compiled into the following equivalent specification, where the
‘effect’ of the predicate ¢/1 is obtained in the predicate p/1 directly:

X =)
p(X):-
Xh=H,
Xt=T,
Hll = a,
Hl = b,

44 CHAPTER 2. A POWERFUL GRAMMAR FORMALISM

In monolingual grammars, the privileged relation will be called ‘sign’, as I think
of this relation as defining the possible (linguistic) signs.

Note that any set of R(L)-definite clauses can be rewritten as a grammar of R(L),
by ‘reification’; for example the following example set of clauses, consisting of several
relations

(4) p(X):=61.
p) _Q(Yaz)a¢2-
¢

,Y)I— 3.
Y):_Q(Yv Z)7 9254-

is rewritten into the following, using the attributes rel, argl, arg2 to represent the
relation symbol and the arguments:

(5) sign(P):-

(X
q(X
g(X

P rel = pl,

P argl =X, ¢;.
sign(P):-

sign(Q),

P rel =pl,

P argl =X,

Q rel = q2,

Q argl =Y,

Q arg2 =7, ¢s.
sign(Q) : =

Q rel = g2,

Q argl =X,

Q arg2 =Y, ¢s.
sign(Q) 1=

sign(Q),

Q rel = q2,

Q argl = X, ¢y.

Before I continue to define the procedural semantics of R(L) in the next section, I
will first introduce some notational conveniences as follows. Using the matrix repre-
sentation introduced above, I often leave out the constraints in a definite clause, and
instead replace the variables in the clause with the matrix notation of the equations
constraining that variable. Moreover, if the predicate symbol of an atom is sign/1
then I sometimes leave the predicate symbol out; hence

sign(Xo) : =stgn(Xy), . . . sign(X,,), ¢.
may be written simply as:
M()I-Ml .. Mn

where M, are the matrices defining the constraints on X;. For example, the rule

2.3. PROCEDURAL SEMANTICS 45

sign(Xg): -
stgn(X1),
stgn(Xz),
Xo syn cat = s,
X1 syn cat = np,
Xy syn cat = vp,
X1 syn agr = Xy syn agr.

1S written:

syn: [cat:s |]);-
son([[o2]]

) | cat:vp
szgn([syn l agr : Agr] l)

2.3 Procedural Semantics

sign(

In this section I define the procedural semantics of our formalism using the standard
terminology as for example presented in Kowalski (1979). The procedural seman-
tics for R(L£) will be similar to Prolog’s procedural semantics. For grammars I will
investigate different procedural semantics, i.e. parsing and generation strategies, in
the chapters 3 and 4. However, as I will define these alternative strategies as meta
interpreters within R(L) itself, it will still be useful to define the ‘basic’ procedural
semantics here.

2.3.1 Solving a query

Recall that a goal or query) is a possibly empty conjunction of R(L)-atoms and a
L-constraint, written as:

TPy Dy -

The purpose of a proof procedure is to show whether, for a given set of definite
clauses S, there is a satisfiable constraint 1, such that 1 — (@ is valid. The proof
procedure is a refutation procedure, which shows that the denial of some goal is
inconsistent with the assumptions §. The building blocks of proof procedures are
inference rules. 1 will assume a top-down inference strategy. The initial goal is replaced
by other goals via inference rules. If the empty goal is obtained, then a refutation has
been discovered (where an empty goal is a goal without any atoms). The constraint
associated with the empty goal is the desired answer.

In later chapters I will define proof procedures in which the inference rules are
applied bottom-up. In such a proof procedure new assertions are derived from the

46 CHAPTER 2. A POWERFUL GRAMMAR FORMALISM

to_lend(B):-
own(B),
available(B).

own(B):-
B author = greene,
B title = ‘the captain and the enemy’,
B status = in.
own(B):-
B author = greene,
B title = ‘“travels with my aunt’,
B status = out.
own(B):-
B author = melville,
B title = ‘moby dick’,

B status = in.

available(B): -

B status = in.

Figure 2.5: A definite clause specification of the state of an hypothetical library.

assumptions S until an assertion is derived that explicitly contradicts the denial of
the goal.

The top-down refutation procedure is best introduced using an example. Consider
the set of clauses in figure 2.5 which define the state of a hypothetical library. In this
database it is asserted that all books can be lent which are owned by the library and
which are available. Furthermore, the library owns three books, which are described
by its author, title and status. A book is available if its ‘status’ is ‘in’. Suppose we
want to know which books by ‘greene’ can be lent according to our database. In that
case the goal is defined as:

?7- to_lend(Book),

Book author = greene.

which should be read as ‘for which Book, Book’s author is greene and Book can be
lent’. However, in the refutation procedure such a goal will be denied, i.e. read as
‘for all Book it is not the case that Book’s author is greene and Book can be lent’.
The inference rule in a top-down refutation procedure is a generalization of ‘modus
tollens’. From the fact that ‘owning’ plus ‘availability’ implies ‘lendability’, and from
the goal ‘Book cannot be lent” we can infer that it can neither be the case that Book

2.3. PROCEDURAL SEMANTICS 47

is both owned and available, i.e. our original goal is replaced by:

?7- own(Book),
available(Book),

Book author = greene.

Next we can argue as follows. If it is the case that Book is not both owned and
available, and we know that a book with the title ‘the captain and the enemy’, and
status ‘in’ is owned, then we infer that such a book is not available:

?- available(Book),
Book author = greene,
Book title = ‘the captain and the enemy’,

Book status = in.

Finally, from this goal (reading: a book with title ‘the captain and the enemy’, author
‘greene’ and status ‘in’ is not available) we can infer the empty clause because it is
stated in the database that all things with status ‘in’ in fact are available:

?- Book author = greene,
Book title = ‘the captain and the enemy’,

Book status = in.

Hence we obtain a contradiction, thus the negation of the original goal turns out not
to be true. Therefore the original goal is shown to be true. Furthermore we obtain a
constraint on Book that can be viewed as a counter example to the negated goal and
hence constitutes an answer to the goal.

The proof procedure sketched here will now be defined as follows. Note that I use
the standard terminology as for example presented in Kowalski (1979). First I define
the inference rule more precisely. Then I will define the computation rule which tells
us on which atom the inference rule must be applied. Finally I define the search rule
which tells us against which clause the inference rule has to be applied.

The inference rule I will define is called goal-reduction. The inference rule will
select an atom from the goal and will replace this atom with the body of a clause
defining this atom. Furthermore, the constraint associated with the new goal will be
the conjunction of the constraints ¢ and 1), where ¢ is the constraint associated with
the old goal and v is the constraint associated with the body of the selected clause.
Summarizing, for a goal p; ...p,, ¢ goal reduction will replace one of the atoms p; in
the goal by the atoms in the body of a clause defining p,; as follows:

Do DX Xp)Dig1 - Py @S D1 D1 G- s Digr - Py O5

where

pi(Xy. . Xp)imqy g, Y

48 CHAPTER 2. A POWERFUL GRAMMAR FORMALISM

is a variant of a clause in S, such that the variables in the clause do not occur in
the original goal, except for the variables explicitly mentioned. As usual, a variant
of a clause is obtained by consistently renaming its variables. For example, given the
clauses in the library example above, consider the goal:

7- own(X3),
available(X3),

X3 author = melville.

Suppose we want to try to apply the inference rule on the atom own(X3) against
the third clause defining the predicate ‘own/1’. In order for own(X3) and own(B) to
match, we first rename the variables in the clause, obtaining the variant:

own(X3):-
X3 author = melville,
X3 title = ‘moby dick’,

X3 status = in.
and next the body of this clause replaces the selected atom in the goal, obtaining:

?7- available(X3),
X3 author = melville,
X3 title = ‘moby dick’,

X3 status = in.

The inference rule is applied only in case the resulting constraint ¢, ¢ is satisfiable,
because clearly if this constraint is not satisfiable then we will not be able to produce
a correct answer; a constraint remains unsatisfiable whatever information is added to
it (i.e. whatever constraints we conjoin it with). Therefore each time the inference
rule is applied, it is tested whether the resulting constraint is still satisfiable. This
satisfiability test will use the procedure described in the previous section. Therefore,
the result of an inference rule will either be a goal in which the £-constraint is solved, or
either be ‘failure’ if the current part of the search space does not contain any solutions.
The operation to test whether the conjunction of two constraints is satisfiable relates
to the ‘unification’ operation in Prolog and PATR II, or to ‘constraint-solving’ in other
formalisms.

Note that it is not strictly necessary to compute after each reduction step whether
the resulting constraint is satisfiable (as long as proposed answers are checked to be
satisfiable). This observation gives rise to inference procedures where satisfiability
checks are ‘delayed’ or performed less frequently. This may be useful if the check
costs a lot of overhead in comparison to the size of the search space that could be
avoided. For an application of this idea in a linguistic setting, consider the work on
Constraint Logic Grammars (Damas and Varile, 1990).

The computation rule of the proof procedure determines which atom in a given
goal is to be reduced. As in Prolog, I assume that the leftmost atom of a goal is

2.3. PROCEDURAL SEMANTICS 49

to_lend(B)B author = greene

own(B), available(B)

VRN

own(B) own(B) B title = ‘travels with my aunt’,

B status = out

B title = ‘the ...enemy’,
B status = in

Figure 2.6: The search tree for the query whether it is possible to lend a book by
Greene. A local tree corresponds to all possible ways in which the leftmost atom of
the mother node can be reduced.

always reduced; i.e. the computation rule selects the leftmost atom in a goal. In later
chapters I will argue that for parsing and generation a computation rule which selects
the head may be much more suitable. 3

Finally, the search rule of a proof procedure determines in which order the search
space is traversed. For a given selected atom several clauses may be available to
reduce the atom with. Each of the possible reductions may lead to the desired result;
hence this defines a search space which has the shape of a tree. For our toy example
above, this tree looks as in figure 2.6, assuming the leftmost selection rule. As another
example, suppose we always select the rightmost atom of a goal. Clearly this results
in the same answer; however the search tree looks different, as is clear from the search
tree for the same example in figure 2.7, but now with the rightmost selection rule. In
this case, the search space is minimal and refutation proceeds deterministically, i.e.
there is no backtracking. The thing to note here is that a different computation rule
might have important effects on the size of the search space. This fact will be exploited
in later chapters, where more efficient proof procedures for parsing and generation are
investigated by employing a linguistically motivated computation rule.

3Some confusion can easily arise here. In the logic programming tradition, the head of a definite
clause p:-¢; ...q, is the atom p; in the linguistic tradition the head of a rule is one of the daughters
of the rule. Viewing a rule as a definite clause, as I do here, thus gives rise to two notions of head:
the ‘linguistic’ head is one of g;, whereas the ‘logical’ head is p. In using the term ‘head’ I will refer
to the linguistic notion of ‘head’.

50 CHAPTER 2. A POWERFUL GRAMMAR FORMALISM

to_lend(Book) Book author = greene

available(Book), in(Book)

available(Book) Book status = in

[]Book title = ‘the ...enemy’

Figure 2.7: The search tree of the query ‘which book by Greene can be lent’. In
this case, each local tree represents all possible ways in which the rightmost atom of
the mother node can be reduced. As the tree does not branch, the search proceeds
deterministically.

I assume, as in Prolog, that search trees are traversed in a depth-first left-to-right
order. Backtracking occurs if branches are encountered which contain no refutation.
Note that the search-rule is quite independent of both the direction of the proof
procedure (bottom-up, top-down) and the computation rule. Apart from the usual
depth-first strategy I adopt here it is often possible to augment proof procedures with
well-formed and ill-formed subgoal tables. In section 4.6.5 I will come back to this
subject.

At this point it may be useful to introduce another type of tree, which we may call
‘parse tree’. In such a tree a node represents an atom in a goal; the daughters of a node
are the atoms with which this atom is reduced. A leaf in the parse tree thus represents
a goal of which the reduction yielded the empty goal. * A search tree thus represents
all possible refutations; a parse-tree represents only one refutation. In examples of
parse trees I usually replace the variables in the atom with the constraints imposed
on this variable (in matrix representation); also I leave out the predicate symbol in
the case of the predicate symbol sign/1. For example, for the goal “which books by
‘greene’ can be lent?” we have the following parse tree, leaving out the constraints on
the variable Book.

41t is thus assumed that the start goal only contains one atom.

2.3. PROCEDURAL SEMANTICS 51

sign([cat : np)
J | phon : (greene|T) =T |
) [cat : np
sign(| phon : (21, stories|T) — T])

sign [cat : vp)
g | phon : (slept|T) — T

[cat : tv

sign(| phon : (wrote|T) — T])

Figure 2.8: This grammar of R(L) encodes a simple context-free grammar, by a
difference list implementation of concatenation.

to_lend(Book)

TN

own(Book) available(Book)

Example 11 (context free grammars) As an example of a correct refutation ac-
cording to the refutation procedure defined above, consider the encoding of a simple
context free grammar in figure 2.8 as a grammar of R(L).

The following goal is solved as in figure 2.9; the corresponding parse tree is pre-
sented in figure 2.10. Note that in the trace of the refutation I use the up-arrow to
indicate that the constraints on the variable are identical to the constraints on that
variable in the preceding goal.

?—sign([phon : (greene, wrote, 21, stories) — ()]Xo)'

52 CHAPTER 2. A POWERFUL GRAMMAR FORMALISM

?- Sign(XO)a
[phon : (greene, wrote, 21, stories) — ()]
= 7= sign(Xy), sign(Xs),

cat :s
| phon : (greene, wrote, 21, stories) — () |x

cat : np
| phon : (greene, wrote, 21, stories) — P X, ’

cat : vp
| phon : P —) X,
= 7= sign(Xs), Xo 1,

cat : np
| phon : (greene, wrote, 21, stories) — (wrote, 21, stories) X, ’

cat : vp
| phon : (wrote, 21, stories) — () X, '
= 7= sign(X3), sign(Xy), Xo 1, X1 1, Xa 1,

syn : tv
| phon : (wrote, 21, stories) — P, X, ’

cat : np
| phon : Py —) X4.
= 7= sign(Xy), Xo 1, X1 1, X2 1

syn : tv
| phon : (wrote, 21, stories) — (21, stories) X,

cat : np
| phon : (21, stories) — () X,
= 7- XO ﬂ:Xl ﬂ7X2 ﬂ7X3 ﬂ7X4 ﬂ .

Figure 2.9: A trace of the refutation of the claim that “greene wrote 21 stories” is
not a string in the grammar. That is, a trace of the proof that this string in fact is
recognized by the grammar.

2.3. PROCEDURAL SEMANTICS 93

cat : s
phon : “greene wrote 21 stories”

— T~
catl : np cat : vp
[phon : “greene” l l phon : “wrote 21 stories” l
/ \
cat : tv cat : np
phon : “wrote” phon : “21 stories”

Figure 2.10: Parse tree of the string “greene wrote 21 stories”

2.3.2 Meta-interpreter

Note that I did restrict a grammar to consist only of a set of definite clauses defining
the predicate sign/1. However, I will also use definite clauses of R(L) to define
meta-interpreters for such grammars. For these meta-interpreters I will assume the
operational semantics sketched above. In such cases I treat the definite clauses defining
stgn as data; a clause:

sign(Xo) : =sign(Xy) . . . sign(X,), ¢.
is represented as the clause
rule(Xo, (X1, ... X,)):=¢.

i.e. the body of the clause is represented as a list. A meta-interpreter for R(L) thus
may be defined as in program 6, which follows the procedural semantics of R(L), i.e.
it is a top-down proof procedure with a left-most computation rule and a depth-first
search rule.

(6) refutation(Goal):-
rule(Goal, Ds),
refutations(Ds).

refutations(()).

refutations((H|T)): -
refutation(H),
refutations(T).

For example, a rightmost computation rule can be implemented by defining the pred-
icate refutations as follows:

(7) refutations(()).

o4 CHAPTER 2. A POWERFUL GRAMMAR FORMALISM

refutations((H|T)): -
refutations(T),
refutation(H).

2.4 Parsing and generation

2.4.1 Unrestricted parsing problem

A grammar G as defined above is a definite clause specification of the relation sign/1.
Such a grammar defines what possible linguistic objects are. Each of these objects, or
signs, will be specified among several dimensions. For example, a grammar for English
may define that the sentence ‘Mexican priests drink whisky’ is a sign of English, i.e.
one of the answers to the goal

7=-sign(S).
may be something like the following:
syn :s
sem : drink([mexican](priests),whisky)
phon : “mexican priests drink whisky”

Given a grammar, the parsing problem consists of a specification of a string. Parsing
then enumerates the signs which have this string as their value of the attribute phon.
A generation problem consists of a specification of a semantic representation. A
generator then enumerates the signs which have this semantic representation as the
value of their sem attribute. Instead of the paths phon and sem we may of course
use any other paths. Both the parsing problem and the generation problem can be
defined as a goal. For example, the problem to parse ‘priests drink mexican whisky’
may be defined as the following goal:

?7- [phon : “priests drink mexican whisky”]
Similarly, the generation problem, defined by a number of £ constraints, for example
looks as:

7= [sem : drink(priests,[mexican](whisky))]
It is of course possible to add other constraints such as the syntactic category of the
signs we are interested in. A typical example of a generation goal is:

cat : s
?7- | subcat : ()
sem : see(graham,drink([mexican]|(priest),[strong|(whisky)))

Therefore, the unrestricted parsing problem consists of a grammar G and the goal
?- Sign(XO), b.

The answer to the unrestricted parsing problem is an answer to this goal with respect
to the grammar. This notion is introduced to compare it with several ‘restricted’
versions later in this section.

2.4. PARSING AND GENERATION 95

2.4.2 Problems with the unrestricted parsing problem

Defining parsing- and generation problems as goals implies that the parser will enu-
merate all feature structures that have a compatible value for the phon attribute; and
similarly such a generator will enumerate feature structures that have a compatible
value for the sem attribute. This approach faces a number of problems however. For
example, consider the generation problem for a grammar that defines among others
the following signs:

[phon : “the priest drinks”

pred : drink

Sem argl : [pred : priest]

[phon : “the priest drinks whisky”
pred : drink

sem argl : [pred : priest]

arg? : [pred : whisky]

For a given logical form

pred : drink
argl : [pred : priest }

the generator delivers the strings “the priest drinks” and “the priest drinks whisky”,
and perhaps also “the priest drinks strong cheap whisky from a brown paper bag”.

On the other hand, the generator also delivers “the priest drinks” for the logical form
5

pred : drink
argl : [pred : priest]

arg? : [pred : whisky]

A related problem can be illustrated with respect to parsers. For example, in
parsers for Definite Clause Grammars (Pereira and Warren, 1980) strings are (usually)
represented by difference lists; for example ‘the priest drinks from a brown paper bag’
is represented as:

[the,priest,drinks,from,a,brown,paper,bag|X]-X
However, the parser usually does not expect to find an input goal such as:

?7- s([the,priest,drinks,from,a,brown,paper,bag|X]-X

5Note that this particular instantiation of the problem partly disappears using the sort labels as
introduced in the previous section to differentiate between semantic structures of different arity.

56 CHAPTER 2. A POWERFUL GRAMMAR FORMALISM

but instead expects the tail variable of the difference list to be instantiated with some
constant (often the empty list: [1), eg:

?7- s([the,priest,drinks,from,a,brown,paper,bagl-[1).

This ‘trick’ simplifies the parser considerably because it is now impossible to further
instantiate the tail variable. Most DCG parsers will not terminate without this con-
vention because these parsers will try to further instantiate the variable tail by longer
and longer lists of words.

2.4.3 A restricted version of the parsing problem

It seems, then, that what we really intend with the generation problem is something
like: ‘show me all signs that place exactly the following constraints on the following
semantic representation’. In Wedekind (1988) this is formalized for generation with
LFG’s by requiring that the input structure subsumes (is more general, is less infor-
mative) the structure that is generated (completeness), and moreover, the structure
that is generated subsumes the input structure (coherence). ¢ In Wedekind’s proposal
no distinction is made between different kinds of information. That is, the generator
is not allowed to add any syntactic, morphological and semantic information. How-
ever, in the case of eg. generation, it seems reasonable to require completeness and
coherence only for the value of the path that is used to represent the semantic repre-
sentation. The generator should be allowed to add all kind of syntactic information,
and most notably of course the value of the phon attribute itself! Similarly, for parsing
I require completeness and coherence of the attribute representing the string.

Therefore, it is useful to be able to refer to the meaning of a certain constraint ¢
restricted to a path p. I define the restriction of a constraint ¢ with respect to path
p, written ¢/p to be

(¢/p)* =4y {B € ASST|Fa € ¢7 such that pf = pg}

Furthermore, I introduce the notion p-parsing problem, that generalizes over pars-
ing and generation (and transfer, cf. chapter 5), where p is some (fixed) path. The
idea is that for something to be a proper answer to the goal it must be the case that the
constraints on the path p proposed by that answer are equivalent to the constraints on
path p that were already present in the formulation of the goal. In the next definition
of the parsing problem we require that for some path p the constraint in the goal
restricted to p is equivalent to the answer restricted to p.

The parsing problem restricted to a path p, called the p-parsing problem is defined
as follows. Note that the path p is fixed.

6Note that this usage of the terms completeness and coherence should not be confused with the
usual meaning of these terms in logic. Neither should it be confused with yet another notion of
completeness and coherence which is used in LFG to enforce subcategorization requirements.

2.4. PARSING AND GENERATION o7

Definition 12 (p-Parsing Problem) A p-parsing problem consists of a grammar G
and a goal g:

7-sign(X), ¢.
The answer to a p-parsing problem is a solved constraint 1/ such that

e 7/ is an answer to g with respect to GG; and
o (¢/Xp)t = (v/Xp)*

Returning to the usual implementation of parsers for DCG, it turns out that instan-
tiating the out-variable of the difference list with the empty string in fact implements
one part of this extra equivalence condition (the ‘coherence’ part in Wedekind’s ter-
minology); as in DCG (i.e. Prolog) it is possible to implement a coherence check by
‘freezing’ all variables (replacing them with fresh constants, eg. by the numbervars
predicate) occurring in the original goal.

Coherence can be implemented in the current framework by a similar technique.
It is possible to add constraints to the input structure instantiating all parts that are
not mentioned in the constraint on the path p to constants c; ...c; that are not used
otherwise in the grammar. This will block any further instantiation of the value at
p, and hence implements coherence. Completeness can be implemented, as discussed
in Shieber et al. (1990), by maintaining a distinction in the derivation between the
constraints added by the grammar and the constraints stemming from the original
goal. At the end of the derivation it is then possible to compare the two constraints to
see whether they are indeed equivalent. Wedekind (1988) discusses the implementation
of completeness and coherence for LFG’s.

I will assume in the following that the p-parsing problem is defined as in defini-
tion 12. However, in the meta interpreters for R(L£)-grammars that are defined in
the next chapters I abstract away from the implementation of completeness and co-
herence, for didactic reasons. This move is justifiable because the implementation is
rather straightforward and quite independent of the different inference strategies to be
discussed. Therefore, leaving completeness and coherence out clarifies the differences
between the different strategies. On the other hand, I continue to assume that the
parsing problem is defined as above (with completeness and coherence) in order to be
able to discuss certain termination properties.

In the remainder of this thesis I assume the previous definition of the p-parsing
problem as in 12. For some applications it may be useful to consider other definitions.
Some possibilities are discussed shortly.

2.4.4 Other versions of the parsing problem

Other definitions of the parsing and generation problems have been defined as well.
For example, in van Noord (1990b) two relaxations of the foregoing definition of the
p-parsing problem are discussed. Such relaxations may in certain applications allow
for simpler grammars.

58 CHAPTER 2. A POWERFUL GRAMMAR FORMALISM

Restricting equivalence to cyclic labels. The first relaxation assumes that it
is possible to make a distinction between cyclic and non-cyclic labels. A non-cyclic
label will be a label with a finite number of possible values (i.e. it is not recursive).
For example the labels argl and arg2 may be cyclic whereas the label number may be
non-cyclic. The completeness and coherence condition can be restricted to the values
of cyclic labels. If the proof procedure can only further instantiate acyclic labels no
termination problems occur because there are only a finite number of possibilities to
do this.

For certain applications this may be useful. For example, consider the case where
monolingual grammars define semantic structures which are annotated with some syn-
tactic information as well. If the completeness and coherence conditions are restricted
to cyclic labels, the input to the generator may be under-specified with respect to these
syntactic decorations. These syntactic labels can then be filled in by the generator on
the basis of the monolingual grammar.

No equivalence for reentrancies. The second relaxation has to do with reentran-
cies in feature structures. It is possible to define a version of the parsing problem that
does not take into account such reentrancies. As will be explained in more detail in
section 5.4.2, it turned out that in using R(L) to define transfer rules in an MT sys-
tem it was rather cumbersome to be forced to redefine possible reentrancies in transfer
rules as they were defined in the monolingual grammar. Therefore, a definition of the
p-parsing problem was investigated that did not require completeness and coherence
of such reentrancies. The possible usefulness of this conception of the parsing problem
will be discussed in section 5.4.2.

Thompson’s proposal. Another possibility is investigated in Thompson (1991).
The basic intuition of his approach is that the parser (or generator) should come up
with those signs that are as close as possible to the input structure. That is, answers
to the parsing and generation problem consist of those signs that ‘minimally extend’
the input and ‘maximally overlap’ the input. The notions ‘minimally extend’ and
‘maximally overlap’ are defined with respect to other possible answers to the parsing
problem.

The problem with this approach seems to be that, although interesting, the im-
plementation is far from straightforward. The difficulty is increased by the fact that
in this approach for the proof procedure to know whether something is an answer to
a goal it is necessary to take into account all other possible answers. In the other
versions of the parsing problem answers are independent of each other.

2.5 Post Correspondence problem

In this section I show that the p-parsing problem for R(L)-grammars is generally not
solvable. A yes-no problem is undecidable (cf. Hopcroft and Ullman (1979), pp.178-

2.5. POST CORRESPONDENCE PROBLEM 59

179) if there is no algorithm that takes as its input an instance of the problem and
determines whether the answer to that instance is ‘yes’ or ‘no’. An instance of a
problem consists of a particular choice of the parameters of that problem.

In the case at hand I show that in general the p-parsing problem is not solvable
for any fixed path p. I show that this result holds both for the p-parsing problem, and
goals in general. I encode an undecidable problem in a R(L£)-grammar in such a way
that deciding whether there is at least one solution of the p-parsing problem will be
equivalent to solving this undecidable problem.

I use Post’s Correspondence Problem (PCP) as the undecidable problem. The
following definition and example of a PCP are taken from Hopcroft and Ullman
(1979)[chapter 8.5].

An instance of PCP consists of two lists, A = v; ... v, and B = w; ... wy of strings
over some alphabet Y. This instance has a solution if there is any sequence of integers
11 ..-tm, with m > 1, such that

Vi3 Vigy e ooy Uiy = Wiy Wigy o ooy Wy

m m*

The sequence iy, ..., %, is a solution to this instance of PCP. As an example, assume
that ¥ = {0,1}. Furthermore, let A = (1,10111,10) and B = (111,10, 0). A solution
to this instance of PCP is the sequence 2,1,1,3 (obtaining the sequence 101111110).
For an illustration, cf. figure 2.11.

A: 1 10111 10 B: 111 10

10111 1 1 10 10 111111 0
Figure 2.11: Illustration of a solution of a PCP problem.

Clearly there are PCP’s that do not have a solution. Assume again that 3 = {0, 1}.
Furthermore let A = (1) and B = (0). Clearly this PCP does not have a solution.
In general, however, the problem whether some PCP has a solution or not is not
decidable. This result is proved by Hopcroft and Ullman (1979) by showing that
the halting problem for Turing Machines can be encoded as an instance of Post’s
Correspondence Problem.

First I give a simple algorithm to encode any instance of a PCP as a grammar of
R(L), in such a way that the question whether there is a solution to this PCP can
be phrased as a goal. Then I extend the encoding in such a way that the question
whether there is a solution is equivalent to the p-parsing problem.

Note that I use the notation I to stand for 7 repetitive occurrences of label I. Hence
the expression Xy a in r* f will stand for the path Xy a in r r r r f. Furthermore I
assume that C' and L are defined appropriately.

Encoding of PCP.

60 CHAPTER 2. A POWERFUL GRAMMAR FORMALISM

N G L e R e g
o 1AV]

om0)

snt | 17 05]

Figure 2.12: The grammar of R(L) corresponding to example PCP

1. Foreach 1 < ¢ < k (k the length of lists A and B) define a unit rule sign(Xy):-¢,
where ¢ is defined as follows (the 7 — th member of A is a; ... a,,, and the i-th
member of B is by ...b,).

(a) For each j,1 < j < m there is an equation: Xy a in 77 f= a;
(

(¢) For each j,1 < j < n there is an equation: Xo b in 777! f=b;,

b) Moreover, there is an equation: Xy a in 7™ = X4 a out.

(d) Moreover, there is an equation: Xg b in ™ = X, b out.

2. There is one non unit rule, defined as follows:
. a:Al—A o (J,ZAl—AQ . (J,ZAQ—A
(8) Szgn(l b:B, — B l)' Szgn(l b:B,—B, || 4.8, B |)

The underlying idea of the algorithm is really very simple. For each pair of strings
from the lists A and B there will be one unit rule where these strings are represented
by a difference-list encoding. Furthermore there is a general combination rule that
simply concatenates A-strings and concatenates B-strings.

The following goal then is equivalent to determining whether there is a solution to
the PCP:

. l a:L—)]
’ b:L—() |~
In matrix representation the resulting R(L) grammar for the first example PCP
above, look as in figure 2.12. Furthermore, one of the parse trees for the solution given
above is presented in figure 2.13.
To show that the same result applies to the p-parsing problem I change the encod-

ing slightly. Firstly, each unit rule built by the foregoing algorithm will have an extra
constraint X, solution = no. Similarly, in the combination rule I add for each of the

2.5. POST CORRESPONDENCE PROBLEM 61

b:“1011111107

/ \
laﬂqo11wl la:ﬂll@’]

lawqo111111m]

b: <10 b:“1111110
/ \
a:“1” a:“110
b:“111” b:“1110
/ \
a: L(l” a: 4(1 0’7
b:“1117 b 0"

Figure 2.13: Parse tree of the proof that there is a solution, according to the R(L)
encoding of the example PCP.

three variables Xj, X1, Xy the constraints X; solution = no. Finally, the query above
is then encoded as an extra rule as follows:
(9) [solution : yes } -
solution : no
a:L—)
b:L—{)

Now, the question whether there is a solution to an instance of PCP can be answered
“yes” in case the enumeration of the solution-parsing problem of the following formula
at least yields one answer:

?7- sign(Sign),

Sign solution = yes.
Proposition The p-parsing problem for R(L£)-grammars is unsolvable.

Proof. Suppose the problem was solvable. In that case we could use it to solve the
PCP, because a PCP 7 has a solution if and only if for its encoding, R(L)(w), the

query
?- [solution : yes]
has at least one solution. By construction, there is a direct relation to a solution to 7 (a

list of integers) and a derivation of R(L)(7). A derivation encodes the concatenations
of the a and b strings. If and only if such a concatenation yields the same list this

62 CHAPTER 2. A POWERFUL GRAMMAR FORMALISM

derivation can be the daughter of the final rule. The last problem however is known
to be undecidable, hence the p-parsing problem is unsolvable.

2.6 Conclusion

Constraint-based grammars can be used, in principle, both for parsing and generation.
This is also true for grammars defined in R(L). However, to use such grammars in
a practically interesting way, the grammars need to be restricted in some way, as the
parsing and generation problem of R(L) grammars is undecidable. Historically, the
restriction has been (in order for parsing to be efficient), that phrases are built by con-
catenation. No restriction for generation was assumed, as generation played a minor
role. But, generation on the basis of declarative grammars is not without problems.
For example, the simple top-down, left-to-right backtrack search strategy leads to
non-termination for linguistically motivated grammars. Chapter 3 discusses several
(linguistically relevant) problems for some obvious generation techniques. Further-
more, that chapter provides motivation for a different processing strategy, in which
generation proceeds essentially bottom-up, and head-driven. A simple version of this
strategy is defined, and its properties and short-comings are investigated. Several
variants and possible improvements are discussed. Relying on the notion ‘head’ has
some implications for the way in which semantic structures should be combined in the
grammar. Essentially, the semantic-head-driven generation algorithm embodies the
assumption that semantic structures are defined in a lexical and head-driven fashion.
It turns out that the head-driven generation strategy faces problems with analyses in
which this assumption is violated. As an important example, the semantic-head-driven
generation strategy faces problems, if the head of a construction has been ‘displaced’.
Such an analysis is often assumed for verb-second phenomena in for example German
and Dutch, if the grammars are restricted to be concatenative. Thus, the assumption
that semantic structures are built lexically and head-driven, does not make linguistic
sense, if phrases are to be built by concatenation. In order for these assumptions
to make linguistic sense, it is therefore necessary to have more freedom in the way
phonological structures are combined. Thus, instead of concatenative grammars, non-
concatenative grammars are called for.

In chapter 4 linguistic motivation for such non-concatenative operations on phono-
logical representations is discussed. A number of proposals for operations like ‘head-
wrapping’ and ‘sequence-union’ are described, and a class of formalisms is introduced
in which operations on strings are allowed which are linear and non-erasing. For-
malisms such as Head-Grammars (Pollard, 1984) and Tree Adjoining Grammars (Joshi
et al., 1975), are members of this class. Clearly, parsing algorithms developed for con-
catenative formalisms cannot be used for these more powerful formalisms. An impor-
tant question thus is how to parse with non-concatenative grammars. I describe a very
general algorithm for this class of grammars which proceeds, again, head-driven. The
motivation for such a processing strategy is discussed. Furthermore, I describe possi-
ble extensions and improvements of the basic algorithm. I also show how the parser
can be ‘specialized’ for lexicalized, and constraint-based, versions of Tree Adjoining

2.6. CONCLUSION 63

Grammars.

In order for grammars to be effectively used for both parsing and generation, such
grammars need to adhere to the assumptions that, on the one hand, semantic struc-
tures are built in a lexical and head-driven fashion, and on the other hand, that
phonological structures are built in a linear and non-erasing way.

64

CHAPTER 2. A POWERFUL GRAMMAR FORMALISM

Chapter 3

Semantic-head-driven Bottom-up
Generation

3.1 Introduction

Natural language generation often is characterized as a process in which the following
two subprocesses can be identified. The conceptual part of this process decides what
should be said in a given situation. The conceptual part thus constructs a ‘message’,
i.e. some sort of semantic representation. The other, grammatical, part of natural
language generation then takes as its input such a semantic representation and decides
how this meaning representation can be realized linguistically. For a discussion of this
division of labor see for example Appelt (1987), and also McKeown (1985); Thompson
(1977); the distinction is also sometimes characterized in terms of a strategical and a
tactical part.

The interest in this thesis will be in the second, i.e. grammatical (tactical), part of
natural language generation. Thus, I will invariably assume that the conceptual part
(or ‘planner’) provides appropriate semantic structures — our task will be to realize
these semantic structures in natural language. A grammar defines the relation between
semantic structures and phonological structures. Therefore, the task of generation is
to compute this relation, given its definition in the form of a grammar.

Almost any modern linguistic theory assumes, that a natural language grammar
not only describe the correct sentences of a language, but that such a grammar also
describes the corresponding semantic structures of the grammatical sentences. Given
that a grammar specifies the relation between phonology and semantics it seems ob-
vious that the generator is supposed to use this specification. For example, for Gen-
eralized Phrase Structure Grammars (GPSG) Gazdar et al. (1985)[chapters 9 and
10] provide a detailed description of the semantic interpretation of the sentences li-
censed by the grammar. In my view, a generator based on GPSG should construct
a sentence for a given semantic structure, according to the semantic interpretation
rules of GPSG. However, Busemann (1990) presents a generator, which is said to be
based on GPSG, but which does not take as its input, as one would expect, a logical
form, but rather some kind of control expression which merely instructs the gram-

65

66 CHAPTER 3. HEAD-DRIVEN GENERATION

matical component which rules of the grammar to apply. Similarly, in the conception
of Gardent and Plainfossé (1990), the generator is provided with some kind of ‘deep
structure’ which can be interpreted as a control expression instructing the grammar
which rules to apply. These approaches to the generation problem clearly ‘solve’ some
of the problems encountered in generation — simply by pushing the problem away
into the conceptual component. The generation problem I discuss in this chapter is
somewhat more involved. I assume that the relation between semantic structures and
phonological structures is defined by a declarative (constraint-based) grammar. The
task of a generator is to compute, for a given semantic structure, the corresponding
phonological structures, according to such a grammar.

As T will discuss in the next section, several approaches to the (grammatical)
generation problem for constraint-based grammars are not completely satisfactory. As
an alternative I propose a simple semantic-head-driven bottom-up generator (called
BUG) which, as I will show, is superior in some respects to these others. ! Furthermore
I discuss some problems of BUG and some extensions to BUG. I also clarify the
relationship of BUG to generators of the same family, such as the generators presented
in Calder et al. (1989), and Shieber et al. (1990).

I argue that the head-driven bottom-up approach should be favored because in
this approach the order of processing is geared towards the input (head-driven) and
the information available in lexical entries (bottom-up).

3.2 A simple grammar for Dutch

To illustrate the different generation techniques, which I discuss in the following sec-
tions, I will first define a simple, but in some respects typical, grammar for a small
subset of Dutch.

Concatenation. [Iassume in this grammar that all strings are built using a difference-
list implementation of concatenation as in concatenative formalisms. Therefore, each
binary rule extends the following:

sign([phon : Pq — P]):—sz’gn([phon : Pg — Py]), sign([phon : Py — P])

To make the rules somewhat easier to read, I will not explicitly mention these con-
straints in the rules — however for each rule they are present.

Lexical entries will generally specify their phonology as follows, where the variable
Word is instantiated by some constant representing the terminal symbol associated
with that lexical entry:

sign([phon : (Word|Tail) — Tail])

Note though that none of the conclusions of this chapter in any way depends on the
restriction to assume such a concatenative base. In the next chapter I discuss other

1 This generator was originally defined in van Noord (1989).

3.2. A SIMPLE GRAMMAR FOR DUTCH 67

ways to combine strings — the generation algorithms discussed here are all capable of
handling such more powerful rules. In fact, some of the problems I will encounter for
generation, can be solved in grammars in which concatenation is not the sole operation
to construct phonological structures.

Subcategorization lists, and a lexical, head-driven construction of seman-
tic structures. In the grammar it is assumed that verb phrases are built using a
subcategorization list as in HPSG (Pollard and Sag, 1987). Elements of the subcat
list are selected one at the time by a binary verb phrase rule (the use of the attributes
v2 and lez will be explained later):

cat : vp
sc : Tail
(1) sign(| sem:Sem |):-
lex : no
v2 : Verb2
sign(Arg),
cat : vp
: sc : (Arg|Tail)
sign(sem : Sem)-
v2 : Verb2

The value of the subcat feature (the label sc) is a list of signs. In this rule, the first
element of the subcat list of the second daughter of the rule, is equated with the first
daughter of the rule. The ‘remaining’ elements on the list, i.e. the tail of the list is
‘percolated’ to the mother node of the rule. If a verb selects several arguments then
this vp rule can be applied iteratively. The following example clarifies this technique.
Assume that some verb subcategorizes for four elements, called a, b, c and d. Then the
parse tree for the saturated verb phrase dominating this verb, looks as in figure 3.1.
Thus, the elements of the subcat list are selected one at the time. Note that in the case
where elements are selected to the left of the head, the order of the elements on the
subcat list is the reverse of the order of the actual elements in the string. Furthermore
note that if a sign is saturated, then its subcat list is empty.

Furthermore, it is stated in this rule, that the semantics of the second daughter
is identical with the semantics of the mother of the node. In the current grammar,
semantic structures will invariably be built lexically; these structures are always unified
between the semantic-head and the mother of a rule. Thus, the semantic-head, or
‘functor’, of a rule is that daughter, which shares its semantics with the semantics
of the mother node of the rule. This daughter not necessarily is the ‘syntactic-head’
of the phrase. For example, modifiers often are analyzed as the semantic-head of
the construction they modify, whereas the modified part of the construction is the
syntactic head.

The semantics of a lexical entry is defined by sharings with the semantics of the
elements it subcategorizes for. Some verbs are defined as in rule 2. In these entries
it should be noted how semantic structures are defined by sharings with parts of the

68 CHAPTER 3. HEAD-DRIVEN GENERATION

Figure 3.1: This figure illustrates the use of subcategorization lists. The elements of
this list are selected by a binary verb-phrase rule, one at the time. If selection is to
the left, then the order of the elements on the list mirrors the order of the elements
found in the string.

elements on the subcat list. Therefore, if such verbs are selected by the vP rule above,
the semantics is gradually instantiated, when the arguments are selected. Note that
this mechanism is essentially the mechanism assumed in UCG (Zeevat et al., 1987);
see also Moore (1989), and Nerbonne (1992) for discussion.

cat : vp
sem : slaapt(Exp)
lex : yes
(2) sign(v2 :n0_v2).
) cat : np
SC'<[sem : Exp]>
| phon : “slaapt”
[cat : vp 1
sem : vertelt(Ag,Th)
lex : yes
(3) sign(v2 1 n0_v2).

) cat : np cat : np
Sc'<lsem:Th]’[sem:Ag]>

phon : “vertelt”

Verb second. In the previous analysis of subcategorization, the arguments of a verb
always precede the verb, which is correct in Dutch if we do not take into account verb
second phenomena. I will now indicate how verb second phenomena can be accounted
for.

3.2. A SIMPLE GRAMMAR FOR DUTCH 69

In Dutch, the finite verb occupies the second position of a main clause, whereas in
subordinate clauses it occupies the final position. Thus we have:

(4) a. Jan berekent de kosten door
Jan computes the costs through
Jan computes the costs

b. omdat Jan de kosten doorberekent
because Jan the costs through computes
because Jan computes the costs

In order to be able to use the same verb phrase rules in both subordinate and main
clauses, I will define a threading implementation of a ‘movement’ analysis of verb
second. This analysis uses the features v2 and lez, already mentioned in the foregoing
rule 1. T assume that in main clauses the finite verb also occupies the final position,
but in a phonologically empty way. Furthermore the information of this empty verb is
then percolated through the v2 feature to the pre-vp position. The basic idea of this
analysis is illustrated in figure 3.2. Furthermore, categories of type q (for ‘question’

q

/ \

v vp/v
/ \;1\)/v

€

Figure 3.2: The analysis of verb second in Dutch. The information of the initial finite
verb is percolated downwards to a phonologically empty verb, in the position of the
finite verb in subordinate sentences.

— the rest of the root sentence has a yes-no question word-ordering) consist of a
finite verb and a saturated verb phrase that misses this verb. This is how the current
grammar deals with verb second. The rule is defined in 5.

©) sonl| 75)

sem : Sem

[cat vp

| lez: yes]VerbZ ,
[cat: vp

sc: ())
sem :Sem |’

v2 : Verb2

sign(

sign(

70 CHAPTER 3. HEAD-DRIVEN GENERATION

In this rule the binary feature lex is used to implement the fact that only verbs, and
not verb phrases, can be fronted to the verb-second position. The information of the
verb in verb second position is percolated through the v2 feature. Furthermore, there
is the option that a verb in Dutch can be ‘empty’, in case the features in its ‘incoming’
v2 feature unify with its own features, cf. rule 6.

cat : vp

sem : Sem

sc:Sc

lex : no

(6) sign(cat : vp).

v2: | sem : Sem
sc : Sc

phon : P —P

In case a verb phrase should not dominate this empty verb, the grammar instantiates
the v2 feature with some constant, for example the value no_v2. The grammar rule
in rule 7 defines that a complementizer phrase consists of a complementizer and the
argument for which this complementizer subcategorizes.

sem : Sem
(7) sign(| cat:comp |):-

sc ()

sem : Sem
sign(| cat:comp |),

sc: (Arg)
sign(Arg).

Such a complementizer ‘omdat’ (the Dutch equivalent of ‘because’) is defined in rule 8,
where it should be noted that this complementizer requires that the verb phrase
should not dominate the empty verb, by specifying the value of the v2 attribute.
Furthermore note that the complementizer requires that the embedded verb phrase
should be ‘saturated’, i.e. should have selected its arguments, because it requires that
the value of the sc attribute of the verb phrase for which it subcategorizes, is the
empty list. This is a way to implement LFG’s completeness requirement (Bresnan,
1982) on subcategorization specifications. In general, lexical entries require that the
subcat lists of their arguments are empty.

[cat : comp
sem : omdat(Sem)
cat : vp

(8) sign(sc: zir:n<:>Sem)).

22 : no_v2

| phon : “omdat”

3.2. A SIMPLE GRAMMAR FOR DUTCH 71

Modification. The current grammar specifies that a Dutch root sentence may con-
sist of an adverbial phrase, followed by a node of the special category ‘q’. Rule 9
defines this option.

sem : Sem

©) sion|

cat : root])_

cat : adv

sign(| sc:{(Q)),

sem : Sem

sign([cat : q]Q)

Note that the position of this adverbial is usually analyzed as the topic position.
The current simplification is motivated, because for the expository purposes of the
grammar, it is not necessary to implement a gap-threading analysis of topicalization.

The grammar also allows some simple modification of verb phrases. Verb phrases
may consist of an adverbial phrase followed by a verb phrase. The subcat list of the
verb phrases is percolated, because in Dutch, unlike in English, adverbials can be
interspersed with the arguments of the verbs:

(10) a. dat Jan Arie de leugens vandaag vertelt
that John Arie the lies today tells
that John tells the lies to Arie today

b. dat Jan Arie vandaag de leugens vertelt
c. dat Jan vandaag Arie de leugens vertelt
Note that such sentences motivate the use of the binary verb phrase rule 1, giving rise

to branching verb phrases, rather than flat verb phrases as in HPSG. Rule 11 defines
that a verb-phrase may consist of an adverbial and a verb phrase.

cat : vp
sem : Sem
(11) sign(| sc:Sc)=
lez : no
v2 : Verb2
[cat : adv
sign(| sem : Sem |),
| sc: (Vp)
[cat : vp
sign(| sc: Sc).
| v2: Verb2 | Vp

Such an adverbial might for example be defined such as the following entry of ‘vandaag’
(today) in rule 12.

72 CHAPTER 3. HEAD-DRIVEN GENERATION

cat : adv
sem : [vandaag|(E
(12) sign(} 4 . ([[sem : Eg]]())

phon : “vandaag”

Idioms Certain idiomatic constructions can be defined, simply by a further require-
ment on the elements the head of the idiomatic construction subcategorizes for. For
example, the idiomatic construction ‘een dutje doet’ (to take a nap), is analyzed in
such a way that the verb ‘doet’ simply selects a noun-phrase of which the seman-
tics is restricted to be ‘dutje’. Furthermore, the semantics of the verb is a one-place
predicate, comparable to ‘sleep’.

cat : vp
sem : dutje_doet(Exp)
lex : yes

(13) sign(| v2:mo-v2).
) cat : np cat : np
SC'<[sem : Exp] ’ l sem : dutje l>

| phon : “doet”

We will not be very much interested in noun phrases; therefore I simply assume
some noun phrases that are defined as in the following example for ‘Arie’; ‘een dutje’
(‘a nap’) and ‘leugens’ (‘lies’):

[cat : np
(14) sign(| sem : arie).
| phon : “Arie”
[cat : np
(15) sign(| sem : dutje).

| phon : “een dutje”

[cat : np
(16) sign(| sem :leugens).
| phon : “leugens”

This second noun phrase will be used to construct the idiomatic verb phrase ‘een dutje
doen’ which means ‘to take a nap’.

A suitable parser for this simple grammar returns for the call

7= sz'gn([phon : “omdat arie leugens vertelt”]XO).

3.3. PROBLEMS WITH EXISTING APPROACHES 73

the following constraint on Xj:

catl : comp

sc: ()

sem : omdat(vertelt(arie,leugens))
phon : “omdat arie leugens vertelt”

The resulting grammar is given in the figures 3.3, 3.4 and 3.5. Note that I left out
the relation symbols ‘sign’ for short.

3.3 Problems with existing approaches

This section gives an overview of some of the problems, that some previous algorithms
for grammatical generation have. I discuss the LFG generator of Wedekind (1988),
the DCG generator of Dymetman and Isabelle (1988) and Shieber’s chart-based gen-
erator (Shieber, 1988). Firstly I show that top-down generators have problems with
(linguistically relevant) examples of ‘left recursion’. On the other hand, the bottom-up
generator of Shieber requires grammars to be ‘semantically monotonic’, a notion that
I explain below. In the next section I show how BUG handles grammars that are not
semantically monotonic.

3.3.1 Top-down generators and left recursion

Consider the ‘naive’ top-down generation algorithm defined in chapter 2 and repeated
here as figure 3.6. The algorithm simply matches a node with the mother node of
some rule and recursively generates the daughters of this rule. The left-to-right search
strategy we have been assuming, causes non-termination of this algorithm for the goal:

cat : comp
_ : sc:)
(17) 7-refutation(sem : omdat(slaapt(arie)))
v2 :no_v2

The task is to generate a saturated complementizer phrase. The binary complemen-
tizer rule 7 is the only candidate and may be applied. After the proper generation
of the first daughter of this rule the generator attempts to generate a saturated verb
phrase with semantics slaapt(arie). For this embedded generation task the verb phrase
rule 1 is the appropriate candidate. The first daughter of this rule, however, is not
sufficiently instantiated to guide the search any further: the algorithm may for exam-
ple apply the same rule 1 for this node, and will go into an infinite loop because each
time it chooses rule 1 for the first daughter of rule 1.

Therefore, the order in which nonterminals are expanded is very important, as was
noticed by Dymetman and Isabelle (1988) and Wedekind (1988). If, in the foregoing
example, the generator first tries to generate the second daughter, then it may be
possible to generate the first daughter without problems afterwards. In the approach

74 CHAPTER 3. HEAD-DRIVEN GENERATION

% vp => xp, Vp
cat : vp

. cat : vp
sc : Tail .
sem : Sem | :-Arg, 5¢: (‘Arg|Ta11) (1)
lez : 1o sem : Sem
w2V v2:V
% root -> adv, q
cat - Toot cat : adv
lsem:Sem]:_ sc:(Q) ,[cat:q]Q. (9)
sem : Sem
% q —> v2, vp
cat : vp
cat : q | cat:vp sc:{) (5)
sem : Sem | ° lex : yes V | sem :Sem |’
v2:V
% cp -> comp, Xp
sem : Sem sem : Sem
cat : comp | :- | cat:comp | ,Arg. (7)
sc: () sc: (Arg)
% vp -> adv, vp
cat : vp
sem : Sem cat : adv cat : vp
sc:Sc -| sem:Sem | ,| sc:Sc (11)
lex : no sc: (Vp) v2:V Vp
v2:V

Figure 3.3: The grammar for Dutch, part I

3.3. PROBLEMS WITH EXISTING APPROACHES

%

A

h

h

A

| phon:P —P

v > []
cat : vp
sem : Sem
sc:Sc

lex : no

cat : vp
v2: | sem : Sem

sc: Sc

comp -> omdat

[cat : comp

sem : omdat(Sem)
cat : vp

sc: sem : Sem >
sc: ()

22 : no_v2

| phon : “omdat”

adv -> vandaag

cat : adv
sem : [vandaag](E)

sc:([sem:E])

phon : “vandaag”

np -> arie
cat : np

sem : arie
phon : “Arie”

np -> een dutje
cat : np

sem : dutje

phon : “een dutje”

Figure 3.4: The grammar for Dutch, part II

75

(12)

(14)

(15)

76 CHAPTER 3. HEAD-DRIVEN GENERATION

% np -> leugens
cal : np
sem : leugens : (16)
phon : “leugens”

% vp —-> slaapt

[cat : vp

sem : slaapt(Exp)
lex : yes

v2 : n0_v2 . (2)

sc:<lcat:np b

sem : Exp

| phon : “slaapt”

% vp —> vertelt

[cat : vp

sem : vertelt(Ag,Th)
lex : yes

v2 : n0_v2 _ (3)

) cat : np cat : np
Sc'<lsem:Th]’[sem:Ag]>

| phon : “vertelt”

% vp -> doet

[cat : vp

sem : dutje_doet(Exp)
lex : yes

12 : N0_v2) (13)
sc:<lcat:np],[cat:np l>

sem : Exp sem : dutje

| phon : “doet”

Figure 3.5: The grammar of Dutch, part III

3.3. PROBLEMS WITH EXISTING APPROACHES 7

refutation(Goal) : -
rule(Goal, Ds),
refutations(Ds).

refutations(()).

refutations((H|T)): -
refutation(H),
refutations(T).

Figure 3.6: Meta interpreter for R(L)-grammars

of Dymetman and Isabelle (1988), the order of generation is defined by the rule-
writer by annotating DCG rules. In the approach of Wedekind (1988), this ordering is
achieved automatically (and dynamically), essentially by a version of the goal-freezing
technique (Colmerauer, 1982). Put simply, the generator only generates a node if its
feature structure is instantiated; otherwise the generator will try to generate other
nodes first.

A specific version of this approach, is an approach where one of the daughters
has a privileged status. This daughter, that we might call the ‘head’ of the rule, will
always be generated first. I will assume that for all rules the first daughter of the list
of daughters represents the head. Note that this does not imply that this daughter
is the leftmost daughter; the information about the left-to-right order of daughters
is represented by the difference-list representation of strings in each node. Moreover
note that this particular representation may be the result of some compilation step
from a representation that is more convenient for the rule writer. For example, rule 1
was represented schematically as

sign(Xo) : -sign(Xy), sign(Xs), 6.
If we assume that the second daughter is the head, then this clause is simply written:
sign(Xo) : =sign(Xs), sign(X1), ¢.

Now without any modification to the original definition of refutations this change will
imply that heads are generated first. Assume furthermore that the head of a rule is
that daughter which shares its semantics with the mother node. In all (non-unit) rules
of the Dutch example grammar it is possible to choose such a daughter.

The resulting simple top-down generation algorithm is equivalent to the approaches
of Dymetman and Isabelle (1988) and Wedekind (1988) with respect to one major
problem: the left-recursion problem. Consider what happens if we try to generate a
sentence for the same semantic structure 17 as before, but this time assuming that
heads are generated first. Again, the generator comes to the point where it tries to
generate a saturated verb phrase with semantics slaapt(arie). As before the generator

78 CHAPTER 3. HEAD-DRIVEN GENERATION

selects the binary verb phrase rule 1. This time the generator does not try to generate
the argument of this rule, but immediately starts to generate its head. The resulting
feature structure now looks as follows:

cal : vp

sc : (Obj,)

sem : slaapt(arie)

v2 : no_v2

where Obj; is shared with the argument that still needs to be generated after the
generation of the head. This feature structure can be the input for the verb phrase
rule 1 again, of which the head will then be instantiated into:

cat : vp

sc : (Obj,, Obj;)
sem : slaapt(arie)
v2 : no_v2

Each time the same rule can be applied (predicting longer and longer subcategorization
lists), resulting in non-termination, because of left recursion. It should be clear that
this non-termination problem is not necessarily caused by the leftmost daughter of
a rule; the problem is caused by the node that is generated first. Thus the English
equivalent of the verb phrase rule where the order of the head and the argument is
switched presents exactly the same problem.

In this particular case, the problem arises because there is no limit to the size of
the subcategorization list. Although one might propose an ad hoc upper bound on
the length of the subcategorization list for lexical entries, even this expedient may
be insufficient. In analyses of Dutch cross-serial verb constructions (Evers, 1975;
Huybrechts, 1984) subcategorization lists such as these may be appended by syntactic
rules (Moortgat, 1984; Steedman, 1985; Pollard, 1988; van Noord et al., 1990) result-
ing in indefinitely long lists. Consider the Dutch sentence

(18) dat [Jan [Arie [Bob [de muizen [zag helpen loslaten]]]]
that Jan Arie Bob the mice saw help release
that Jan saw Arie help Bob release the mice

The string of verbs is analyzed by appending their subcategorization lists, as is illus-
trated in figure 3.7. Subcategorization lists under this analysis can have any length,
and it is impossible to predict from a semantic structure the size of its corresponding
subcategorization list merely by examining the lexicon.

In summary, top-down generation algorithms, even if controlled by the instantia-
tion status of goals, can fail to terminate on certain grammars. The case given above,
reminiscent of analyses from HPSG, as well as analyses from categorial unification
grammar are examples in which the well-foundedness of the generation process resides
in lexical information unavailable to top-down regimes. The conclusion of this section
therefore is that top-down generators have problems with some linguistically moti-
vated left recursive analyses. The source of the problem is that information available
in lexical entries is not used sufficiently to guide the search.

3.3. PROBLEMS WITH EXISTING APPROACHES 79

V[m’b7a7j
v[a,j] v[m,b,a]
|

Jag / \
v[b,al v[m,b,a]

saw | |

helpen loslaten

help release

Figure 3.7: Analysis of cross-serial dependency, in which subcategorization lists of
verbs are appended. The tree represents the verb-cluster of the sentence ‘dat Jan Arie
Bob de muizen zag helpen loslaten.

3.3.2 Shieber’s chart-based generator

Shieber (1988) proposes a chart-based generator where rules are applied in a bottom up
fashion. Results are kept on an Earley type chart (Earley, 1970). To make this process
goal-driven, there is only one restriction: the logical form of every sub-phrase that is
found, must subsume some part of the input logical form. This restriction results in
the semantic monotonicity requirement on grammars. This restriction requires that
the logical form of each daughter of a rule subsumes part of the logical form of the
mother node of that rule. Note that this requirement also implements the coherence
condition on the generation problem discussed in chapter 2: it is never possible that
the generator comes up with an extension of the input semantic structure.

An example will clarify the strategy. Assume we want to generate a string for the
logical form

omdat(vertelt(arie,leugens))

with the Dutch example grammar, where I leave the empty verb, to analyze verb second
constructions, out of consideration for the moment. When the generator starts, it will
try to select rules without any daughters (i.e. lexical entries), because the chart is
still empty. The logical form of these entries should subsume some part of the input
logical form.

First it can apply the rules arie, leugens, vertelt and omdat. Next, a verb phrase
dominating wvertelt and leugens will be constructed as well, with the semantic structure

vertelt(Subj,leugens)

A rule applies that combines the NP arie and the preceding verb phrase, resulting in
the verb phrase arie leugens vertelt, with the logical form.

vertelt(arie,leugens)

80 CHAPTER 3. HEAD-DRIVEN GENERATION

This verb phrase can be the input for the complementizer rule, together with the
complementizer omdat, resulting in the subordinate clause omdat arie leugens vertelt.
This complementizer phrase has the appropriate logical form. Note that no other
rules can apply, because their resulting logical form does not subsume part of the
input logical form (remember we did not take into account the empty verb).

The requirement that every rule application yields a logical form that subsumes
part of the input only results in a complete generation algorithm only if the grammar
is semantically monotonic. Shieber admits that this requirement is too strong (op.
cit. section 7):

”Perhaps the most immediate problem raised by the methodology for
generation introduced in this paper is the strong requirement of semantic
monotonicity. (...) Finding a weaker constraint on grammars that still
allows efficient processing is thus an important research objective.”

In fact the grammar of the previous section is not semantically monotonic, because
it analyses the Dutch idiomatic phrase ‘een dutje doen’ as a predicate without any
internal structure, although in the derivation the logical form ‘dutje’ will be assigned
to the noun phrase ‘een dutje’.

Another example of an analysis that does not obey the semantically monotonicity
requirement may be encountered with particle verbs. As an example consider the case
where a sentence like

(19) jan berekent de kosten door
jan computes the costs through
jan computes the costs

has a logical form
doorberekenen(jan,kosten)

Other examples where semantic monotonicity is not obeyed are cases where semanti-
cally empty words such as ‘there’ and ‘it’ are syntactically necessary, and prepositional
verbs such as ‘count on’, as in the following examples.

(20) a. There are mice in the hotel.
b. It has been raining for weeks.
c. It seems that Bob has ordered an ice-cream.
d. Arie always counts on Jan to count the costs.
Another disadvantage of Shieber’s generator is the nondeterministic style of pro-
cessing. The requirement, that only rules can be applied, of which the logical form
subsumes some part of the input logical form, does not direct the generation process

very much. Furthermore, the necessary subsumption checks (for example to check
whether a result already is present in the chart) lead to much processing overhead.

3.4. HEAD DRIVEN BOTTOM-UP GENERATION 81

Summarizing section 3.3, the principal problem of top-down generators is left-
recursion. This problem is solved in a chart-based bottom-up generator at the cost
of severe restrictions on possible grammars, and rather inefficient processing. These
considerations led to the head driven bottom-up family of generators to be discussed
in the next section.

3.4 Head driven bottom-up generation

In this section, I will present a simple variant of a head driven, bottom-up generator,
called BUG, which was originally described in (van Noord, 1989), and shares many
characteristics with the approaches presented in Calder et al. (1989), Shieber et al.
(1989) and Shieber et al. (1990). These generation algorithms are characterized by
a bottom-up style of processing, where top-down prediction is applied through the
use of the notion ‘(semantic)-head’. Bottom-up processing can be motivated from the
desire to use lexical information to guide the search, as much as possible. Head-driven
processing can be motivated by the desire to use the semantics (the input) as an
important source of information to guide the search.

I require that all non-unit rules have a head. Moreover, the logical form of this
head must be identical with the logical form of the mother node; i.e. the mother
node and the head share their logical form. Note, that for each non-unit rule in the
Dutch example grammar, it is possible to choose a daughter as the head, that satisfies
this requirement. As before, the head of the rule will be the first element of the list
of daughters in the representation used by the meta-interpreter. Lexical entries are
represented, for the meta-interpreter, as rules with an empty list of daughters.

The algorithm BUG proceeds as follows. Its input will be some node N that is
associated with some semantic structure S. First BUG tries to find the lezical head, a
lexical entry of which the semantics unifies with S. This part is called the prediction
step. Now, BUG is going to build from this lexical head larger units as follows. It
selects a rule of which the head unifies with the lexical head. The other daughters of
this rule are generated recursively. For the mother node of this rule, this procedure
will be repeated: selecting a rule of which the head unifies with the current node,
generate the daughters of this rule and connect the mother node upward. This part
of the algorithm ends if a mother node has been found that unifies with node N. This
is defined in figure 3.8.

As an example, consider what happens if this algorithm is activated by the follow-
ing query (again, I leave the empty verb out of consideration for the moment):

cat : comp

?7-bug(| sc: ()).
sem : omdat(vertelt(arie,leugens)) |

In figure 3.9 the flow of control of the generation process is illustrated. Firstly, the
clause predict_head will select the lexical head, a lexical entry with a logical form that

82 CHAPTER 3. HEAD-DRIVEN GENERATION

bug(Goal): -
predict_head(Goal, Lex),
sem_head(Lex, Goal).

sem_head(Goal, Goal).

sem_head(Head, Goal): -
select_rule(Head, Mother, Others),
bug_ds(Others),
sem_head(Mother, Goal).

bug-ds(())-

bug_ds((H|T)):-
bug(H),
bug_ds(T).

predict_head(Goal, Lex) : -
head(Goal, Lex),
rule(Lex, (}).

head([sem : Sem] , [sem : Sem])

select_rule(Head, Mother, Ds) : -
rule(Mother, (Head |Ds)).

Figure 3.8: The R(L) definition of the simple version of BUG.

3.4. HEAD DRIVEN BOTTOM-UP GENERATION 83

comp||:omdat(vertelt(arie,Jeugens))

'14
comp]]
- \
omdat comp[V:vert/elt(arie,leugens)] v[]:vertelt(arie,leugens)

1?5/

n:arie
112 6)
|
! v[n:leugens,n:arie]
arie n:leugens
'] vertelt
k
leugens

Figure 3.9: A trace of the generation of ‘omdat Arie leugens vertelt’. The integers
refer to the steps in the generation process. Framed integers on arrows with a small
arrow head represent prediction steps, bold face integers on dashed lines represent
connection steps, and slanted integers on arrows with a large arrow head represent
recursive generation steps.

84 CHAPTER 3. HEAD-DRIVEN GENERATION

unifies with ‘omdat(vertelt(arie,leugens))’. The definition of omdat (rule 8) is the only
candidate (step 1). The prediction step instantiates this entry into:

[cat : comp
sem : omdat(vertelt(arie,leugens))
cat : vp

sc () >
sem : vertelt(arie,leugens)
v2 :no_v2

| phon : (omdat|P;) — P,

sc:

It is important to note here, that not only the semantics of the lexical entry is instan-
tiated, but also the semantics of the element on its subcategorization list. This entry
needs to be connected upwards to the top-goal. To this end a rule is selected of which
the head unifies with the feature structure of the complementizer. Rule 7 clearly is
the only candidate (step 2). The next goal, therefore, is to generate the non-head
daughter of this rule (3). Because of the subcategorization technique, this non-head
daughter is unified with the element of the subcat list of the head. Therefore, the
semantics of this non-head daughter is instantiated as well:

cal : vp

sc: ()

sem : vertelt(arie,leugens)

v2 : no_v2 T

Again, the algorithm predicts a lexical entry for this goal. The definition for vertelt
(rule 3) is a possible candidate, obtaining the following feature structure (step 4):

cat : vp

sem : vertelt(arie,leugens)
lex : yes

v2 :no_v2

SC:<[cat:np l’lcat:np b

sem : leugens sem : arie

| phon : (vertelt|Py) — P IE

Note again, that the logical form of the elements of the subcat list of this entry get
instantiated as a result of the unification of the logical form of the goal, and the logical
form of the verb.

The feature structure S is going to be connected to T by the sem_head clauses. To
be able to connect the lexical VP to (ultimately) the saturated VP node, a rule will
be selected of which this lexical verb phrase can be the head. Rule 1 is a possible
candidate (5). If this rule is selected, the following feature structure represents the
non-head daughter of the rule (again with instantiated semantics):

cal : np
sem : leugens

phon : P1 — Py D

3.4. HEAD DRIVEN BOTTOM-UP GENERATION 85

The mother of the rule is instantiated as:

cat : vp

sem : vertelt(arie,leugens)
lex : no

v2 : n0_v2

SC:<[cat:np b

sem : arie

| phon : (vertelt[P1) — Py [

The daughter D is generated recursively (6, 7, 8), instantiating P;—Ps into (leugens|P3)—
P3. Therefore the next task is to connect

cat : vp

lex : no

v2 : no_v2

sem : vertelt(arie,leugens)

Sc:<[cat:np b

sem : arie

| phon : (leugens, vertelt |P3) — P3 [yf

upwards to the saturated verb phrase T. Again it is possible to choose rule 1 (step
9). In this case, the non-head daughter of the rule consists of the feature structure
that results in the phonology ‘arie’ by a recursive application of BUG (10, 11, and
12); hence the mother node of this instantiation of rule 1 will become:

cat : s

lex : no

v2 :no_v2

sem : vertelt(arie,leugens)

sc: ()

phon : (arie, leugens, vertelt [P3) — P3 |\

This node can easily be connected to the top node T by the first clause for sem_head,
because it can be unified with the top node (step 13); thereby finishing the generation
goal of the argument of the complementizer. The resulting complementizer phrase can
also be connected trivially to the ultimate top goal C (14); the answer to the query,
therefore, is:

cat : comp
sem : omdat(vertelt(arie,leugens))

sc: ()

phon : (omdat, arie, leugens, vertelt |Pg) — Pg C
As another example, consider the case where the logical form is built in a seman-
tically non-monotonic way:

cat : comp

?=-bug(| sc: ()).
sem : omdat(dutje_doet(bob))

86 CHAPTER 3. HEAD-DRIVEN GENERATION

comp||:omdat(dutje_doet(bob))

omdat comp[v:dlltje_doet(bob)]

| |
b(l)b n:dutje v[n:dutje,n:bob]
' ISJ doet
\ |
een dutje

Figure 3.10: A trace of the generation of ‘Omdat bob een dutje doet’; the integers are
used as in the previous figure.

Again, the generation process can be illustrated as in figure 3.10. After the selection
of the complementizer rule 7, the generator again tries to generate a saturated verb
phrase recursively. For this generation goal, the predictor step selects the lexical entry
doet (rule 13), after which the generator will try to connect the verb phrase:

[cat : vp

sem : dutje_doet(bob)
lex : yes

v2 : n0_v2

Scz<lcat:np]’lcat:np l>

sem : bob sem : dutje

| phon : “doet”

to the saturated verb phrase goal, as in the foregoing example (step 5 in the illustra-

3.4. HEAD DRIVEN BOTTOM-UP GENERATION 87

tion). Note, that the semantics of the two elements of the subcat list of ‘doet’ both
are instantiated. Hence the algorithm proceeds exactly as in the preceding example,
generating ‘een dutje’ and ‘bob’ both recursively. This results in the correct answer:

cat : comp
sem : omdat(dutje_doet(bob))

sc: ()

phon : (omdat, bob, een, dutje, doet|Pg) — Pg

Properties of the Algorithm

The algorithm BUG defines a simple bottom-up head-driven generation procedure.
Note that the search is guided by the input because of the definition of the predict
step. The definition of this step uses the knowledge that heads always share the
logical form with their mother (remember this is how we defined the notion ‘head’).
Therefore, for any given top-goal it is possible and correct to share this information
with the ‘lexical head’ immediately. The resulting system implements, therefore, an
attractive compromise between bottom-up and top-down approaches; the order of
processing is bottom-up, but there is an important information flow in top-down
direction. Furthermore the recursive bug calls also provide for an important flow
of information in top-down direction especially in the case of rules that dominate
subcategorized-for elements as in the verb phrase rule 1. Later in this chapter I
discuss extensions to BUG, for grammars in which other ways to construct semantic
structures are assumed.

Note that the order of processing of the algorithm is not left-to-right, but b:-
directionally because the algorithm always starts from the head of a rule. The logical
form of this head is always known by the prediction step. This constitutes the top-
down information of the algorithm. Apart from the top-down logical form information,
the algorithm is directed by the information of the lexicon because the order of pro-
cessing is bottom-up. Head driven bottom-up generators are thus geared towards the
semantic content of the input on the one hand and lexical information on the other
hand. Of course this is especially useful for grammars that are written in the spirit of
lexicalistic linguistic theories such as CUG, UCG and HPSG.

Apart from considerations of efficiency the major reason for constructing bottom-up
generators has been the left-recursion problem summarized in section 3.3. If the base
case of the recursion resides in the lexicon the bottom-up approach does not face these
problems. Typically in grammars that are based on the lexicalist theories mentioned
above, these cases occur frequently, but are handled by BUG without any problems:
the subcat lists are sufficiently instantiated to restrict the otherwise unlimited search.

Dymetman et al. (1990) define a grammatical formalism (called ‘Lexical Gram-
mars’) in which the use of subcategorization lists and lexical construction of semantics
as sketched above, is built in. This enables them to ensure, that generation termi-
nates for grammars in which each of the lexical entries are defined in such a way, that
the semantic structures of each of the elements on the subcat list is ‘smaller’ than

88 CHAPTER 3. HEAD-DRIVEN GENERATION

the semantic structures of the lexical entry itself. The generation algorithm discussed
here always terminates for this class of grammars.

Some possible extensions and some problems of BUG are discussed in the next
sections.

3.5 Some Possible Extensions

Of course the simple architecture of BUG can be extended in several ways. In this
section I discuss some possibilities. The next section will then be devoted to some
problems BUG and its extensions face.

3.5.1 Restrictions on heads

The assumption, that heads always share their logical form with the mother node,
may be too restrictive for specific linguistic or semantic theories. Some extensions
to BUG are possible that handle more sophisticated grammars. For example it is
possible, as proposed in van Noord (1989), to enlarge the power of the prediction
step. By inspection of the grammar it may be possible to pre-compile possible relations
between the logical form of some top node and the logical form of the lexical head of
that node. In that case, the notion ‘semantic-head’ is defined in some other way than
by the requirement that its logical form is shared with the mother node. In the general
case a pre-compiler then needs to compute the reflexive and transitive closure of the
relation between mothers and heads, which may not always be without problems.

Another extension is the architecture advocated in Shieber et al. (1989); Shieber
et al. (1990), where rules are divided in two types. The first type of rules, are rules
where some daughter indeed shares its logical form with the mother node. Such rules
are called chain-rules, and the relevant daughter is called the ‘head’;, as before. In
the second type of rule there is no such daughter. These rules are called ‘non-chain-
rules’. By this definition, all lexical entries are non-chain-rules because they have no
daughters, and hence no head daughter. The algorithm does not necessarily predict
a lexical entry, but it predicts a non-chain-rule. The daughters of this rule are then
generated in a top-down fashion. After the generation of these daughters, the mother
node of the non-chain-rule is connected to the top node bottom-up, as in BUG. In
case all non-unit rules of a grammar are chain-rules, the algorithm is equivalent to
BUG. In case no rules have a head, the algorithm reduces to a top-down generator.
Assume temporarily that clauses are represented as follows:

ncr(Mother, Ds) : -¢.
for non-chain-rules where Mother is the mother node, and Ds is a list of daughter
nodes (which will be empty for lexical entries). Chain-rules are represented as:
cr(Head, Mother, Ds) : -¢.
where Head is the head daughter of the rule, Ds is the list of non-head daughters.

The extended algorithm is defined by replacing the definitions of predict_head and
select_rule, of program 3.8, with the definitions of 21.

3.5. SOME POSSIBLE EXTENSIONS 89

(21) predict_head(Goal, IntermGoal): -
head(Goal, IntermGoal),
ner(IntermGoal, Ds),
bug_ds(Ds).

select_rule(Head, Mother, Ds) : -
cr(Head, Mother, Ds).

3.5.2 Extending the prediction step

The prediction step, as it is defined in BUG, only uses semantic information. However,
it is possible to extend the prediction step to take into account syntactic information
as well. This is especially useful for grammars that define words that are semantically
empty. For example, assume our Dutch grammar is extended with the complementizer
dat (that) as defined in 22.

[cat : comp
sem : Sem
catl : vp
(22) sign(sc: sem : Sem)).
sc: ()
12 : N0_v2
| phon : “dat”

In this entry, the semantics of the embedded verb phrase is simply ‘taken over’ as the
semantics of the complementizer, and hence of the complementizer phrase headed by
‘dat’. Such lexical entries will be candidates for each invocation of the prediction step,
because they are completely ignorant as to what semantics they may end up with.
This leads to gross efficiency problems as has been observed in practice.

Suppose, however, that the prediction step is augmented with syntactic informa-
tion. If the goal is to generate a verb phrase, then it is obvious from the grammar,
that it is useless to predict a complementizer at that point, because the only results
of connecting a complementizer upwards will be a complementizer phrase. Assume
that the predicate link(Moth,Head) is a pre-compiled table of the reflexive and tran-
sitive closure of possible syntactic links between mothers and heads, similar to the link
predicate in the BUP parser (Matsumoto et al., 1983) between mothers and left-most
daughters. For the example grammar of this chapter, the predicate can be defined as
follows, if we restrict the link table, to take into account only the value of the attribute
cat:

(23) link(| cat :toot |, [cat: q |).
zmk([cat : q] [cat : vp]).
link(| cat : root |, [cat:vp).
link([cat: X |, [cat: X]).

90 CHAPTER 3. HEAD-DRIVEN GENERATION

It is possible to change the definition of predict_head and select_rule into the defini-
tions given in 24.

(24) predict_head(Goal, IntermGoal): -
head(Goal, IntermGoal),
link(Goal, IntermGoal),

ner(IntermGoal, Ds),
bug_ds(Ds).

select_rule(Head, Mother, Ds, Goal) : -
link(Goal, Mother).
cr(Head, Mother, Ds).

Note that we change the select_rule clause to take four arguments now. The fourth
argument is the top goal (i.e. the second argument of the sem_head clauses).

In fact, the prediction step does not necessarily have to be restricted to semantic
and syntactic information, as long as it is possible to pre-compile the reflexive and
transitive closure of the relation between heads and mothers. The ‘restrictor’ tech-
nique discussed by Shieber (1985) can be used here. Note though that the semantic
information should not be ‘restricted’. Syntactic prediction limits the choice of pos-
sible lexical entries. The semantic prediction has a further task in instantiating the
semantics of the lexical entry to ensure that recursive generation calls also have their
semantics specified. This difference is the reason to differentiate in the foregoing def-
inition of predict_head between the semantic prediction and the syntactic prediction.

The syntactic linking technique has a problem in that it may produce spurious
ambiguities. For example, consider the following part of a hypothetical syntactic
linking table:

,mk([cat : [gg;;fyes] Hcat: [maginp])).

lmk([“ l Z(Ozi(:i?ded] H o [majzow |)

Assume a goal is specified for category s, and the current category, that needs to be
connected to that goal, is np. In that case both clauses are applicable. However,
these two clauses do not necessarily correspond to two distinct results. In a Prolog
implementation this problem may be solved by a ‘double negation’ trick; i.e. we would
write something like:

\+ \+ link(Goal,Mother),

where \+ is the negation-as-failure operator. The linking predicate then reduces
to a check that does not introduce new information, but only filters the application of

3.5. SOME POSSIBLE EXTENSIONS 91

rules and lexical entries that cannot be linked to the goal (for that reason the predicate
should be called immediately after the predicates ncr and cr, rather than before.).
Doubly negating the semantic prediction step would, of course, be damaging, because
the main task of the semantic prediction is to further instantiate (the semantics of)
the predicted lexical entries.

Another possibility, to prevent spurious ambiguities of the syntactic linking device,
would be to compute the generalization of all possible answers every time the ‘link’
predicate is called. In the previous example this would simply result in neglecting the
main and mood attributes. In general such a solution requires quite a bit of overhead.
For different grammars different answers will be possible to the question what the
most efficient solution is.

3.5.3 Memo relations

The head-driven generator, defined here as a R(L) meta-interpreter, uses the depth-
first backtrack search strategy described in section 2.3. The motivation of the head-
driven generation strategy lies in the reduction of the search space that is obtained.
How to search this reduced search space is quite an independent matter. Therefore, it
may be useful to investigate alternative search strategies. For example, the algorithm
could be defined using a chart, as for example proposed in Calder et al. (1989);
Gerdemann (1991).

Another, related, possibility consists of the implementation of so-called ‘memo-
relations’ (also called ‘well-formed sub-string tables’ in the context of parsing). The
idea is that, to prove some goal Goal, we first check whether such a goal has already
been proven before. In that case we pick up the results of that previous call. If the
goal has not been tried before, we will go about finding all solutions to this goal (and
assert each of them in the database). If no more solutions can be found, then we assert
that all solutions for that goal have been found, and we pick up a possible solution.
This in effect turns the search strategy into a breadth-first one.

In figure 3.11 a possible implementation of memo-relations is defined in Prolog.
This implementation improves upon the one discussed in Matsumoto et al. (1983);
Pereira and Shieber (1987) in that the implementation is much more general (not
restricted to parsing), and that results are indexed with respect to the goal which
produces that result. This implies that subsumption checks are limited to goals, and
no subsumption checks on full results is necessary. Clearly, goals are (much) ‘smaller’
than results in practice, and hence the costs of overhead is reduced. It should be
stressed, though, that in the case of constraint-based grammars it is clear that such
memo-relations do not improve on the worst-case behavior of the program (as there
generally is an unbounded number of possible categories), and maybe not even on the
practical behavior of the program (because of the overhead involved in copying and
subsumption checking).

Even though the overhead involved in the implementation of such memo-relations
is still considerable, it turns out that for many grammars the head-driven generator
is more efficient if implemented as a memo-relation, along the lines of figure 3.11. For

92 CHAPTER 3. HEAD-DRIVEN GENERATION

memo (Goal) : -
copy_term(Goal,Frozen), % make copy of goal
numbervars(Frozen,0,_), % and numbervar it
memo (Goal,Frozen) . % for subsumption checks later

memo (Goal ,Frozen) :-

done(Frozen), % more general goal is known
|
item(Frozen,_,Goal). % get result w.r.t. goal
memo (Goal ,Frozen) :-
copy_term(Goal,Result), % copy such that goal does not change
retractall(item(_,Goal,_), % retract more specific goals
call(Result), % find a result
assertz(item(Goal,Frozen,Result)), % assert it
fail. % fail to find other results
memo (Goal ,Frozen) :-
assertz(done(Goal)), % assert that goal is known now
item(Frozen,_,Goal). % get result w.r.t. goal

Figure 3.11: The predicate memo(Goal) searches for Goal using a tabular breadth-
first search technique. Results are asserted as item(Goal,FrozenGoal,Result) where
FrozenGoal is a numbervarred copy of Goal for later subsumption checks. Goals are
asserted as done(Goal). Such a goal is only asserted once all solutions are found.
Hence, the resulting program has the same termination properties. As a further
improvement of this technique a user-provided definition of what constitutes the real
‘goal’ information of a given goal might be investigated. This would e.g. provide
a hook for Shieber’s restriction technique. Furthermore, this would allow for the
incorporation of more complex constraints for which subsumption checking would not
be possible.

3.5. SOME POSSIBLE EXTENSIONS 93

example this technique has been used in order to improve upon the efficiency of the
head-driven generation algorithm by a factor 4 for typical grammars.

3.5.4 Delay of lexical choice

The generation algorithm defined above chooses particular lexical forms on-line. This
approach can lead to a certain amount of unnecessary nondeterminism. The choice of
a particular form depends on the available semantic and syntactic information. Some-
times there is not enough information available, to choose a form deterministically.
For instance, the choice of verb form might depend on syntactic features of the verb’s
subject, available only after the subject has been generated. This nondeterminism
can be eliminated by deferring lexical choice to a post-process. Inflectional and or-
thographical rules are only applied when the generation process is finished and all
syntactic features are known. In short, the generator will yield a list of lexical items
instead of a list of words. To this list the inflectional and orthographical rules are
applied.

The MiMo2 system (van Noord et al., 1990; van Noord et al., 1991) incorporates
such a mechanism into the previous generation algorithm quite successfully. Experi-
ments with particular grammars of Dutch, Spanish, and English have shown that the
delay mechanism results in a generator that is faster by a factor of two or three on
short sentences. Of course, the same mechanism could be added to any of the other
generation techniques discussed in this chapter; it is independent of the traversal order.

The particular approach to delaying lexical choice found in the MiMo2 system relies
on the structure of the system’s morphological component as presented in figure 3.12.

‘Uniﬁcation Grammar for Syntax and Semantics

‘Two—level orthography‘ delayed
during
‘Paradigmatic inﬂection‘ generation

‘Uniﬁcation grammar for Morphology

‘ Lexicon of stems ‘

Figure 3.12: The architecture of MiMo2, in which lexical choice is delayed during
generation.

The figure shows how inflectional rules, orthographical rules, morphology and syn-
tax are related: orthographical rules are applied to the results of inflectional rules.
These inflectional rules are applied to the results of the morphological rules. The
result of the orthographical part are then input for the syntax. However, in the

94 CHAPTER 3. HEAD-DRIVEN GENERATION

lexical-delayed scheme, the inflectional and orthographical rules are delayed. During
the generation process the results of the morphological grammar are used directly.
It should be emphasized that this is possible, only because the inflectional and or-
thographical rules are monotonic, in the sense that they only further instantiate the
feature structure of a lexical item, but do not change it. This implies, for example,
that a rule that relates an active and a passive variant of a verb will not be an inflec-
tional rule but rather a rule in the morphological grammar (as it changes for example
the subcategorization requirements of the verb). The rule that builds a participle from
a stem may in fact be an inflectional rule if it only instantiates the feature vform, for
instance. When the generation process proper is finished the delayed rules are applied
and the correct forms can be chosen deterministically.

The delay mechanism is useful in the two following general cases:

Firstly, and most importantly, the mechanism is useful if an inflectional variant
depends on syntactic features not yet available. The particular choice of whether a
verb has singular or plural inflection, depends on the syntactic agreement features of
its subject; these may only be available after the subject has been generated. Other
examples may include the particular choice of personal and relative pronouns, and so
forth.

Secondly, delaying lexical choice is useful when there are several variants for some
word, that are equally possible, because they are semantically and syntactically identi-
cal. For example, a word may have several spelling variants. If we delay orthography
then the generation process computes with only one “abstract” variant. After the
generation process is completed, several variants can be filled in for this abstract one.
Examples from English include words that take both regular and irregular tense forms
(e.g. “burned/burnt”); and variants such as “traveller/traveler,” “realize/realise,” etc.

3.5.5 Other improvements

The generation algorithm can be improved somewhat further by the application of
standard logic programming techniques. In Block (1991) several optimizations for
semantic-head-driven generation are described. For example, non-chain-rules with
variable semantics (such rules may correspond to traces, or function words), are elim-
inated by a partial evaluation technique. Furthermore, a better indexing on semantic
structures is described in order to have fast access to non-chain-rules, whereas chain-
rules are indexed on their syntactic features.

Another possible improvement is discussed in Russell et al. (1990); they describe a
variant of the semantic-head-driven generation algorithm in which the semantic head
of a phrase is connected upward, but the generation of the daughters of each chain-
rule is only performed once the head has been connected upward. This effect can be
obtained by re-ordering the clauses of the sem_head predicate as follows:

(25) sem_head(Goal, Goal).
sem_head(Head, Goal) : -
select_rule(Head, Mother, Others),
sem_head(Mother, Goal),

3.6. PROBLEMS FOR BUG 95

bug_ds(Others).

Finally, note that defining the head-driven generator as a meta-interpreter may
at first sight seem somewhat inefficient. However note that such a meta-interpreter
can often be compiled away. In Ruessink and van Noord (1989) such a compilation is
described for a semantic-head-driven generator defined as a meta-interpreter in Prolog.
The resulting program is very similar to the result of grammar compilation described
in Dymetman et al. (1990); Dymetman (1991).

3.6 Problems for BUG

3.6.1 Verb-second

Although I did not give any examples BUG can correctly handle analyses that make
use of empty elements, such as in the case of a gap threading analysis of wh-movement,
topicalization and relativization. However, there is one general exception to this claim.
In case the head itself has been ‘moved’, there may be a problem for BUG. Consider
the analysis of verb second phenomena in Dutch and German. As we discussed shortly
in the beginning of this chapter, it is assumed in most traditional analyses that the
verb in root sentences has been ‘moved’ from the final position to the second position.
Koster (1975) convincingly argues for this analysis of Dutch. Thus a simple root
sentence in German and Dutch usually is analyzed as in the following Dutch examples:

(26) a. Vandaag vertelt; Arie Bob leugens ¢;
Today tells Arie Bob lies
Today Arie tells lies to Bob

b. Vandaag heeft; Arie Bob leugens ¢; verteld
Today has Arie Bob lies told
Today Arie has told lies to Bob

c. Vandaag [hoort en begrijpt |; Bob Arie’s leugens ¢;
Today hears and understands Bob Arie’s lies
Today Bob hears and understands Arie’s lies

As explained in section 3.2 this can easily be implemented in a unification-based
grammar, using a simple threading technique and an empty verb. Rule 5 consists of
a verb and a verb phrase that misses this verb. There is some freedom in choosing
the head of this rule. If it is the case that the verb always is the semantic head
of rule 5 then BUG can be made to work properly if the prediction step includes
information about the verb second position that is percolated via the other rules (the
v2 attribute). In general however, the verb will not be the semantic head of the
sentence, as is the case in this grammar. Because of rule 11, the verb can have a
different logical form compared to the logical form of the mother of rule 5. This leads
to a problem for BUG. The problem comes about because BUG can (and must) at
some point predict the empty verb as the lexical head of the construction. However

96 CHAPTER 3. HEAD-DRIVEN GENERATION

in the definition of this empty verb no information (such as the list of complements)
will get instantiated (unlike in the usual case of lexical entries). Therefore rule 1 can
be applied an unbounded number of times. The length of the lists of complements
now is not known in advance, and BUG will not terminate.

In van Noord (1989) an ad-hoc solution is proposed. This solution assumes that
the empty verb is an inflectional variant of a verb. Moreover inflection rules are
applied when the generation process proper, is finished (and has yielded a list of
lexical entries), as described in the previous section. During the generation process
the generator acts as if the empty verb is an ordinary verb, thereby circumventing the
problem. However this solution only works if the head that is displaced is always a
lexical entry. This is not true in general. In Dutch the verb second position can not
only be filled by (lexical) verbs but also by a conjunction of verbs (cf. 26¢). Moreover
it seems to be the case that Spanish is best analyzed by assuming the ‘movement’ of
complex verbal constructions to the second position (verb phrase second).

A more general solution is proposed in van Noord (1990a); Shieber et al. (1990).
In this solution it is assumed that there is a relation between the empty head of a
construction, and some other construction (in the case of verb second, the verb in
second position). However the relation is usually implicit in a grammar; it comes
about by percolating the information through different rules from the verb second
position to the verb final position. In the proposal under discussion this relation is
made explicit by defining an empty head as a clause with two arguments as in 27.

cat : vp

lex : no
cat : vp cat : vp
lex : yes v2 | sem : Sem

(27) head_gap(| v2:mno_v2 , sc - Sc).
sem : Sem
s¢ : Sc A sem : Sem
nt | s¢:Sc
| phon:P —P I Gap

This definition can intuitively be understood as follows: once you have found some
node Ant (the first argument of head_gap), then there could have been just as well the
(gap-) node Gap (the second argument of head_gap). Note that a lot of information
is shared between the two nodes, thereby making the relation between the antecedent
and the empty verb explicit. The use of such rules can be incorporated in BUG by
adding the following clause for sem_head:

(28) sem_head(Head, Goal): -
head_gap(Head, Gap),
sem_head(Gap, Goal).

Note that the problem is now solved because the rule for the gap will only be selected,
after its antecedent has been built. Some parts of this antecedent are then unified
with some parts of the gap. The subcat list, for example, will thus be instantiated in
time. The sentence

3.6. PROBLEMS FOR BUG 97

(29) Vandaag vertelt Arie leugens
Today tells Arie lies
Today Arie tells lies

is generated using this technique as in figure 3.13.

On the other hand, this solution can be criticised because it requires some in-
formation to be stated redundantly. Furthermore, if several different head_gaps are
defined then the generator may yield spurious ambiguities. In the next chapter a
completely different analysis of verb second is proposed that is not problematic for
a head-driven generator of the type discussed here. In this analysis grammar rules
may combine their daughters by more complex string operations than those usually
allowed in unification grammars. In the current grammar, strings are combined by (a
difference-list implementation of) concatenation. In the next chapter more powerful
string combination operations are investigated.

3.6.2 Raising-to-object

Although T have argued that the heads first approach usually implies, that the logical
form of a node is sufficiently instantiated at the time this node has to be generated,
it is possible to write linguistically motivated grammars, where this is not the case.
For example, raising-to-object constructions in English can be analyzed in a way, that
is problematic for BUG. Assume that the semantic structure for the sentence

(30) Arie believes Bob to order a salad with ice
will be something like

believe(arie,order(bob,[with(ice)](salad)))

Furthermore assume that Bob is the syntactic object of believes. A reasonable defini-
tion (inspired by the LFG treatment of such cases) of the lexical entry believes in the
spirit of the preceding Dutch example grammar then is the following:

[cat : vp]
sem : believes(Arg,, Arg,)
cat : vp
Sc_<l cat : np] sem : Arg, l cat : np]>
"M sem:Obj |’ C:<l cat : np .]> | sem : Arg,
sem : Obj
| phon : “believes” |

This lexical entry has, apart from its subject, two complements, a noun phrase and
a verb phrase. Furthermore it is stated that the logical form of the noun phrase is
identical to the logical form of the subject of the embedded verb phrase.

However, the previous analysis of raising-to-object constructions is problematic
for BUG. Because the generator proceeds bottom-up it will try to generate the object

98 CHAPTER 3. HEAD-DRIVEN GENERATION

root:vandaag(vertelt(arie,leugens))
|

adv[vertelt(arie,leugens)]

vandaag)
18 . -~
.
15 T~l14
v:vertelt(arie,leugens) V[]\/V(\grteh
117 11 L0
| T~
vertelt neanie v[n:arie]/
! vertelt
\ 13 / N
g, _ € v[n:leugens,n:arie|/
e n.leulgens vertelt
‘9 .5
leugens v[n:leugens,n:arie]

vertelt

Figure 3.13: Trace of the generation of the verb-initial clause ‘vandaag vertelt arie
leugens’. In step number 4, the ordinary finite verb is predicted as the head of the
verb phrase. In step number 5, the generator uses the definition of ‘head_gap’ to
‘replace’ this verb with an empty element, in which the information of the verb is
instantiated. Finally, in step number 15, the verb ‘vertelt’ is generated as a non-head
daughter.

3.7. CONCLUSION 99

noun phrase, before the embedded verb phrase has been generated, i.e., before the link
between the embedded subject and the object is found. As a result, the logical form
of the object is not yet instantiated, and therefore BUG may not terminate in this
case, or at least waste much effort searching for all kinds of NP’s that later turn out
to be not the right ones. Assuming that the analysis of raising-to-object is correct,
then it might be necessary to augment BUG with some version of goal freezing. 1f
the generator comes across an un-instantiated logical form, then the execution of that
node is suspended until the logical form is instantiated. In the case of believes, this will
imply that the embedded verb phrase will be generated first, after which the object
can be generated.

On the other hand, it has also been argued that the order in which the two objects
of believe are selected is exactly the other way around as in the definition above. In
Bach (1979) it is argued, that the verb phrase is selected before the NP object. Such
an analysis can be motivated by observing that certain constraints on control, reflex-
ivization and passive, are easily explained using the notion ‘obliqueness’, which in our
example grammar is implemented as an ordering on the elements of the subcat list
(see also Hepple (1990)). This analysis is only available in formalisms that provide for
wrapping operations. Note that, if indeed the noun phrase object is selected after the
verb phrase, no problem for BUG arises. In the next chapter we propose the use of
more powerful string operations, such as wrapping. In such an extended formalism it
is thus possible to analyze raising-to-object constructions such that it is not necessary
to extend BUG with a dynamic computation rule as discussed above.

3.7 Conclusion

In this chapter I have presented a simple bottom-up and head-driven generation algo-
rithm, and I discussed some extensions to it. I have argued that head driven bottom-up
generators are useful for two reasons. Firstly, the order of processing is geared towards
the semantic content of the input, and the information in the lexicon. Secondly, this
order of processing puts less restrictions on grammars then top-down generators and
Shieber’s chart-based bottom-up generator. For grammars written in the spirit of lex-
ical, sign-based linguistic theories head driven bottom-up generators seem especially
useful.

The two sources of directedness (semantic information, and lexical information)
yield generators with acceptable performance. For example, a version of the generation
algorithm has been used successfully in the MiMo2 translation prototype (cf. chap-
ter 5), for Dutch, Spanish and English. Furthermore, the same approach to generation
has been used successfully in the CLE system (Alshawi and Pulman, 1992).

Certain analyses raise problems, as I discussed, for the proposed generation regime.
In case heads are displaced a head-driven generator may face problems (as we saw in
the analysis of verb-second in Dutch). Another problem occurs if the semantics of a
phrase is dependent on a phrase which is generated afterit, as we saw in the case of an
LFG type analysis of raising-to-object. Specific extensions of the head-driven genera-

100 CHAPTER 3. HEAD-DRIVEN GENERATION

tor can be proposed to handle these problems. A more general solution can be offered
in grammars in which operations on strings are allowed that go beyond concatenation.
In such grammars analyses of both head-movement and raising-to-object are available
which are un-problematic for head-driven generators of the type discussed here. The
next chapter argues for such more powerful operations on strings, and provides a
head-driven parsing algorithm for grammars employing such operations.

Chapter 4

Head-corner Parsing for
Discontinuous Constituency

I describe a head-driven parser for a class of grammars, that handle discontinuous
constituency by a richer notion of string combination than ordinary concatenation.
The parser is a generalization of the left-corner parser and can be used for grammars
written in powerful formalisms such as non-concatenative versions of UCG and HPSG,
and lexicalized and constraint-based versions of Tree Adjoining Grammars.

4.1 Introduction

4.1.1 Discontinuous Constituency and Reversibility

Although most constraint-based formalisms in computational linguistics assume that
phrases are built by concatenation (eg. as in PATR II, GPSG, LFG and most ver-
sions of Categorial Grammar) this assumption is sometimes challenged by allowing
more powerful operations to construct strings. The linguistic motivation for such al-
ternative conceptions of string combination are the analyses of so-called discontinuous
constituency constructions. For example, Pollard (1984) proposes several versions of
‘head wrapping’. In the analysis of the Australian free word-order language Guugu
Yimidhirr, Mark Johnson uses a ‘combine’ predicate in a DCG-like grammar that cor-
responds to the union of words (Johnson, 1985). Mike Reape uses an operation called
‘sequence union’ to analyze Germanic semi-free word order constructions (Reape, 1989;
Reape, 1990). Other examples include Tree Adjoining Grammars (Joshi et al., 1975;
Vijay-Shanker and Joshi, 1988), and versions of Categorial Grammar (Bach, 1979;
Zwicky, 1986; Dowty, 1990; Hoeksema, 1991). Apart from the motivation from the
syntax of discontinuous constituency, non-concatenative grammatical formalisms may
also be motivated from a semantic perspective, as it is expected that such formalisms
facilitate a systematic, compositional construction of semantic structures.

The use of non-concatenative grammars is furthermore motivated by the desire to
obtain reversible grammars. This motivation is essentially twofold.

101

102 CHAPTER 4. HEAD-CORNER PARSING

Motivation from generation. It is expected that the extra power available in
non-concatenative formalisms, facilitates a systematic, compositional construction of
semantic representations. Therefore, it will be easier to define generation algorithms.
The semantic-head-driven generation strategy discussed in the previous chapter faces
problems in case semantic heads are ‘displaced’, and this displacement is analyzed
using threading. However, in this chapter I sketch a simple analysis of verb-second (an
example of a displacement of semantic heads) by an operation similar to head wrapping
which a head-driven generator processes without any problems (or extensions) at all.

Motivation from parsing. It is expected that non-concatenative grammars are
useful for parsing as well. The parsing problem for grammars, written in concate-
native formalisms such as PATR and DCG, is undecidable in general. Thus, the
restriction that phrases are built by concatenation is not a ‘real’ restriction from a
formal point of view. Often, it is possible to see whether such a grammar in fact can be
parsed effectively. The ‘dangerous’ parts of a grammar are rules with an empty right-
hand-side, and non-branching rules. Inspection of the grammar, and most notably its
dangerous parts, sometimes may reveal that no problems arise. To analyze discontin-
uous constituency, the grammar writer is forced to use complicated ‘gap threading’
mechanisms (Pereira, 1981). Gap threading, though, heavily uses the ‘dangerous’
types of rule. For this reason, the more discontinuous constituency constructions are
analyzed, the more difficult it becomes to see whether the resulting grammar can be
used effectively for parsing. Furthermore, if at a certain moment the addition of a
certain threading mechanism (say, for extraposition) does result in a grammar that is
not effectively parsable anymore, it is unclear whether to blame the proposed exten-
sion to the grammar, or whether one of the other threading mechanisms should be
blamed, (or whether the problem simply comes about because of the interaction of
different threading mechanisms).

For this reason, non-concatenative grammars are motivated, because these gram-
mars allow for more expressive power. This addition of expressive power may further-
more reduce the need of ‘dangerous’ rules, and thus non-concatenative grammars are
useful for extendability.

4.1.2 Overview

This chapter is organized as follows. Firstly I discuss the proposals for more power-
ful string operations, as presented by Pollard (1984), Johnson (1985), Reape (1990),
Vijay-Shanker and Joshi (1988) and Abeille (1988). Then I define two restrictions on
possible string combinations for constraint-based grammars, based on Vijay-Shanker
et al. (1987). The combination of strings is restricted to be linear (non-copying) and
non-erasing). Next, I define, as an example of such a grammar, a simple grammar for
Dutch, in which strings are combined by a technique quite similar to Pollard’s head
wrapping. The main part of the chapter is section 4.4, in which a parsing strategy
for linear and non-erasing grammars is proposed. Most ‘standard’ parsing algorithms
for constraint-based grammars (Matsumoto et al., 1983; Pereira and Shieber, 1987;

4.2. BEYOND CONCATENATION 103

Shieber, 1989; Haas, 1989; Gerdemann, 1991) are not applicable in general for non-
concatenative grammars because in these algorithms the assumption that phrases are
constructed by concatenation is ‘built-in’. I describe a head-driven parsing algorithm,
based on the head-driven parser by Martin Kay (Kay, 1989). The parser is general-
ized in order to be applicable to any grammar that employs linear and non-erasing
operations on strings. The disadvantages Kay noted for his parser do not carry over
to this generalized version, as redundant search paths for CF-based grammars turn
out to be genuine parts of the search space for this enlarged class of grammars.

The algorithm is closely related to head-driven generators as discussed in the pre-
vious chapter. The algorithm proceeds in a bottom-up, head-driven fashion, which
provides for bottom-up and top-down filtering in a simple and straightforward way. In
modern linguistic theories very much information is defined in lexical entries, whereas
rules are reduced to very general (and very un-informative) schemata. More infor-
mation usually implies a reduction of the search space, hence it is sensible to parse
bottom-up, in order to obtain useful information as soon as possible. Furthermore, in
many linguistic theories, a ‘head’ of a construction plays an important role. For exam-
ple, heads of a construction determine what other parts the construction may have.
Furthermore, heads carry the features associated with the construction as a whole
(such as case, agreement). The notion ‘head’ plays an important role in grammati-
cal theories as diverse as Government and Binding, (Xbar theory, Jackendoff (1977));
Generalized Phrase Structure Grammar (the head-feature convention, Gazdar et al.
(1985)); and Head-driven Phrase Structure Grammar, where the name of the the-
ory reflects the importance of the notion ‘head’. Given the importance of the notion
‘head’, it is sensible to start with the head, in order to know what else you have to
look for next. As the parser proceeds from head to head it is furthermore possible to
use powerful top-down predictions based on the usual head feature percolations.

In section 4.5 I show how the head-driven parser can be put to use for another
instantiation of constraint-based grammars in which string operations are restricted
to be linear and non-erasing: constraint-based and lexical versions of Tree Adjoining
Grammars.

Some of the properties and possible modifications of the head-corner parser are
discussed in section 4.6.

4.2 Beyond concatenation

In formalisms such as PATR II the string associated with a derivation is the sequence of
terminal nodes of the corresponding derivation tree in left-to-right order. For example,
the sentence

(1) Kim is easy to please

may be analyzed in some PATR grammar in a way that gives rise to the derivation
tree in figure 4.1. Hence, the string associated with the derivation is the sequence
‘kim is easy to please’. Note though that in PATR this string is not (necessarily) part
of the feature structures.

104 CHAPTER 4. HEAD-CORNER PARSING

52
/N
kim wvps

/\

is apy

/N

to please

Figure 4.1: A possible PATR, derivation tree, for the sentence ‘Kim is easy to please’

In sign-based approaches such as in UCG and HPSG the string is part of an at-
tribute of each feature structure (sign). The attribute is usually called ‘phon’, ‘string’,
‘graph’ or ‘orth’ (I will use ‘phon’ in the following). Hence, the string associated with
a construction is simply the value of the ‘phon’ feature of the sign that is assigned
to the construction. In UCG there is a condition, called ‘adjacency’, which says that
signs can combine only if they are adjacent. In other words, the value of the ‘string’
feature of a mother node in a parse tree is always the concatenation of the ‘string’
features of the daughter nodes. Hence, the UCG parse tree for the foregoing example
presumably would be something like figure 4.2.

kim is easy to please

7N

kim is easy to please

PN

easy to please

N

easy to please

e

please

Figure 4.2: Possible UCG parse tree, restricted to the value of the ‘phon’ attribute,
for the sentence ‘Kim is easy to please’

The two approaches are formally equivalent, but the second approach has the
advantage that it at least becomes easier to think of other ‘modes’ of combination of

4.2. BEYOND CONCATENATION 105

the value of the ‘phon’ attribute. As an example consider
(2) Kim is an easy person to please

Suppose that there is linguistic motivation that in this sentence, as in sentence (1), the
sequence ‘easy to please’ should be regarded as a (discontinuous) constituent. Such
an analysis cannot be defined directly in PATR or UCG. If no adjacency condition
applied we could have a parse tree of ‘easy person to please’ as in figure 4.3.

an easy person to please

N

an easy person to please
person Qto please
easy/ hplease
to/ \please

Figure 4.3: Hypothetical parse-tree (restricted to phonological information), for a
discontinuous analysis of the sentence ‘An easy person to please’

In the next subsections I describe some proposals which allow such a direct imple-
mentation of discontinuous constituents.

4.2.1 Head wrapping

Pollard (1984) proposes a grammatical formalism called Head Grammar (HG). HG is
a slightly more powerful formalism than context-free grammar. The extra power is
available through head wrapping operations. A head wrapping operation manipulates
strings which contain a distinguished element (its head). Such headed strings are
a pair of an ordinary string, and an index (the pointer to the head), for example
(wywewswy, 3) is the string wywywsw, of which the head is w3. Grammar rules define
operations on such strings. Such an operation takes n headed strings as its arguments
and returns a headed string. A simple example is the operation which takes two
headed strings and concatenates the first one to the left of the second one, and where
the head of the first one is the head of the result (this shows that the operations
subsume ordinary concatenation). The rule is labelled LC1 by Pollard:

LC1({a,3),(T,7)) := (oT,1)

106 CHAPTER 4. HEAD-CORNER PARSING

The following example shows that head-wrapping operations are in general more pow-
erful than concatenation. In this example the second argument is ‘wrapped’ around
the first argument:

RLQ((U,]), <t1 . tn; ’L>) = <t1 .. .tiO'ti+1 .. -tn, Z)
As an example, Pollard presents a rule for English auxiliary inversion:
S[+INV] — RL2(NP,V P[+AUX]))

which may combine the noun phrase ‘Kim’ and the verb phrase ‘must go’ to yield
‘Must Kim go’, with head ‘must’.

The motivation Pollard presents for extending context-free grammars (in fact,
GPSQG), is of a linguistic nature. Especially so-called discontinuous constituencies can
be handled by HG whereas they constitute typical puzzles for GPSG. Apart from the
above mentioned subject-auxiliary inversion he discusses the analysis of ‘transitive
verb phrases’ based on Bach (1979). The idea is that in sentences such as

(3) Sandy persuaded Kim to leave

‘persuaded’ + ‘to leave’ form a (VP) constituent, which then combines with the NP
object ("Kim’) by a wrapping operation.

Yet another example of the use of head-wrapping in English are the analyses of
the following sentences.

(4) a. Kim is much taller than Sandy

b. Kim is a much taller person than Sandy

(5) a. Kim is very easy to please

b. Kim is a very easy person to please

where in the first two cases ‘taller than Sandy’ is a constituent, and in the latter
examples ‘easy to please’ is a constituent.

Breton and Irish are VSO languages, for which it has been claimed that the V
and the O form a constituent. Such an analysis is readily available using head wrap-
ping, thus providing a non-transformational alternative for the analysis of McCloskey
(1983).

Finally, Pollard also provides a wrapping analysis of Dutch cross-serial dependen-
cies.

4.2.2 Johnson’s ‘combines’

Johnson (1985) discusses an extension of DCG in order to analyze the Australian free
word-order language ‘Guugu Yimidhirr’. In ordinary DCG a category is associated
with a pair indicating which location the constituent occupies. Johnson proposes that
constituents in the extended version of DCG be associated with a set of such pairs. A
constituent thus ‘occupies’ a set of continuous locations. The following is a sentence
of Guugu Yimidhirr:

4.2. BEYOND CONCATENATION 107

(6) Yarraga-aga-mu-n gudaa dunda-y biiba-ngun
boy-GEN-mu-ERG do+ABS hit-PAST father-ERG
The boy’s father hit the dog

In this sentence, the discontinuous constituent ‘Yarraga-aga-mu-n . . . biiba-ngun’ (boy’s
father) is associated with the set of locations:

{[0,1],[3, 4]}

Johnson notices that such expressions can be represented with bit vectors. In a gram-
mar rule the sets of locations of the daughters of the rule are ‘combined’ to construct
the set of locations associated with the mother node. The predicate combines(sy, sg, $)
is true iff s is equal to the (bit-wise) union of s; and sy, and the (bit-wise) intersection
of s; and s is null (ie. s; and sy must be non-overlapping locations). Grammars
which exclusively use this predicate, are permutation-closed. For Guugu Yimidhirr
Johnson also proposes a concatenative rule for possessive noun constructions in which
the possessive is identified by position rather than by inflectional markings. Apart
from these constructions Guugu Yimidhirr is said to be permutation-closed (Johnson,
quoting Haviland (1979)).

Earley deduction (Pereira and Warren, 1983) is used as a general proof procedure
for such extended DCG grammars.

4.2.3 Sequence union

Reape (1989), and Reape (1990) discuss a relation called sequence union to analyze
discontinuous constituents. The sequence union of the sequences s{, s and s3 is true,
iff each of the elements in s; and s; occur in s3, and moreover, the original order of
the elements in s; and sy is preserved in s3. For example, the sequence union of the
sequences {a,b) and (c,d) and s3 is true, iff s3 is any of the sequences:

Reape presents an HPSG-style grammar (Pollard and Sag, 1987) for German and
Dutch which uses the sequence union relation on word-order domains. The grammar
handles several word-order phenomena in German and Dutch. Word-order domains
are sequences of signs. The phonology of a sign is the concatenation of the phonology
of the elements of its word-order domain. In ‘rules’, the word-order domain of the
mother sign is defined in terms of the word-order domains of its daughter signs. For
example, in the ordinary case the word-order domain of the mother simply consists
of its daughter signs. Thus, for example, in the rule s — np vp the word-order

108 CHAPTER 4. HEAD-CORNER PARSING

domain associated with s would consist of the sequence which consists of the signs
associated with np and vp. However, in specific cases it is also possible that the
word-order domain of the mother consists of the elements of the word-order domains
of the daughters. Thus, in case of a rule + — yz in which the word-order domain
associated with y is the sequence (y;, y2), and the word-order domain associated with z
is (z1), then the word-order domain associated with z is any of the sequences (y1, y2, 2),
(Y1, 2,92), (2, Y1, Y2)-

The following German example by Reape clarifies the approach, where I use indices
to indicate to which verb an object belongs.

(7) ...es; ihm; jemandy zu lesen; versprochen; haty
...1t him someone to read promised had
...someone had promised him to read it

It is assumed that a ‘flat’ verb phrase rule selects the arguments of a verb (in one
go), and that furthermore in case of a vp argument, the word-order domain of this vp
is sequence-unioned with the word-order domain of the verb; the non-vp arguments
of the verb become simply members of the word-order domain of the mother of this
verb-phrase rule. Figure 4.4 shows a parse tree of this sentence, where the nodes of
the derivation tree are labelled by the string associated with that node. Note that
strings are defined with respect to word-order domains. Sequence union is defined
on such domains. The strings of the derivation tree are thus only indirectly related
through the corresponding word-order domains. Linear precedence statements are de-
fined with respect to word-order domains. These statements can be thought of either
as well-formedness conditions on totally ordered sequences, or alternatively as con-
straints limiting possible orders of a word-order domain. Note that order information
is monotonic; the sequence union relation cannot ‘change’ the order of two ordered
items.

4.2.4 Tree Adjoining Grammars

Tree Adjoining Grammar (TAG) is a formalism originally proposed in Joshi et al.
(1975). Several variations on that formalism are developed, among which we will be
interested in lexicalized (LTAG) (Abeille, 1988; Schabes, 1990) and constraint-based
(FTAG) (Vijay-Shanker and Joshi, 1988; Vijay-Shanker, to appear) versions. A TAG
consists of a number of elementary trees, which can be combined with a substitution,
and an adjunction operation.

The TAG formalism can be motivated because it provides a larger domain of
locality in which to state linguistic dependencies. In most formalisms, dependencies
can be defined between the elements of a rule (i.e. between the nodes of a local tree).
In TAG, it is possible to state dependencies between nodes of trees which are further
apart, because the basic building blocks of the formalism are trees. For example, the
relation between a topicalized constituent and its governor can be stated locally in a
TAG, whereas in most other formalisms this relation must be stated with some global
mechanism. Furthermore, the adjunction operation provides for the analysis of (at

4.2. BEYOND CONCATENATION 109

es; thm; jemandy zu lesen; versprochen; haty

7 T~

haty jemand, es; ihm; zu lesen; versprochen;

TN

versprochen; ihm; es; zu lesen;

/\

zu lesen; es;

Figure 4.4: Simplified parse tree of Reape’s analysis of German verb-clusters, using
sequence union. The indices relate verbs with their arguments. This tree can be
read in a bottom-up fashion, as follows. Firstly, the verb ‘zu lesen’ selects an np,
resulting in a verb-phrase with word-order domain (np;, v;). This verb-phrase is one
of the arguments of the verb ‘versprochen’. As this argument is a verb-phrase its
word-order domain is sequence-unioned. A (possible) result is the word-order domain
(npi, mpj, vi, v;). The verb ‘hat’ also selects an np and a vp. The elements of the vp
are sequence unioned, the np is simply added to the word-order domain, which results
in a possible word-order domain (np;, np;, npk, vi, v;, V).

110 CHAPTER 4. HEAD-CORNER PARSING

least some) kinds of discontinuous constituency constructions. This is reflected in the
formal power of the formalism: some TAGs recognize context-sensitive languages.

Ordinary TAG. A Tree Adjoining Grammar consists of a set of elementary trees,
divided in initial and auziliary trees. These trees constitute the basic building blocks
of the formalism. Operations of adjunction and substitution are defined which build
derived trees from elementary trees. TAG thus constitute a tree-generating system,
rather than a string-generating system as context-free grammar. The string language
of a TAG is defined as the yields of all the trees derived by a TAG.

An initial tree is a tree of which the interior nodes are all labelled with non-terminal
symbols, and the nodes on the frontier are either labelled with terminal symbols, or
with non-terminal symbols, which are marked with the substitution marker (]).

An auxiliary tree is defined as an initial tree, except that exactly one of its frontier
nodes must be marked as foot node (**’). The foot node must be labelled with a
non-terminal symbol which is the same as the label of the root node.

As an example, consider the following initial and auxiliary trees in figure 4.5. In

/N
np | vp o3 /np
% T \T
left the boy
B /VP
B Vvp Pa adj f3 n vp * \pp
7\ 7\ /N / \
vp * a(|1v adv adj * adj =n* p np]l
|
today Ve|ry pre|tty with

Figure 4.5: Three initial and four auxiliary trees as an example of a Tree Adjoining
Grammar.

initial tree a;, the np node is a substitution node, and left is a terminal symbol
associated with a frontier node. In auxiliary tree (3, the foot node is the leftmost
daughter of the root node. with is a terminal symbol at a frontier node, and the np
node is a substitution node.

4.2. BEYOND CONCATENATION 111

Derived trees are built from initial and auxiliary trees by substitution and adjunc-
tion. Substituting a tree « in a tree o/ simply replaces a substitution node in o/ with
«, under the convention that the non-terminal symbol of the substitution node is the
same as the root node of . For example, substituting as in a3 gives the following
tree:

np
&

the boy

Only initial trees, and derived trees, can be substituted in another tree.

Adjunction is a more complex operation. Adjoining an auxiliary tree § at some
node n of a derived tree vy proceeds as follows. Firstly, the non-terminal symbol of the
root node (and hence the non-terminal symbol of the foot node) of § should be the
same as the non-terminal symbol associated with n. The sub-tree ¢ of v rooted by n
is removed from -y, and [is substituted for it instead; where ¢ is substituted in the
foot node of 3. An illustration of the adjunction operation is presented in figure 4.6.

As an example, consider the adjunction of 33 at the ‘n’ node of the derived tree:

np
&

the boy

This yields the derived tree in figure 4.7. As a further example, we might then adjoin
(B2 into this derived tree at the adj node, resulting in the tree shown in figure 4.8.

Adjoining constraints. Usually, a TAG may specify adjoining constraints on the
nodes of its initial and auxiliary trees. Such constraints for example may explicitly
forbid adjunction on a node, or only allow adjunction of certain auxiliary trees. How-
ever, we will ignore these adjoining constraints because in FTAG these can all be
simulated using feature equations.

Lexicalized TAG. In LTAG, each elementary tree contains at least one frontier
node labelled with a terminal symbol. Thus each elementary tree is associated with
at least one lexical element. Note that in the example grammar above each of the
elementary trees is lexical; hence the grammar provides an example of a lexicalized
TAG.

112 CHAPTER 4. HEAD-CORNER PARSING

Figure 4.6: Illustration of adjunction. In (1) the sub-tree at the node n where adjunc-
tion takes place, is identified. In (2) the root node of the auxiliary tree is substituted
at node n, and the sub-tree of n is substituted in the foot node of the auxiliary tree,
resulting in (3).

4.2. BEYOND CONCATENATION 113

Figure 4.7: Result of adjoining (5 at the node labelled ‘n’, of the derived tree np(d(the),
n(boy)).

np

det n

the adj n
adv adj boy

very pretty

Figure 4.8: Result of adjoining (3, at the ‘adj’ node of the derived tree np(d(the),
n(adj(pretty), n(boy))).

114 CHAPTER 4. HEAD-CORNER PARSING

Constraint-based TAG. Adding constraints to the TAG formalism may at first
sight be somewhat similar to the addition of constraints to a context-free grammar:
each non-terminal symbol may be constrained by equations. However, in the case of
a TAG this will not do. If we simply would constrain a node of an elementary tree,
and then perform adjunctions at this node, then this would lead to a situation where
these constraints are associated both to two distinct nodes.

A way to look at this problem from a more general perspective is presented in
Vijay-Shanker (to appear). In a way, an elementary tree partially describes possible
trees. For example, the elementary tree a; of figure 4.5 can be interpreted as in
figure 4.9.

/ N\
np | le
v
|
Y
;
|
left

Figure 4.9: Dominance relations in TAG. Solid lines represent immediate dominance,
and dotted lines any dominance.

Thus, we might view such an initial tree as licensing any tree which can be built
by adjoining at its interior nodes. For that reason, there is always a sense in which
we view such nodes ‘from the bottom’ or ‘from the top’. This intuition is formalized
in constraint-based versions as follows. Each of the nodes of an elementary tree is
associated with two variables (called top and bot) representing the view ‘from the top’
and ‘from the bottom’ on which constraints can be defined.

In the case of the substitution of a tree «, at a substitution node n of a tree o/,
the result is as before, under the convention that the fop variable of the root node of
« is constrained to be equal to the fop variable of n, and similarly the bot variable of
the root of « is equal to the bot variable of n.

Adjunction is slightly more complex. Adjoining an auxiliary tree § at some node
n of a derived tree «y is defined as before, under the convention that the top variable
of n is constrained to be equal to the top variable of the root node of 3; furthermore
the bot variable of n is constrained to be equal to the bot variable of the foot node of
B. See figure 4.10 for an illustration.

4.2. BEYOND CONCATENATION 115

top, top,
oty oty
top;

0t3

Figure 4.10: Illustration of adjunction with constraints. The top features of the
adjunction node are unified with the top features of the root node of the auxiliary
tree. The bottom features of the adjunction node are unified with the bottom features
of the foot node of the auxiliary tree.

Finally, at the end of a derivation the top and bot variables of each node are
constrained to be equal as well. A derived tree with a node of which the top and bot
variables cannot be unified is not regarded as a tree derived by the grammar.

Examples of the use of constraints for TAG are the usual number agreement, case
marking, etc. However, it is also possible to use the constraint machinery to define
‘sign-based’ TAGs in which each node is associated with a value for a ‘phonology’ and
a ‘semantics’ attribute. We shall see that this will crucially illustrate the need for two
distinct variables for each node.

The figures 4.11 and 4.12 illustrate how this might work. The phonology associated
with the bottom part of the verb is the sequence (saw). However, adjunctions may
apply to this node. For that reason, the phonology of the top part of this node is not
yet known. Whatever its value will become, we know that the phonology of the bottom
part of the verb phrase node, is the concatenation of the top parts of the verb node
and the object np. Again, adjunctions at the verb phrase node may apply. Therefore
the bottom and top parts of the verb phrase node are unrelated. The phonology of
the bottom of the root node is the concatenation of the top of the subject np and the
verb phrase. Note that, if no adjunctions apply at all, the bottom and top parts of
each node is unified, giving exactly the right result.

Thus, the argument structure of the bottom part of the verb ‘saw’ is defined as a
binary predicate, of which the arguments are the argument structures of the subject
and the object. The argument structure of the top part of this verb, however, is not
yet known. For example, modifiers may adjoin later at this node to construct a more
complex argument structure, built from the simple one associated with the bottom
part of the node. Once no more adjunctions are applied, the argument structure is

116 CHAPTER 4. HEAD-CORNER PARSING

cat : np cat : vp
l[top:Po—Pl] ZZ];QP;:E
ES; ::‘(/QO_Ql I [cat:np]
bot : (saw|R) — R fop : Q1 = Q

Figure 4.11: Example of sign-based TAG: construction of phonology, using a
difference-list encoding. Each local tree defines that the bottom string of the mother
is the concatenation of the top of the daughters. However, the bottom and top of each
node are not equated, as adjunctions may take place at each node.

percolated to the verb phrase node: hence the top part of the verb is unified with
the bottom part of the verb-phrase. Again, the bottom-part of the verb phrase may
be modified, because of adjunctions. Its top-part is unified with the bottom part
of the root node, because the argument structure should be percolated, if no more
adjunctions apply.

4.2.5 Linear and non-erasing grammars

I will restrict the attention to a class of constraint-based formalisms, in which oper-
ations on strings are defined that are more powerful than concatenation, but which
operations are restricted to be non-erasing, and linear. The resulting class of systems
has an obvious relation to Linear Context-Free Rewriting Systems (LCFRS), (Vijay-
Shanker et al., 1987), except for the addition of constraints. For a discussion of the
properties of LCFRS without feature-structures, see Vijay-Shanker et al. (1987) and
Weir (1988). We will not discuss these properties, as these properties do not carry
over to the current system. The proposals discussed in the previous section can be
seen as examples of linear and non-erasing constraint-based grammars.

As in LCFRS, the operations on strings are characterized as follows. First, derived
structures will be mapped onto a string of words; i.e. each derived structure ‘knows’
which string it ‘dominates’. For example, each derived feature structure may contain
an attribute ‘string’ of which the value is a list of atoms representing the string it

4.2. BEYOND CONCATENATION 117

cat S
bot Veerhrase
‘- cat vp
l [;;a i Iépb. l top : VerbPhrase
op + >ub] bot Verb
cal : np
top : Verb ! l ;at) Iszb']
bot : see(Subj, Obj) op 0]

Figure 4.12: Example of a sign-based TAG: construction of semantics. The bottom
and top semantic structures of each node are not equated, as adjunctions may take
place at each node.

dominates. I will write w(F') for the set of occurrences of words that the derived
structure F' dominates. Rules combine structures D, ... D, into a new structure M.
Non-erasure requires that the union of w applied to each daughter is a subset of w(M):

n

i=1
Linearity requires that, for each rule, the difference of the cardinalities of these sets
is a constant factor; i.e. a rule may only introduce a fixed number of words syncate-
gorematically:

M)| — | U (D;)| = ¢, c a constant

CF-based formalisms clearly fulfill this requirement, as do Head Grammars, gram-
mars using sequence union, Johnson’s Australian grammar, and TAG’s. Unlike in the
definition of LCFRS I do not require that these operations are operations in the strict
sense, i.e. the operations do not have to be functional, nor do I require that these
operations are defined as operations on sequences of strings. Note that sequence union
is relational; the others are functional. For a discussion of the consequences of this
difference, cf. Reape (1991).

Furthermore, I will assume that some rules have a designated daughter, called the
head. Although I will not impose any restrictions on the head, it will turn out that

118 CHAPTER 4. HEAD-CORNER PARSING

the parsing strategy to be proposed will be very sensitive to the choice of heads, with
the effect that grammars in which the notion ‘head’ is defined in a systematic way
(Pollard’s Head Grammars, Reape’s version of HPSG, Dowty’s version of Categorial
Grammar), may be much more efficiently parsed than other grammars. The notion
head corner of a parse tree is defined recursively in terms of the head. The head-corner
of a node without a head (eg. a frontier node) will be this node itself. The head corner
of a node with a head, will be the head corner of this head node.

Remember that a grammar is a set of definite clauses, defining the relation ‘sign’.
Hence a grammar rule will be something like

sign(M) :=sign(D1) . . . sign(Dy,), ¢.

where ¢ are constraints on the variables. However, to make the ways in which strings
are combined explicit, I will allow that a rule is associated with an extra relation-call
cp/2 (for ‘construct-phonology), of which the arguments are resp. the mother node,
and the sequence of daughter nodes. This extra relation is thought of as defining how
the string of the mother node is built from the strings of the daughters.

For example, to implement a simple grammar rule using concatenation, we may
write

(8) sign(M):-
sign(D1),
sign(Dy),
Cp(M, <D1’ D2>)a
¢.

cp([phon : P] ,([phon : Py } , [phon : Py]}):—
append(P1, Py, P).

where the relation ‘cp’ states that the string of the mother is the concatenation of
the strings of the daughters. The extra relation should be defined in such a way that
given the instantiated daughter signs, the extra relation is guaranteed to terminate
(assuming the procedural semantics defined in chapter 2). Thus, we think of the
definition of such extra predicates as an (innocent) sub-program.

Furthermore, each grammar should provide a definition of the predicate head/2
and yield/2. The first one defines the relation between the mother sign of a rule and
its head; the second one defines the phonology (as a list of atoms) associated with a
sign.

Finally, for each rule it should be known which terminals are introduced by it.

Representing rules for meta-interpreter For the meta-interpreter we define here
we will assume that rules are represented as follows. Firstly, as in DCG, I use the
convention that external calls are written inside { }; furthermore, the meta-interpreter
uses the meta-call call/1 to call a predicate (as in Prolog).

A rule sign(Mother): -sign(D,) ... sign(D,,), cp(. . .), ¢. which consumes words Words,
and which has no head, is called a ‘non-chain-rule’, and is represented as follows:

4.3. A SAMPLE GRAMMAR 119

(9) ncr(Mother, [D;...D,,{ ¢p(...) }], Words) : -¢.

Note that lexical entries are non-chain-rules of which the list of daughters is presum-
ably the empty list. Also note that the call to the relation ‘cp’ is added to the list of
daughters.

A rule sign(Mother) : =sign(D,) ... sign(D;), sign(Head), sign(D;;1) ... Dy, ep(. . .), ¢.
with head Head, and which consumes words Words, is called a ‘chain-rule’, and is rep-
resented for the meta-interpreter as follows (hence we allow for terminal symbols to
be introduced syncategorematically):

(10) er(Head, Mother, [D;...D,,{ cp(...) }|, Words):-¢.

4.3 A sample grammar

In this section I present a simple linear and non-erasing constraint-based grammar
for a (tiny) fragment of Dutch. As a caveat I want to stress that the purpose of the
current section is to provide an example of possible input for the parser to be defined
in the next section, rather than to provide an account that is completely satisfactory
from a linguistic point of view.

There is only one parameterized, binary branching, and headed rule in the gram-
mar. The rule does not introduce any terminals. It is defined as follows, where the
first daughter represents the head:

syn : Syn
(11) sign(| sc: Tail i-
sem : Sem | g

syn : Syn
sign(| sc: (Arg|Tail) |),
sem : Sem H
sign(Arg),

cp(M, (H, Arg)).

In this grammar rule, heads select arguments using a subcat list. Argument structures
are specified lexically and are percolated from head to head. Syntactic features are
shared between heads (hence I make the simplifying assumption that head = functor,
which may have to be revised in order to treat modification). The relation ‘cp’ de-
fines how the string of the mother is constructed from its daughters. In the grammar
I use revised versions of Pollard’s head wrapping operations to analyze cross serial
dependency and verb second constructions. For a linguistic background of these con-
structions and analyses, cf. Evers (1975), Koster (1975) and many others. The value
of the attribute h-s (for ‘headed string’) conmsists of three parts, to implement the
idea of Pollard’s ‘headed strings’. The parts left and right represent the strings left
and right of the head. The part head represent the head string. Hence, the string
associated with such a term is the concatenation of the three arguments from left to
right. The predicate cp is defined as follows:

120 CHAPTER 4. HEAD-CORNER PARSING

h-s : Mphon

phon : String

rule : Rule

] ([hs : Hphon |, l i-s : Aphon])):_

02 en|

wrap(Rule, Hphon, Aphon, Mphon),
phon_string(Mphon, String).

In the first clause, the values of the attribute h-s associated with the two daughters of
the rule are to be combined by the wrap predicate. Several versions of this predicate
will be defined below. The value of phon of the mother node is defined with respect
to its h-s value by the predicate phon_string. This predicate is defined in terms of the
predicate append/3. As an abbreviation I write A - B for C such that append(A, B, C).
The definition of phon_string is:

left : L
(13) phon_string(| head :H | ,L-H-R).
right : R

A few versions of the predicate wrap are listed below, to illustrate the idea that
different string operations can be defined. Each version of the predicate will be as-
sociated with an atomic identifier to allow lexical entries to subcategorize for their
arguments under the condition that a specific version of this predicate be used. The
purpose of this feature is similar to the ‘order’ feature found in UCG (Zeevat et al.,
1987). For example, a verb may select an object to its left, and an infinite verb phrase
which has to be raised. For simple (left or right) concatenation the predicate is defined
as follows:

left - L left : AL left : AL -AH- AR - L
(14) wrap(left, | head: H | ,| head: AH |, | head: H).
right : R right : AR right : R
left : L left : AL left - L
wrap(right, [head : H | , | head : AH | , | head : H).
right : R right : AR right : R - AL - AH - AR

In the first case the string associated with the argument is appended to the left of the
string left of the head; in the second case this string is appended to the right of the
string right of the head.

Lexical entries for intransitive verbs such as ‘ontwaakt’ (wakes up) are defined as
follows:

4.3. A SAMPLE GRAMMAR 121
[syn ;v 1
[syn :n
e
s { sem : Subj)
15) & | rule : left
sign - :
(15) sign(ot 0)
h-s : | head : (ontwaakt)
| right : ()
sem : ontwaakt(Subj)
| phon : (ontwaakt)

I assume that lexical entries also specify that their phon-value is dependent on the h-s
value. Furthermore, the values of the left and right attributes of h-s are the empty
list. Henceforth, I will not specify the values of phon and h-s explicitly, but assume
that each lexical entry extends

left = ()
h-s : | head : Head
right : ()
phon : Head

Hence, bi-transitive verbs such as ‘vertelt’ (tells) are abbreviated as follows:

[syn :v
syn :n syn :n syn : n
s sc:) sc () sc () >
(16) "V sem:Obj || sem:Iobj || sem : Subj
rule : left rule : left rule : left
phon : (vertelt)
| sem : vertelt(Subj,lobj,Obj) |

A different version of this lexical entry selects an sbar (complementizer phrase) to the
right (simplifying the argument structure):

[syn :v
syn : comp syn :n syn :n
st { sc:{) sc: () sc: ())
(17) "V sem:Obj |’ | sem:Iobj | 7| sem :Subj
rule : right rule : left rule : left
phon : (vertelt)
| sem : vertelt(Subj,lobj,Obj) |

Proper nouns such as ‘Arie’ are simply defined as:

122 CHAPTER 4. HEAD-CORNER PARSING

syn :n
sc:{)

(18) phon : (arie)
sem : arie

For the sake of the example I assume several other NP’s to have such a definition.

The choice of data-structure for the value of the attribute h-s allows a simple
definition of the verb raising vr version of the wrap predicate that may be used for
Dutch cross serial dependencies:

left : () left : AL left : AL
(19) wrap(vr, | head :H |, | head : AH |, | head: H)-
right : () right : AR right : AH - AR

Here the head and right string of the argument are appended to the right, whereas
the left string of the argument is appended to the left. A raising verb, eg. ‘hoort’
(hears) is defined as:

syn : v
syn : inf Syn :n Syn :n
s sc:([sem:lnij]) sc: () sc:))
(20) M osem Oj | sem :InfSj | 7| sem:Sj
rule © vr rule : left rule : left
phon : (hoort)
| sem : hoort(Sj,0j)]

In this entry ‘hoort’ selects — apart from its NP-subject — two objects, an NP and a
VP (with category INF). The INF still has an element in its subcat list; this element
is controlled by the NP (this is performed by the sharing of InfSj). To derive the
subordinate phrase

(21) dat Jan Arie Bob leugens hoort vertellen
that Jan Arie Bob lies hears tell
that Jan hears that Arie tells lies to Bob

the main verb ‘hoort’ first selects the infinitival ‘bob leugens vertellen’. These two
strings are combined into ‘bob leugens hoort vertellen’ (using the vr version of the
wrap predicate). After the selection of the object, resulting in ‘arie bob leugens
hoort vertellen’, the subject is selected resulting in the string ‘jan arie bob leugens
hoort vertellen’. This string is selected by the complementizer, resulting in ‘dat jan
arie bob leugens hoort vertellen’. The argument structure will be instantiated as
dat(hoort(jan,vertelt(arie,bob,leugens))).

Note that this analysis of verb raising constructions faces problems because of
the possibility to coordinate verb clusters. This possibility seems to indicate that an
analysis in which subcategorization lists are manipulated (as discussed in the previous

4.3. A SAMPLE GRAMMAR 123

chapter) is more promising. For a discussion of these matters, cf. ?.

In Dutch main clauses, there usually is no overt complementizer; instead the finite
verb occupies the first position (in yes-no questions), or the second position (right
after the topic; ordinary declarative sentences). In the following analysis an empty
complementizer selects an ordinary (finite) vp; the resulting string is formed by the
following definition of wrap.

left : () left : L left : ()
(22) wrap(v2, | head:{) |,| head :H |, | head : H).
right : () right : R right : L - R

The ‘empty’ finite complementizer is defined as:

[syn : comp 1
syn : v
ol ser 0
(23) se sem : Obj)
rule : v2
phon : ()
| sem : Obj |

whereas an ordinary complementizer, eg. ‘dat’ (that) is defined as:

[syn : comp
syn : v
ol ser 0
(24) se sem : Obj)
rule : right
phon : {dat)
| sem : Obj]

Thus, after the application of the empty complementizer, a verb initial sentence is
formed. In the case of root sentences, some mechanism for topicalization will apply,
which in some way places a further constituent before the verb. In yes-no questions,
the derivation is finished at this point.

Note that this analysis captures the special relationship between complementizers
and (fronted) finite verbs in Dutch. The sentence

(25) Hoort Arie Jan Bob vertellen dat Claire ontwaakt?
hears Arie Jan Bob tell that Claire wakes up?
Does Arie hear that Jan tells Bob that Claire wakes up?

is derived as in figure 4.13 (where the head of a string is represented in capitals).
What remains to be done is to define the two grammar specific predicates head/2
and yield/2. These are simply defined as follows:

124 CHAPTER 4. HEAD-CORNER PARSING

v2: HOORT arie jan bob vertellen dat claire ontwaakt

TN

e left: arie jan bob HOORT vertellen dat claire ontwaakt

TN

left: jan bob HOORT vertellen dat claire ontwaakt ARIE

TN

vr: bob HOORT vertellen dat claire ontwaakt JAN

TN

HOORT left: bob VERTELLEN dat claire ontwaakt

N

right: VERTELLEN dat claire ontwaakt BOB

2N\

VERTELLEN right: DAT claire ontwaakt

7\

DAT left: claire ONTWAAKT

[\

ONTWAAKT CLAIRE

Figure 4.13: Deriving ‘Hoort Arie Jan Bob vertellen dat Claire ontwaakt’

4.4. THE HEAD CORNER PARSER 125

(26) head([syn : Syn] , [syn : Syn])

yield([phon : String] , String).

4.4 The head corner parser

This section describes the head-driven parsing algorithm for the type of grammars
described above. The parser is a generalization of Kay’s head-driven parser, which
in turn is a modification of a left-corner parser. The parser, which may be called
a ‘head-corner’ parser,! proceeds in a bottom-up way. Because the parser proceeds
from head to head it is easy to use powerful top-down predictions based on the usual
head feature percolations, and subcategorization requirements that heads impose upon
their arguments. In fact, the motivation for this approach to parsing discontinuous
constituency is already hinted at by Mark Johnson (Johnson, 1985):

My own feeling is that the approach that would bring the most immediate
results would be to adopt some of the “head driven” aspects of Pollard’s
(1984) Head Grammars. In his conception, heads contain as lexical infor-
mation a list of the items they subcategorize for. This strongly suggests
that one should parse according to a “head-first” strategy: when one parses
a sentence, one looks for its verb first, and then, based on the lexical form
of the verb, one looks for the other arguments in the clause. Not only
would such an approach be easy to implement in a DCG framework, but
given the empirical fact that the nature of argument NP’s in a clause is
strongly determined by that clause’s verb, it seems a very reasonable thing
to do.

It is clear from the context that Johnson believes this strategy especially useful for
non-configurational languages.

In left-corner parsers (Matsumoto et al., 1983) the first step of the algorithm is
to select the left-most word of a phrase. The parser then proceeds by proving that
this word indeed can be the left-corner of the phrase. It does so by selecting a rule
of which the leftmost daughter unifies with the category of the word. It then parses
other daughters of the rule recursively and then continues by connecting the mother
category of that rule upwards, recursively. An illustration of the left-corner parser is
provided in figure 4.14.

A head-driven algorithm can be defined analogously (Kay (1989)), if we replace
the notion ‘left” with ‘head’. Thus, to prove a given goal, the parser selects a lexical
entry (the head). Then the parser continues to prove that this lexical entry indeed is
the head of the goal, by selecting a rule of which this lexical entry can be head. The
other daughters of the rule are parsed recursively, and the result constitutes a slightly

1This name is due to Pete Whitelock.

126 CHAPTER 4. HEAD-CORNER PARSING

goal goal
lex goal
3

Figure 4.14: The left-corner parser. The parser selects the left-most element of the
string (1), and proves that this element is the left-corner of the goal. To this end,
a rule is selected of which this lexical entry is the left-most daughter. The other
daughters of the rule are parsed recursively. The result is a slightly larger left-corner
(2). This process repeats itself until a left-corner is constructed which dominates the
whole string (3). The string is recognized from left to right.

4.4. THE HEAD CORNER PARSER 127

goal goal

/N

Figure 4.15: The head-corner parser for concatenative grammars. The parser selects
the head of the string (1), and proves that this element is the head-corner of the
goal. To this end, a rule is selected of which this lexical entry is the head daughter.
The other daughters of the rule are parsed recursively. The result is a slightly larger
head-corner (2). This process repeats itself until a head-corner is constructed which
dominates the whole string (3). The string is recognized bidirectionally.

larger head. This process can be applied iteratively, until the head dominates all
words in the string. This is illustrated in figure 4.15. A head-corner chart-parser for
context-free grammars is defined in Sikkel and op den Akker (1992). They show that
the worst-case complexity of the algorithm is the same as for conventional context-free
parsing algorithms such as Earley (1970). The method is comparable to that of Satta,
and Stock (1989); Satta and Stock (1991).

The head-driven variant of the left-corner algorithm can be adapted to the class of
grammars under consideration. Again, the first step of the algorithm consists of the
prediction step: which lexical entry is the head corner of the phrase? The first thing
to note is that the words introduced by this lexical entry should be part of the input
string, because of the non-erasure requirement. Therefore we use the bag of words as
a ‘guide’ (Dymetman et al., 1990) as in a left-corner parser, but we change the way in
which lexical entries ‘consume the guide’. For the moment I assume that the bag of
words is simply represented by the string, but I introduce a better data-structure for
bags later in this chapter. The predicates guide and consume_guide are defined as:

(27) guide(String, String, ()).

128 CHAPTER 4. HEAD-CORNER PARSING

consume_guide((), P, P).

consume_guide((H|T), Py, P): -
del(H, Po, Py),
consume_guide(T, Py, P).

del(El, (E1|T), T).
del(ElL, (H|T), (H|T,)): -
del(EL, T, T5).

To instantiate the guide properly, I define the predicate start_parse/2 as follows:

(28) start_parse(String, Sign): -
guide(String, Guide, EmptyGuide)
parse(Sign, Guide, EmptyGuide),
yield(Sign, String).

The interesting predicate is the parse predicate. This predicate predicts, for a given
goal, its possible head-corner, and then shows that this predicted head-corner, indeed
is the head-corner of the goal. As we discussed earlier, in most linguistic theories, it is
assumed that certain features are shared between the mother and the head. I assume
that the predicate head/2 defines these feature percolations; for the grammar of the
foregoing section this predicate simply is defined as:

(29) head([syn : Syn] , [syn : Syn])

Because of the definition of ‘head corner’, these features will also be shared between
a node and its head corner; hence we can use this definition to restrict lexical lookup
by top-down prediction. 2 The first step in the algorithm is defined as:

(30) parse(Goal, Py, P):-
predict_ncr(Goal, Head, Ds, Pg, P1),
parse_ds(Ds, Py, Py),
head_corner(Head, Goal, Py, P).
parse({ Call },P,P):~
call(Call).

parse_ds({), P, P).

parse_ds({H|T),Pg,P): -
parse(H, Py, Py),
parse_ds(T, Py, P).

The relation parse_ds simply calls the parse predicate, for each element of a list of
daughters. The second clause of the parse predicate is applicable, if one of these
daughters is the extra relation call — written between {, }.

The predicates predict_ncr predicts for a given goal, a possible head-corner. It is
defined as follows:

2In the general case we need to compute the transitive closure of (restrictions of (Shieber, 1985))
possible mother-head relationships.

4.4. THE HEAD CORNER PARSER 129

(31) predict-ncr(Goal, Head, Ds, Py, P): -
head(Goal, Head),
ncr(Head, Ds, Words),
consume_guide(Words, Py, P).

Instead of selecting the first word from the current input string, the parser selects a
lexical entry dominating a subbag of the words occurring in the input string, provided
this lexical entry can be the head-corner of the current goal.

The second step of the algorithm, the head_corner part, is identical to the left_corner
part of the left-corner parser, but instead of selecting the leftmost daughter of a rule
the head-corner parser selects the head of a rule.

(32) head_corner(X,X,P,P).
head_corner(Small, Big, Py, P): -
select_cr(Small, Mid, Ds, Py, P1),
parse_ds(Ds, Py, Py),
head_corner(Mid, Big, Py, P).

select_cr(Small, Mid, Ds, Py, P) : -
cr(Small, Mid, Ds, Words),
consume_guide(Words, P, P).

Example.

To parse the sentence ‘dat jan ontwaakt’, the head corner parser will proceed as
indicated in figure 4.16. Each of the steps will now be clarified as follows.

After the construction of the guide, in the predicate start_parse, the first call to
parse is:

syn : comp
?7- parse(| sc: () , {dat, jan, ontwaakt), ()).
phon : {dat, jan, ontwaakt)

This is the root node in figure 4.16.

The prediction step (1) selects the lexical entry ‘dat’ (recall that lexical entries are
non-chain-rules with an empty list of daughters), because its syntactic features are the
same as the syntactic features of this goal, and because the word occurs in the input
string. The next goal is to show that this lexical entry is the head corner of the top
goal; furthermore the words that still have to be covered are now (jan,ontwaakt).

130 CHAPTER 4. HEAD-CORNER PARSING

8

n
I
I
I
I
I

:

n

Figure 4.16: Trace of the parse ‘dat jan ontwaakt’. The integers associated with the
arrows indicate the order of the steps of the parsing process. Prediction steps are
indicated with a framed integer, ‘head_corner’ steps are indicated with a bold face
integer, and recursive parse steps are indicated with a slanted integer. The nodes
represent (some of) the information available at the moment this step is performed.
The left-most daughter of each local tree corresponds to the head daughter.

4.4. THE HEAD CORNER PARSER 131

The head_corner clause looks, essentially, as follows (step 2):

[syn : comp
syn : v
e
sei sem : Sem)
rule : right
7= head_corner(left : () ,
h-s: | head : (dat)
right : ()
phon : (dat)
| sem : Sem

syn : comp
sc: () :

phon : {(dat, jan, ontwaakt)
(jan, ontwaakt), ()).

The hypothesized head-corner, the lexical entry ‘dat’, has to be matched with the
head of a rule. Notice that ‘dat’ subcategorizes for a sign with syntactic category v,
hence the next goal (3) is to parse the v; the guide is instantiated as the bag ‘jan,
ontwaakt’:

syn 1 v
sc:{)

sem : Sem
rule : right

?7- parse(, (jan, ontwaakt), P).

For this goal, the prediction step selects the word ontwaakt (4). Next, the word
ontwaakt has to be shown to be the head corner of the v goal, by the head_corner
predicate (5):

[syn :v
syn :n
L sei 0
s sem : Subj)
rule : left
?- head_corner(left : () ,
h-s: | head : (ontwaakt)
right : ()
sem : ontwaakt(Subj)
| phon : (ontwaakt)

syn 1 v

sc:) , (jan), P).

sem : Sem
rule : right

132 CHAPTER 4. HEAD-CORNER PARSING

In order to prove this predicate, the next parse goal consists in parsing a NP (for which
ontwaakt subcategorizes, step 6); the guide is the bag consisting of the element jan.
This goal succeeds: predict a possible head corner (7), the lexical entry ‘jan’, which
is a trivial head corner of the NP (8). After the successful parse of the NP, this NP
is combined with the v, with the cp predicate. Note that the verb selected an NP
with rule-feature ‘left’, and hence the phonology of the NP is appended to the left of
‘ontwaakt’. As the verb does not select any other elements, the resulting verb phrase
is indeed a possible head-corner of the parse goal above (9), instantiating this goal to:

syn v

sc:{)

sem : ontwaakt(jan)
left : (jan)
7= parse(| oo | head (ontwaakt)
right : ()
phon : (jan, ontwaakt)
rule : right

, (jan, ontwaakt), ()).

and therefore we now have found the v for which dat subcategorizes. The next task is
to combine this verb phrase with the lexical entry ‘dat’, by means of the ‘cp’ predicate.
The verb phrase is selected by ‘dat’, with rule feature ‘right’. Therefore the phonology
of the verb phrase is appended to the right of the phonology of this complementizer.
The next goal (10) is to connect the complementizer with an empty subcat list up to
the top-goal, with trivial success. Hence the first call to parse will succeed, yielding:

syn : comp
sc:{)

sem : dat(ontwaakt(jan))

?7- parse(left = {) , (dat, jan, ontwaakt), ().
h-s: | head : (dat)
right : (jan, ontwaakt)

phon : (dat, jan, ontwaakt)

A slightly more complex example is shown in figure 4.17, for the sentence

(33) Hoort Arie Bob sla bestellen?
Hears Arie Bob salad order
Does Arie hear that Bob orders salad?

4.5 Head-driven parsing for TAGs

This section shows how the head-corner parser might be applicable for lexicalized and
constraint-based versions of TAGs. An auxiliary tree will correspond to a headed rule,
i.e. chain-rule. Initial trees, on the other hand, will correspond to non-chain-rules.

4.5. HEAD-DRIVEN PARSING FOR TAGS 133

n
I
I

14 l'zo

11}
5. N l 16
O

arie
hoort,[infn,n] inf[] bob

Figure 4.17: Parsing ‘Hoort Arie Bob sla bestellen’

134 CHAPTER 4. HEAD-CORNER PARSING

Firstly, I show how initial and auxiliary trees are encoded in R(L). Given these
data-structures, I define the adjunction operation. Furthermore I discuss how the
unification of bottom and top feature structures comes about at the end of a derivation.
In order to prevent spurious ambiguities I then define ‘normal form’ derivations. This
allows the parser to implement the unification of bottom and top feature structures
in an incremental manner.

An important reduction of the search space is possible, because it is not possible
during a TAG derivation to change the order of words, once this order has been
established. Thus, TAG derivations exhibit a certain monotonicity with respect to
the order of the words. Therefore, an important reduction of the search space is
obtained by checking at various moments during the parse whether the structure
obtained yields a subsequence of the string to be parsed.

Although it is possible to present the head-corner parser for TAG simply as an
instantiation of the algorithm presented in the previous section, it is somewhat more
easier to understand the parser, if we change various parts of the head-corner parser
directly, to exhibit more clearly what is going on.

4.5.1 Representing auxiliary and initial trees

In order to use the head-driven parser for TAG I describe how trees are encoded in
R(L), and how a given TAG is represented by a set of definite clauses. I then describe
how this set of clauses is divided in chain- and non-chain-rules.

Trees are represented by feature structures with attributes node, mrk, ds and term
where the value of node represents the node label, mrk is a marker of which the role
will be explained below, and ds is a list of daughter trees (in case of non-terminal
nodes) or a list of words (in case of terminal nodes). The attribute term takes values
yes, no depending on whether the node is terminal or not. Without loss of generality I
furthermore assume that node labels consist of a feature structure with three attributes
cat, bot and top of which the values are resp. the category label, the bottom features
and the top features. Thus, the following tree:

left

is represented as a feature structure as follows (note that in this example no con-

4.5. HEAD-DRIVEN PARSING FOR TAGS 135

straints are defined, hence the values of the attributes bot and top are unspecified)

_node:[cat:s]]
term : no
_node:[catzvp] 1
node : [cat : np] term : no
ds : (term : yes ; node:[cat:v])
ds : (john) ds: (| term : yes)
ds : (left)

This data structure is chosen to implement the idea that at least some information
between bottom and top parts of labels is shared; this part is represented as the value
of the cat attribute. This is useful to provide an appropriate definition for the ‘head’
relation for TAG. This definition reads

(34) head([node : [cat:C]],[node: [cat:C]).

If we were to write a TAG grammar, as a grammar of R(L), then an initial tree
Tree with substitution nodes D; ...D,, were to be defined as:

sign(Tree):-sign(D,), ... sign(Dy,), ¢.

An auxiliary tree Tree, with foot node Foot and substitution nodes D;...D,, on the
other hand, were to be written as:

sign(M) : =sign(H), sign(Dy) . . . sign(D,,), adjoin(Tree, Aux, Foot, M), ¢.

However, for the meta-interpreter, we will not assume this representation, but
assume that an initial tree is represented as a clause

(35) init(Tree, SubsNodes, Words) : =¢.

where Tree is the partially instantiated initial tree; SubsNodes is a list of the un-
instantiated substitution nodes in Tree, and Words are the words dominated by this
initial tree. An auxiliary tree Aux with foot node Foot, substitution nodes SubsNodes
and words Words is represented as

(36) auz(Tree, Foot, SubsNodes, Words) : -¢.

The basic idea will be that an initial tree corresponds to a non-chain-rule. The
‘daughters’ of such a rule correspond to the substitution nodes of that initial tree.
An auxiliary tree, on the other hand, corresponds to a chain-rule. The head of the
rule will be the tree in which the auxiliary is adjoined; the mother of the rule will be
the result of the adjunction. The other daughters of the rule will correspond to the
substitution nodes of the auxiliary tree. The important part of this definition is the
introduction, at the end of the list of daughters, of the relation ‘adjoin’ which will be
explained below. The following definitions of the predicates predict_ncr and select_cr
are obtained. Note that the use of the fourth argument of the latter predicate will
become clear later.

136 CHAPTER 4. HEAD-CORNER PARSING

(37) predict-ncr(Goal, Head, Ds, Py, P): -
head(Goal, Head),
init(Head, Ds, Words),
consume_guide(Words, Py, P).

select_cr(Small, Mid, Ds, Foot, Py, P) : -
auz(Aux, Foot, Subs, Words),
consume_guide(Words, Py, P1),
adjoin(Small, Aux, Foot, Mid).

4.5.2 Adjunction.

The adjunction relation is defined as a relation between an (input) tree Tree, an
auxiliary tree Aux of which the foot node is Foot and an (output) tree NewTree. The
relation is non-deterministic with respect to which node in Tree the auxiliary tree is
adjoined. Therefore, the first clause of adjoin states that the relation is true if the
auxiliary tree is adjoined in one of the daughters of the input tree; the second clause
states that the relation is true if the auxiliary tree is adjoined at the root node of the
input tree:

node : cat : Cat node : cat : Cat
. k k :
(38) adjoin(T - Ione , Aux, Foot, T - Ione)=
term : no term : no
ds : Ds ds : Dsy

adjoin_ds(Ds, Aux, Foot, Dsy).
adjoin(In, Aux, Foot, Aux): -
adj_now(In, Aux, Foot).

For the moment, the reader should not worry about the mrk attribute. Its purpose will
be explained later. The predicate adjoin_ds non-deterministically chooses a daughter
from the list of daughters to adjoin the auxiliary tree in:

(39) adjoin_ds((H|T), Aux, Foot, (Hy|T)): -
adjoin(H, Aux, Foot, Hy).
adjoin_ds((H|T), Aux, Foot, (H|Ty)): -
adjoin_ds(T, Aux, Foot, Ts).

The second clause for adjoin states that adjunction may take place at the root node
of the input tree. The resulting tree is defined as the auxiliary tree of which the foot
node is instantiated with the daughters of the input tree. Furthermore we take care
of the unification of the bottom and top features. The top features of the root node of
the input tree are unified with the top features of the root node of the auxiliary tree;
the bottom features of the root node of the input tree are unified with the bottom
features of the foot node (recall figure 4.10).

4.5. HEAD-DRIVEN PARSING FOR TAGS 137

cat : C o
node : | top: T node:lca]
bot : B cat : C bot : B
(40) adj_now(.| node : l ron - T] ks - none)
mrk : none op :
ds : Ds ds : Ds
ter;n - Term term : Term

4.5.3 String concatenation

In order to check what string a given derived tree dominates, we could define the
relation ‘yield’ which — procedurally speaking — travels a tree in a top-down fashion
and collects the terminal symbols at the leaves of the tree. However, note that TAG
derivations exhibit a monotonicity property with respect to the order of words. Once
a certain order has been established, this order cannot be changed anymore. For
this reason, all trees which are derived during a derivation yield a string which is a
subsequence of the string to be parsed. For that reason an important reduction of the
search space can be obtained by checking whether an hypothesized derived tree indeed
yields a subsequence of the string to be parsed. Furthermore, such a check then also
implies that it is not necessary anymore, to check whether the topmost derived tree
yields the desired string: this is necessarily the case, because a topmost derived tree
has used all words in the input and furthermore yields a subsequence.

The following predicates are obtained. Note that we now assume an extra argument
position through which we percolate the input string. The predicate head_corner will
be modified later.

(41) start_parse(String, Sign): -
guide(String, Guide, EmptyGuide),
parse(Sign, String, Guide, EmptyGuide).

parse(Goal, Str, Py, P): -
predict_ncr(Goal, Head, Ds, Pg, P1),
parse_ds(Ds, P, Py),
yield_subseq(Head, Str),
head_corner(Head, Goal, Str, Py, P).

parse_ds({), Str, P, P).

parse_ds({(H|T), Str, Py, P):-
parse(H, Str, Py, Pq),
parse_ds(T, Str, Py, P).

(42) % head corner is modified later.
head_corner(X, X, Str, P, P).
head_corner(Small, Big, Str, Py, P): -

select_cr(Small, Mid, Subs, Foot, Py, P1),
parse_ds(Subs, Py, Py),

138 CHAPTER 4. HEAD-CORNER PARSING

yield_subseq(Mid, Str),
head_corner(Mid, Big, Str, Py, P).

The predicate yield_subseq straightforwardly checks whether the first argument, a tree,
yields a subsequence of the second argument, a string.

. term : T, L
(43) yzeld_subseq([s : Ds] ,Str):

yield_subseq(T, Ds, Str, _).

yield_subseq(no, (), S, S).
. term : Term
yield_subseq(no, (ds - Ds] IT),So,S): -
yield_subseq(Term, Ds, Sq, S1),
yield_subseq(no, T, Sy, S).
yield_subseq(yes, W, Sp,S) : =
subsequence(W, Sy, S).

subsequence((), S, S).
subsequence((H|T), (H|Ts),S): -
subsequence(T, Ty, S)

subsequence((H|T), (_|T3),S): -
subsequence((H|T), Ta, S)

o~~~ ~—

4.5.4 Spurious ambiguity

The way in which adjunction and substitution is defined in previous subsections give
rise to spurious ambiguities. For example, given two auxiliary trees 5 and (s and a
derived tree 7y, the parser derives the application of #5 and [to v twice, corresponding
to the applications f5(fs(7)) and Fg(F5(7y)). But the results of these derivations are
clearly completely identical.

As an example, consider the following case in which v, #5 and (¢ are as in fig-
ure 4.18.

The application (B5(3s(y)) gives rise to two possible derived trees, depending on
which node with category n, is chosen for adjunction (see figure 4.19 for an illustration).
Clearly, the application Gs(fs()) gives the same two results. The parser thus delivers
four results, where only two results are desirable.

Another spurious ambiguity arises when a tree is substituted in another tree, and
afterwards adjunction in this tree is possible. The parser will prove two alternative
derivations. The first derivation corresponds to the case in which the auxiliary tree
is first adjoined in the derived tree, which then is substituted in the main tree. The
second derivation corresponds to the case where the derived tree is substituted in the
main tree; the auxiliary tree is afterwards adjoined (deep down) in this main tree.

It is straightforward to solve these problems by the following two principles. Firstly,
once a tree is substituted in another tree this sub-tree is regarded ‘completed’. This

4.5. HEAD-DRIVEN PARSING FOR TAGS 139

Y np fs 1 Bs n
/" \ / N\ / N\
det n adj n* adj =n*

a present nice little

Figure 4.18: A derived tree and two auxiliary trees, which are used to illustrate the
problem of spurious ambiguity.

means that no adjunctions take place in this tree. Similarly, if an auxiliary tree
is adjoined at some node in a derived tree, then the sub-tree dominated by the foot
node (in the result of the adjunction) is ‘completed’ as well, and no further adjunctions
under this foot node are possible. In the illustration I mark such ‘completed’ sub-trees
with the ‘4’ marker.

The example given above is now derived only twice as follows. Firstly, the ap-
plication f(7y) gives rise to a derived tree in which the embedded n node is marked
completed. For that reason applying (5 to it only gives rise to one possibility, because
the marker on the node n; prevents adjunction at n;, and hence only adjunction at
node ny is possible (see figure 4.20 for illustration). The derivation Gs(85(7y)) produces
the other possibility.

In this way, trees are constructed in a bottom up fashion. Once you adjoin at a
given node, then everything under (the bottom part) of this node is completed.

The prevention of spurious ambiguity is easily implemented using the attribute mrk
in the data structure representing trees. The node in a tree representing a substitution
node will be marked ‘completed’. Note that this marker remains after substitution.
Similarly, the marker of a node representing a foot node will be marked ‘completed’.
This changes the representation of initial and auxiliary trees. The adjunction predi-
cate, furthermore, is defined in such a way that it may only penetrate nodes, which are
not marked ‘completed’. Note that in the definition of adjoin this is already achieved.

4.5.5 Unification of bottom and top.

At the end of a derivation the bottom- and top-parts of a node are to be unified. The
relation unify_nodes is true of trees of which the nodes have identical bottom- and top
values. Note that this predicate essentially implements a non-monotonic device, and
hence cannot be straightforwardly defined in a grammar of R(L£); on the other hand,
it is quite easy to augment the meta-interpreter to implement this device, as part of
the definition of start_parse. Thus, to ensure that the nodes of the trees built by the
parser have identical bottom- and top parts, the relation ‘unify_nodes’ could be added
to the definition of start_parse.

However, once it is known that at some node, no further adjunctions are possible,

CHAPTER 4. HEAD-CORNER PARSING

present

present

\Il
|

140
Be(y) np
RN
det n
PN
a adj n
|
little
Bs(Bs(v)) np
/ \
det n
N
a adj n
little adj n
|
nice
56(ﬁ5(7)) np
/ \
det n
N
a adj n
| yd
little adj
|
nice

Figure 4.19: Illustration of spurious ambiguities.

present

Bs(y) np
RN

det
N
a adj I|1
|
nice present
B5(Bs(7v)) np

det n
BN
a adj n
| RN
nice adj 1|1
|
little present
Be(B5(7)) np
/ \
det n
I N
a adj n
| N
nice adj 1|1
|
little present

The first two trees respectively

corresponds to fs(y) and f5(vy). Depending on the adjunction node, these two trees
both can be expanded in two ways, by the adjunction of the other auxiliary tree,
resulting in two trees corresponding to (35(fs(7)), and two trees corresponding to
B6(Ps(y)). Four results are derived by the parser, where only two should be derived.

4.5. HEAD-DRIVEN PARSING FOR TAGS 141

Bs(v) np Bs(vy) np
det b det b}
| 7N\ | RN
a adj # 1, a adj # 14
| |
little prelent nice prelent
Bs(Bs(v)) np Bs(B5(v)) np
det ng det ng
a adj # 1y a adj # ny
| VRN | N
nice adj # n, little adj # ny
| | | |
little present nice present

Figure 4.20: Preventing spurious ambiguity. Because of the marking of nodes in the
subtree of a foot node, no spurious ambiguity arises.

142 CHAPTER 4. HEAD-CORNER PARSING

then we might just as well unify the bottom- and top parts of that node immediately.
This may be useful, in cases where this unification fails — in that case we may abandon
a search path without a solution much earlier. Thus, it is possible to implement the
unify_nodes predicate in an incremental fashion.

The incremental unification of top and bottom features is easily implemented.
Firstly, the predicate unify_nodes is defined in such a way that completed nodes are
not penetrated: these nodes are already unified in a previous cycle. Furthermore, this
predicate is now called when partial trees are completed; that is, after a substitution,
and after an adjunction.

The predicate unify_nodes is defined as follows.

(44) umfy_nodes([mrk : completed])

node - bot : X
| top: X
unify_nodes(| mrk : none)=

term : T
ds : Ds

unify_ds(T,Ds).

unify_ds(yes,).

unify_ds(no, ()).

unify_ds(no, (H|T)):-
unify_nodes(H),
unify_ds(no, T).

The predicate head_corner is changed as follows:

(45) head_corner(X,X, Str,P,P): -

unify_nodes(X).
head_corner(Small, Big, Str, Po, P): -

select_cr(Small, Mid, Subs, Foot, Py, Py),
parse_ds(Subs, Py, Py),
yield_subseq(Mid, Str),
unify_nodes(Foot),
head_corner(Mid, Big, Str, Py, P).

4.5.6 Examples

Consider the following TAG in figure 4.21.

As an example of the encoding of such elementary trees in R(L), consider the
encoding of a; in figure 4.22 and the encoding of 33 in figure 4.23.

Consider what happens if we parse the sentence “the very pretty girl left today”.
The first goal of the parser, is to find a tree of which the root node has category s. In
order to find such a goal, a non-chain-rule is selected which has also s as its root node,
and of which the string is part of the input string. The rule which is selected is rule

4.5. HEAD-DRIVEN PARSING FOR TAGS 143

aq S
N
npl] vp (0% /np
% T \T
left the boy

Figure 4.21: Initial and auxiliary trees of example TAG.

ay. The daughter of this rule is the substitution node np. Therefore, the embedded
parse goal is to parse an np, with bag of words [the,very,pretty,girl,today/. Again,
the first step of the parser consists in the prediction of a non-chain-rule, of which the
root has category np, and of which the string is part of the input bag. This time a3
is selected and we obtain another embedded parse goal: the parsing of a d with bag
[the,very,pretty,today]. The non-chain-rule which is selected for this goal is 3. As this
tree does not have any substitution nodes, we can immediately connect a3 to the goal
d. As no auxiliary trees apply to as, connection is trivial, and we finish the embedded
parse goal for d. We thus continue parsing of an np, with head as, and of which the
substitution nodes are filled in, in the mean time. To connect this tree upward to the
np goal, the auxiliary rule 5 may be applied. After the application of that auxiliary
tree we obtain the tree:

np

N

#d n

/N

the a #n

pretty boy

Again, this tree should be connected upward to the NP goal, with input bag [very,today],

144 CHAPTER 4. HEAD-CORNER PARSING

(46) init(M, (D;), (left)): -

[mrk : none T
node : cat : 8
term : no
[mrk : completed
node : N
term : T ’
| ds: D
[mrk : none i ’
ds : { node : cat : vp)
term : no
mrk : none
ds - (node : cat : v)
term : yes
ds : (left)
[mrk : none
node : [cat : np]N
term : T
L ds:D]:)1

Figure 4.22: Encoding of a; as a unit clause of R(L).

4.5. HEAD-DRIVEN PARSING FOR TAGS

(47) auz(Aux, Foot, (), (pretty)):-

mrk : none
node : cat : n
term : no
[mrk : none
node : cat : adj
term : yes ’

| ds : (pretty) ’
ds:([mrk completed)
node : [cat : n]F

term : T

ds: D
L @ 1 Aux

[mrk : none
node : F
term : T

| ds: D

Foot

Figure 4.23: Encoding of (5 as a unit clause of R(L).

and another auxiliary tree can be applied: «s, giving tree:

np
d/ \n
t}|1e a/ \# n

145

Finally, this connects the input tree to the np goal, and this embedded parse is
finished. Therefore, we continue the parsing of the s goal, with input bag [today/, and

of which the head is instantiated as:

146 CHAPTER 4. HEAD-CORNER PARSING

S
/ \
#np vp

FEIRN |

v
AN
the/a I|1 left
adv \T boy
very pretty
The auxiliary rule §; applies, giving the tree:
s
/ \
A /N
d \n # vp adv
N
the/a I|l \|/ today
adv \a boy left

very pretty

which we connect trivially to the goal, as there are no more words left in the input
bag.

This example clearly shows how the parser first selects heads, then parses argu-
ments, and finally parses adjunctions.

4.5.7 Semi-lexicalized TAG

The proposed head-driven algorithm for TAG terminates for all lexicalized TAGs.
Note though that the algorithm terminates for a strictly larger set of TAGs. Consider
the class of TAGs in which each initial tree is lexical, and where furthermore each
auxiliary tree is branching. That is, we do not require that auxiliary trees have an
anchor, as long as they have (at least) one substitution node. This for example allows
an auxiliary tree like the following in figure 4.24: We might call grammars that allow
such auxiliary trees ‘semi-lexicalized’.

4.6. DISCUSSION AND EXTENSIONS 147

Figure 4.24: Example of auxiliary tree in semi-lexicalized TAG. A Tag is semi-
lexicalized in case its initial trees are all lexicalized, and its auxiliary trees are either
lexicalized or branching.

Such auxiliary trees may in fact be very useful. To treat modification with auxiliary
trees in a lexicalized TAG we need to assume, for example, that each preposition is
ambiguous, given that prepositional phrases may modify different categories (at least
noun phrases, verb phrases and adjectival phrases), and may occur as arguments. In
semi-lexicalized TAGs on the other hand we can simply assume that a preposition
corresponds to an initial tree. Furthermore for each possible modification there is one
auxiliary tree.

It is not difficult to see that the head-driven parser in fact terminates for semi-
lexicalized grammars. This is so, because adjunctions are seen as chain-rules and
hence applied in a bottom-up fashion. For that reason no left-recursion can arise: the
trees that are derived always grow (in terms of the length of their yield).

4.6 Discussion and Extensions

The algorithm as it is defined is sound and complete in the usual depth-first, backtrack
search sense. Clearly the parser may enter an infinite loop (in case non branching rules
are defined that may feed themselves or in case a grammar makes a heavy use of empty
categories). However, in case the parser does terminate one can be sure that it has
found all solutions. The parser always terminates, in case the grammar solely consists
of non-chain-rules which consumes some input, and chain-rules which either branch
or consume input. An example of grammars that adhere to this condition, are the
semi-lexicalized Tree Adjoining Grammars, discussed above. Another example of such
a grammar, would be a constraint-based grammar, in which each non-chain-rule is a
lexical entry, and each chain-rule branches.

A parser is called minimal iff it returns one solution for each possible derivation.
As it stands the parser is not minimal in this sense. In fact, if the same word occurs
more than once in the input string then we may find a solution several times. The
problem comes about because a list is not an appropriate data structure for bags.
For example, removing an element from a bag should not be non deterministic, but
it is if we use lists. It is straightforward to encode bags with a more appropriate
data structure such as the one found in some Prolog libraries, which we will adopt,
with slight modifications, in the next subsection. This subsection can be skipped by

148 CHAPTER 4. HEAD-CORNER PARSING

readers, who indeed believe that such an encoding is possible.

The other subsections discuss ways in which to improve upon the efficiency of the
head corner parser. These sections are somewhat technical, and may also be skipped,
if the reader is willing to accept that several modifications are possible that improve
upon the efficiency of the parser, defined so far.

4.6.1 Representation of bags.

This subsection provides an alternative encoding of ‘bags’, ® in order for the ‘con-

sume_guide’ predicate to be deterministic. The revised parser can then be shown to
be minimal.

An empty bag is represented by the constant ‘bag’. A nonempty bag consists of
three parts: an element, a (representation of a) number indicating how often this
element occurs in the bag, and the rest of the bag. Furthermore, the elements in the
bag are ordered in some standard order. For example, in Prolog the bag {a, b, a, a, b, c}
is represented as:

bag(a,3,bag(b,2,bag(c,1,bag)))

This technique is easily inherited in R(L) where I encode such an example as:

[el:a
number:l51[5:[330]]]
[el:b]
(48) number:[SI[SSO]]
rest : el:c
rest : | number : [5:0]
i rest : bag

For clarity I write such a bag as:

(a/3,b/2,c/1)

and use the usual list notation.

The parser is modified as follows. The predicate which calls the parser will contain
an extra predicate, list_to_bag/2, which encodes a list as a bag. Furthermore this bag
is given as the input argument to parse/3; the output argument is the empty bag, the
constant ‘bag’.

(49) guide(String, Guide, bag): -
list_to_bag(String, Guide).

The ‘consume_guide’ predicate is now defined for such bags, as follows:

3Based on the file ‘bags.pl’ of the Quintus library, by Richard O’Keefe.

4.6. DISCUSSION AND EXTENSIONS 149

(50) %consume_guide(+SubBag, +TotalBag, ?ComplementBag).
consume_guide((), Bag, Bag).
consume_guide((El/0|R), Bag, Rest): -
consume_guide(R, Bag, Rest).
consume_guide((El/s(X)|R), (El/s(Y)|Ra), Rest): -
consume_guide((E1/X|R), (E1/Y|R3), Rest).
consume_guide((El/s(I)|R), (X/Y|Bag), (X/Y|Rest)): -
consume_guide((El/s(I)|R), Bag, Rest).

This definition of the predicate ‘consume_guide’ is deterministic given the first two
arguments, and given the fact that the elements of the bag are always constants. The
modified version of the parser is minimal.

4.6.2 Indexing of rules

It is possible to use a more clever indexing of rules. Firstly, it is possible to extract
the rules from the grammar that can be used to parse some given sentence, before the
parser starts properly. That is, for each sentence the parser first selects those rules
that possibly could be used in the analysis of that sentence. The parsing algorithm
proper then only takes these rules into account when it searches for an applicable rule.

Furthermore, we can get rid of the consume_guide/3 predicate. Given the pre-
compilation step mentioned above, we can use a slightly different representation of
bags where the elements of the bag are not explicitly mentioned, but are implicitly
represented by the position in the bag. To make this work we also allow bags where
elements occur zero times. For example, given the sentence ‘a b b ¢ a a’, the corre-
sponding bag will simply be:

(3,2,1)
Furthermore, the bag that consists of two a’s is given the representation
(2,0,0)

with respect to that sentence. The idea is that each rule which has been found to be
a possible candidate for a given sentence is asserted either as a clause

predict_cr(Head, M, Ds, InBag, OutBag)
or
predict_ncr(M, Ds, InBag, OutBag)

where the predicates which made up the body of that predicate are already partially
evaluated. For example, given the sentence ‘a b b ¢ a a’ the indexing step of the parser
may find that the (non-chain-rules) ‘a’, ‘b’ and ‘c’ are applicable. These entries are
then asserted as:

150 CHAPTER 4. HEAD-CORNER PARSING

(51) predict_ncr(Goal, Head, Ds, (s(A), B, C), (A, B, C)):-¢.
predict_ncr(Goal, Head, Ds, (A, s(B), C), (A, B, C)):-¢.
predict_ncr(Goal, Head, Ds, (A, B, s(C)), (A, B, C)):-¢.

The guide is instantiated as follows. The in-part will simply be the bag represen-
tation shown above. More precisely for this example:

(s(s(s(0))), 5(s(0)), 5(0))
and the out-part now simply is:
(0,0,0)

Note that the ‘predict_ncr’ and ‘head_corner’ clauses remain as before.

Schabes (1990) discusses two-step parsing algorithms for lexicalized grammars. In
the first step the parser selects the rules which might be applicable in order to parse
the given sentence. In the second step the sentence is actually parsed using these
rules. Thus, for a LTAG we first select all the initial and auxiliary trees of which the
anchors occur in the sentence. This technique is thus quite easily incorporated, using
the technique discussed above.

4.6.3 ‘Order-monotonic’ grammars

In some grammars, the string operations that are defined, are not only monotonic with
respect to the words they dominate, but also with respect to the order constraints,
that are defined between these words (‘order-monotonic’). For example, Reape’s se-
quence union operation preserves the linear precedence constraints, that are defined.
TAGs do not allow to change the order of two elements once this order has been es-
tablished. Thus, TAGs are examples of ‘order-monotonic’ grammars. For that reason,
a subsequence check can be used to good effect for the head-driven parser for TAGs.
The analysis of verb second in the foregoing section, on the other hand, uses a string
operation that does not satisfy this restriction.

For grammars that do satisfy the ‘order-monotony’ restriction it is possible to
extend the top-down prediction possibilities by the incorporation of extra clauses in
the ‘head_corner’ and ‘parse’ predicates, which check that the phrase that has been
analyzed up to that point, can become a sub-string of the input string. To this purpose,
the input string is percolated through the parser as an extra argument. Each time a
rule has applied the parser checks whether the string derived up to that point can be
a subsequence of the input string. The head-corner parser for TAGs defined in the
previous section constitutes an example of this technique.

4.6.4 Delaying the extra constraint

In some cases it is very useful to delay the constraint which defines the operations
on strings until the parser is finished. For example, if the constraints are disjunctive,
then it may be useful to wait as long as possible, before a choice in a certain direction

4.6. DISCUSSION AND EXTENSIONS 151

is made. The important information for the parser is percolated anyway through
the bag of words; the actual order of the words has (usually) not much influence on
other choices of the parser. Hence a lot of uninteresting non determinism can thus be
delayed.

As an example, consider a verb which selects a number of arguments, and where
furthermore the order of the arguments is free. In effect, the predicate ‘cp’ non-
deterministically produces all possible orders. Suppose that for a given string such a
verb is to be parsed, together with two arguments. Then there are six ways to parse
this verb-phrase. Only one of these ways corresponds to the order of the input string.
The other five possible ways to parse the verb phrase gives rise to re-computation of
the other parts of the sentence. If the constraint, which generates the six possible
orders, is delayed, then the parser computes with one abstract, unordered, variant,
for which at the end of the parse, the proper order can be selected.

In practice this technique increased the efficiency of the parser for some grammars
by a factor 3. Clearly this technique is incompatible with the improvement suggested
above for order-monotonic grammars.

4.6.5 Memo relations

A possible criticism for the head-driven parser presented here can be formulated as
follows. The backtracking search procedure enforces the parser to re-compute possible
sub-parses. One of the fundamental principles of parsing, on the other hand, is that
you should not do things twice. Hence the head-corner parser does not even adhere
to this fundamental principle of parsing.

We should make a methodological distinction between techniques to make the
search space as small as possible on the one hand, and techniques to search through
the search space as efficiently as possible. The proposed algorithm focuses on ways to
make the search space as small as possible. Using tabular methods to assert previous
results, in order to prevent double work, constitutes a different dimension along which
we should judge parsing algorithms. Techniques to search a given search space can
then be ‘applied’ to a given proof procedure. In the current setting is possible by the
introduction of memo-relations. A similar point of view is defended by Leermakers
(1991), in the context of LR-parsers.

In the section on memo-relations in chapter 3 I presented a Prolog implementation
of so-called ‘memo-relations’ (this name is inspired by the concept of ‘memo-functions’
in functional programming languages). The proposed technique to re-use previously
established computation results can be applied for the head-driven parser for TAGs as
well. In the (small) example grammars I have tested the parser with, this technique
did not seem to be practically useful.

For the head-driven parser this technique may not be as useful for the following
reason. We might expect that some given noun phrase occurring in the input string
will be parsed only once for a given NP goal. In fact however, this noun phrase will
be parsed several times for that goal because the input bag of words may be different
each time.

152 CHAPTER 4. HEAD-CORNER PARSING

For example, if the sentence to be parsed is “the man left yesterday”, the memo’ed
relation does make a distinction between the goal np,[s(0),s(0),s(0),0] (for “the man
left”) and the goal np, [s(0),s(0),s(0),s(0)] (for “the man left yesterday”). This clearly
is correct, but less efficient as we might have expected at first.

A possible way to improve upon this, is the following. Each time a result has been
found we may generalize this result before the result is asserted in the data-base. For
example, if we have shown an np with [s(0),5(0),s(0),s(0)] - [0,0,5(0),s(0)] we may
generalize this result as the result with [s(W),s(X),Y,Z]-[W,X,Y,Z]. The problem with
this is that our assumption, that no left-recursion arises, is problematic. That is, we
cannot be sure anymore that no duplicate solutions are asserted in the data-base.
Of course, it is possible to check before each assertion whether such a result already
exists. However, in that case we need to do subsumption checking on the results of
the parser, rather than on the goals. This implies much more overhead than before.

4.7 Conclusion

In order for grammars to be reversible, I argued in the beginning of this chapter, that
operations on strings, which go beyond concatenation, may be helpful for the following
two reasons.

Firstly, such non-concatenative grammars may allow analyses, which reflect more
directly the way in which the semantic structures are built up. As a consequence,
such grammars may be easier to handle for generation algorithms.

Secondly, I argued that the addition of expressive power, as compared with concate-
native grammars, may be useful, in order to obtain grammars, which can effectively
be parsed. In the case of concatenative grammars, one is often forced to ‘implement’
certain discontinuous constituency constructions using the types of rule (empty rules,
and non-branching rules) for which there is a danger that the resulting grammar is
not effectively parsable anymore.

After a short excursion through a number of proposed extensions to concatenative
grammars, I discussed a generalization of these extensions, and provided an example
grammar, for a tiny fragment of Dutch.

I then showed that such non-concatenative grammars can be parsed, by a gener-
alization of the left-corner parser: the head-corner parser. This parsing regime was
motivated by the desire to use both bottom-up information (the information available
in lexical entries), and top-down information (the constraints heads impose upon their
arguments — using head-feature percolations.)

A proper superset of Constraint-based Lexicalized Tree Adjoining Grammars can
be parsed effectively, using the head corner parser.

Chapter 5

Reversible Constraint-based
Machine Translation

This chapter presents the architecture of a reversible Machine Translation (MT) sys-
tem. This architecture is at the core of the MiMo2 prototype which was developed
by the author and colleagues at the University of Utrecht (van Noord et al., 1990;
van Noord, 1990b; van Noord et al., 1991). The chapter is organized as follows.

In the first section I discuss the notion ‘linguistically possible translation’, and ways
in which we could go about defining linguistically possible translations. A problem,
called the subset problem, will be encountered which motivates us to use a specific
architecture for MT. In this architecture, which will be presented in some detail in
section 5.3, translation is defined by a series of three reversible constraint-based gram-
mars.

In section 5.4 T present some exemplification of the use of constraint-based gram-
mars to define transfer relations between pairs of languages.

In section 5.5 I discuss how to ensure that such transfer components are reversible.
It turns out that by requiring that translation is compositional in a sense to be made
precise, transfer grammars can be shown to be reversible.

Section 5.6 goes to show that using reversible constraint-based grammars for trans-
fer is expressive enough to define some so-called non-compositional translations, which
were problematic for less powerful formalisms. Our conclusion then will be that re-
versible transfer grammars may be a good compromise between expressive power and
computational feasibility.

5.1 Linguistically possible translation

Landsbergen (1984) introduces the notion linguistically possible translation which pro-
vides a useful methodological concept for work in Machine Translation (see also Lands-
bergen (1989)). A system which implements the notion ‘linguistically possible trans-
lation’ employs linguistic knowledge only. Clearly, in order to produce the correct or
best translation such a system has to be augmented with other (artificial intelligence)
components. However, at the current state of technology it seems unrealistic to expect

153

154 CHAPTER 5. REVERSIBLE MACHINE TRANSLATION

De doos is in de pen ~_

The box is in the pen
/ p
/

De doos is in de kinderbox

Figure 5.1: Best translation is not symmetric. In the English to Dutch direction,
extra-linguistic knowledge dictates the second sentence.

that these other components can be constructed in the near future. Therefore, a more
realistic goal for MT consists of the construction of systems implementing the notion
‘linguistically possible translation’. Such systems may also be of practical interest,
because it may be possible to augment such restricted systems with a component
that interacts with the user — for example in the case of difficult disambiguation
problems. Thus the user can provide help in order to extract the best translation
from the computed set of linguistically possible translations. It is assumed that the
overall best translation is in fact to be found (in a significant number of cases) among
this set. This chapter therefore will be focused on the notion ‘linguistically possible
translation’, rather than on translation in general.

Consider a class of MT systems which employ linguistic knowledge only. In such
a system, a source text is assigned a set of meaning representations according to the
rules of the grammar of the source language. On the basis of such a meaning represen-
tation the target grammar then produces a set of target sentences for this grammar.
Such a system thus produces a set of linguistically possible translations. Landsbergen
(1984) assumes that the relation ‘linguistically possible translation’ (Ipt) is a sym-
metric relation. Thus, tyrget Dt tsource I tsource [Pt trarger- On the other hand, the
relation ‘best of linguistically possible translations’ is not. For example assume that
disambiguation based on knowledge of the world is outside the linguistic components.
The asymmetry occurs if the translation of some (unambiguous) source sentence is
ambiguous, and where furthermore the ‘added’ reading of the target sentence is to
be preferred for extra-linguistic reasons. An example can be constructed using the
famous Bar-Hillel sentence, cf. figure 5.1.

This view of translation is extremely poor. For example, it does not take world
knowledge into account as we saw above. Moreover, there are many other factors
that could be taken into account in defining linguistically possible translations, e.g.
preservation of style, (indirect) speech act, honorifics, etc. It is hoped (and expected)
that an approach based on the poor view described can be useful as a basis for future
richer views.

An important question of translation is whether there always is a meaning-preserving
translation. It may be the case that there are meanings in one language that are
not expressible at all in some other language (for some discussion cf. (Katz, 1978;
Keenan, 1978)). It may even be the case that one cannot know whether the meaning

5.2. THE SUBSET PROBLEM 155

expressed in two languages is the same (cf. (Quine, 1960)). These are important
questions, but the approach outlined here does not depend on how they are answered.
Our approach is concerned only with the case where the same meaning can be ex-
pressed in both languages. Our question is ‘how to describe possible translations’, not
‘is translation possible’.

The symmetry of the linguistically possible translation relation provides the moti-
vation for reversible MT systems (Landsbergen, 1984; Kay, 1984). If the Ipt relation
from language [; to Iy is in fact the same relation as going from [y to /1, then it seems
very natural to try to characterize this relation only once — and to construct a pro-
gram which is able to compute this relation, given this single characterization, in both
directions.

Such an approach has a number of advantages, most of which coincide with the
advantages already mentioned in chapter 1. Thus, a reversible architecture has

e theoretical advantages. Given that there s only one linguistically possible trans-
lation relation between two given languages, then we should describe this relation
only once.

e practical advantages. If we are interested in building systems that translate
between some given languages then it may be expected that writing a single
component for a language pair may in fact be ‘cheaper’ than writing two separate
components.

e methodological advantages. It can be argued that the goal of writing a reversible
translation system improves the quality, even in one direction. This point is
worked out by (Isabelle, 1989), for the translation between English and French.

5.2 The subset problem

A possible MT system implementing the notion linguistically possible translation may
be constructed as the series of two monolingual grammars. It is assumed that each
of the monolingual grammars defines a reversible relation between phonological rep-
resentations and semantic representations. The translation relation simply is the
composition of these two monolingual relations. The logical form language is thus
used as some sort of interlingua.

In general such an approach faces a problem which has been called the subset prob-
lem in Landsbergen (1987). Each of the monolingual grammars defines (implicitly) a
set of semantic representations. However, in general it need not be the case that for a
given semantic representation defined in language a there exists a semantic represen-
tation in language b. In general we have the situation as in figure 5.2. In this figure,
a grammar for language a relates a set of phonological representations phon, with a
set of semantic representations sem,; the same holds for a grammar for language b.
The set of semantic representations for each language is a subset of the possible sem;
however in general sem, and semy, are different.

156 CHAPTER 5. REVERSIBLE MACHINE TRANSLATION

phon, sem, semy, phony,

)

Figure 5.2: The subset problem

The problem can be seen as consisting of two parts. This first part of the subset
problem can be characterized as a difference of coverage of the source— and target
language grammar. The second part constitutes the logical equivalence problem.

Difference in coverage. Firstly it may be the case that a given semantic repre-
sentation simply has no equivalent in the target grammar. Thus a certain meaning
cannot be expressed in the target language. In such cases, there is no (linguistically
possible) translation available. Thus, in these examples translation does not seem
to preserve the meaning (completely). I assume that in general completely different
(probably non-monotonic or heuristic) mechanisms are needed for such cases. These
examples fall outside the scope of this work.

Logical equivalence. The second reason for the subset problem may be that for a
given semantic representation the target language does define a logically equivalent,
but syntactically different, semantic representation. This part of the subset problem
is an instantiation of the logical equivalence problem as discussed in section 1.

There are several ways in which we could go about trying to tackle the subset
problem. Solutions to the problem seem to have in common that in some way or
other the different grammars of the languages between which translation is defined
are put in correspondence, i.e. are tuned to each other.

For example, if we are to build a translation system between German and Russian
we could construct the monolingual grammars of German and Russian very carefully
in such a way that we know that the subset problem does not surface. This approach is
worked out in the Rosetta system (Landsbergen, 1987). If we encounter an example in
which the German grammar produces a semantic representation for which the Russian
grammar does not provide a sentence, we simply change the grammar of German or
Russian in such a way that there is a possible translation.

The important counter argument to this approach is, that this leads to a situation
in which monolingual grammars are ‘impure’, whereas from a methodological and
practical point of view, we may require that each monolingual grammar should be
‘pure’, i.e. not influenced by the design of all other monolingual grammars for reasons
of modularity. Especially in multi-lingual systems this argument is an important one.
Of course, it remains to be seen how important this modularity is in the construction
of a practical system.

5.3. THE ARCHITECTURE OF MIMO?2 157

Instead I propose to tune semantic representations derived by monolingual gram-
mars explicitly. The tuning is defined in an extra component: the transfer component.
In this case, a translation system between German and Russian is constructed as fol-
lows. The monolingual grammars are constructed in a modular way, as desired. For
each of the semantic representations (implicitly) defined by the German grammar,
we define how these relate to the semantic representations (implicitly) defined by the
Russian grammar.

This approach to the subset problem is taken in the MiMo2 system. The semantic
representations derived by the monolingual grammars are explicitly tuned to each
other by a transfer component. Moreover, this transfer component is defined by a
constraint-based grammar (just like the monolingual grammars). For this reason it is
very easy to guarantee that the translation relation defined by this system is reversible.
Furthermore, if each of the monolingual and transfer grammars is reversible, then so
is the translation relation.

The architecture of MiMo2 is defined in more detail in the following section.

5.3 The architecture of MiMo?2

In the architecture of MiMo2 to be proposed here, (monolingual) relations between
phonological representations and semantic representations are defined by constraint-
based grammars of the type introduced in chapter 2. However, constraint-based gram-
mars can also be used to define other relations between (parts of) linguistic signs. In
particular it is possible, as discussed by Kay (1984) for FUG, to use constraint-based
grammars to define transfer rules. In the model I propose a translation relation be-
tween two languages is defined as the composition of three reversible relations. Each
of these relations is defined by a constraint-based grammar. The first grammar de-
fines the relation between source language utterances and source language dependent
semantic representations. The second grammar defines the relation between source
language dependent semantic representations and target language dependent semantic
representations, the third grammar defines the relation between target language de-
pendent semantic representations and target language utterances. The resulting MT
system is reversible iff each of the grammars is reversible, as I showed in section 1.3).

For example, to compute the relation between Dutch and Spanish phonological rep-
resentations construct the series of the programs for the Dutch grammar, the Dutch-
Spanish transfer grammar and the Spanish grammar. Each translation relation that
can be defined is necessarily reversible if each of the grammars that are used defines
an reversible relation. See figure 5.3 for an illustration.

The reasons for a constraint-based formalism for transfer rules are the following.

e A constraint-based implementation provides a declarative characterization of the
transfer relation. This characterization is independent of the actual way in which
the relation is computed.

e A single characterization can then be used to compute transfer relations in both

158 CHAPTER 5. REVERSIBLE MACHINE TRANSLATION

dutch Gdutch Gt’ransfer Gspanish D SpaniSh

Figure 5.3: Reversible translation system

phon, phon,

Figure 5.4: The subset problem in a transfer architecture

directions. The constraint-based formalism thus provides for a reversible transfer
component.

e A constraint-based formalism constitutes a simple, yet very powerful language
for the statement of such transfer relations. In section 5.6 I show that transfer
relations can be defined to analyze certain non-compositional translations which
are problematic for other transfer systems.

In section 5.5 I discuss how to ensure that a transfer grammar is reversible. We
show that, as long as translation is compositional in a sense to be made precise, it is
possible to guarantee that transfer grammars are reversible. On the other hand such
grammars are still powerful enough to handle certain non-compositional translations.
For this reason we argue that reversible constraint-based grammars provide for an
interesting compromise between expressive power and computability.

As far as the system is concerned, there may be a different logic for natural language
semantics for each language. A transfer component for two languages thus functions
as an interface to relate the two logics used to define semantic representations with.
This makes it possible that grammars are developed quite independently of each other.
On the other hand, if languages define similar semantic representations the transfer
grammars will generally be simpler and easier to write.

In a transfer model the subset problem, as discussed in the previous section, is in
principle present in a slightly different format, because the transfer component need
not be ‘complete’ (cf. figure 5.4). The point at which grammars are connected gives
in principle rise to an instantiation of the subset problem. However, in practice it
turns out that in the proposed architecture the problem hardly surfaces at all. This
is so, because the transfer grammars are explicitly tuned to each of the monolingual
grammars. Clearly, that was the reason to have transfer grammars in the first place.
Therefore, it seems warranted to neglect this problem.

5.3. THE ARCHITECTURE OF MIMO?2 159

5.3.1 Other constraint-based approaches to MT

The objective to build a reversible MT system using a series of reversible unification
grammars is reminiscent of the CRITTER system (Isabelle et al., 1988), the TFS
(Zajac, 1989), the CLE (Alshawi et al., 1991) and ELU (Russell et al., 1991). In
CRITTER logic grammars are being used; Emele and Zajac use a type system in-
cluding an inheritance mechanism to define transfer-like rules. In CLE and ELU the
semantic representations defined by monolingual grammars are put in correspondence
by special transfer rules, rather than using one formalism for both monolingual and
bilingual grammars (as we propose). In section 5.6 I describe an approach to cer-
tain non-compositional translation cases which seems not available to the two latter
formalisms, but which is available in the MiMo2 architecture.

A somewhat different approach is advocated in Kaplan et al. (1989). In that
approach a system is described where an LFG grammar for some source language is
augmented with equations that define (part of) the target level representations. A
generator derives from this partial feature structure a phonological representation ac-
cording to some LFG grammar of the target language. Instead of a series of three
grammars this architecture thus assumes two grammars, one of which defines both the
source language and the relation with the target language. The translation relation is
not only defined between semantic representations but may relate all levels of represen-
tation (c-structure, f-structure, o-structure). Although in this approach monolingual
grammars may be used in a bidirectional way it is unclear whether the translation
equations can be used bi-directionally. Furthermore, the approach faces problems
with certain non-compositional translations as already discussed by the authors and
in some more detail in Sadler and Thompson (1991).

Whitelock (1991) discusses a constraint-based approach to MT in which transla-
tion relations are exclusively defined by relating lexical entries of the source and target
language. A translation in this approach proceeds, somewhat simplified, as follows.
A source text is built from a ‘bag’ (i.e. a multi-set) of source language lexical entries.
Each of these lexical entries may be related to lexical entries of the target language,
giving rise to a bag of target lexical entries. The target text is computed by generating
(non-deterministically) a sentence using this bag of lexical entries (and the combina-
tion rules of the target grammar). In relating the lexical entries of different languages,
several pieces of information may be put in correspondence; most notably semantic
information. The target sentences that are generated use this semantic information.
This approach works thanks to a crucial property of the grammars, inherited from
UCG (Zeevat et al., 1987): all semantic representations are projected from the lexi-
con. However, the approach faces severe difficulties for grammars in which semantic
information is not always projected from lexical entries. Furthermore, if this approach
to translation is generalized in order for other types of information (such as ‘style’)
to be put in correspondence as well, then we need to assume that such information is
also projected from lexical entries; it seems problematic to assume that this is always
possible or linguistically satisfactory.

160 CHAPTER 5. REVERSIBLE MACHINE TRANSLATION

5.4 Constraint-based transfer

5.4.1 Simple transfer rules

Semantic representations such as the ones introduced in the first chapter will often
be related in a straightforward way to a Dutch equivalent, except for the value of the
labels representing content words.

As an example consider a transfer grammar to define the transfer relation between
Dutch and English. The semantic representations of English and Dutch are labelled
by the labels gb and nl respectively. We simplify this example by not taking into
account properties such as tense and aspect. A rule that translates ‘open_fire_on’ into
‘het_vuur_openen_op’ is defined as:

sort : binary
pred : open_fire_on
gb: | argl : Gy
arg?2 : Go
_ neg : Neg
(1) sign([sort : binary
pred : het_vuur_openen_op
nl: | argl : N;
arg? : Ny
neg : Neg

v

sign nl: Ny

. : b:G
sign(il:N;])

This rule simply states that the translation of an argument structure is composed of
the translation of its arguments; furthermore the value for the neg attribute is simply
defined to be the same for the English and Dutch argument structure representations.

5.4. CONSTRAINT-BASED TRANSFER

161

Similar rules can be written for other predicates. If the rule applies to the goal

7- sign(

|

[sort : binary
pred : open_fire_on
[sort : nullary
argl : | pred : soldier
| num : pl
[sort : modifier
sort : nullary
mod : [pred : columbian]
gb: [sort : nullary
) sort : modifier
arg2 : :
mod - sort : nu}]ary
argl pred : prime
sort : nullary
argl : | pred : minister
num : sg
| neg :neg

X

the two daughters of the rule will be ‘instantiated’, and the value of nl/ will be bound
to the nl values of these daughters; i.e. we obtain the goal:

nl:

sign(

sign(

gb: ...

TLZZNQ

7

: nullary
: columbian

: modifier

:l

sort :
pred :

sort :
pred :

sort : binary
pred : het_vuur_openen_op
argl : Ny
arg? : Ny
neg : neg
[sort : nullary
gb : | pred : soldier
| num : pl
| nl: Ny
[[sort : modifier
sort
mod : l pred
[sort
gb: mod
argl :
argl :

num :

nullary
prime

nullary
minister

58

162 CHAPTER 5. REVERSIBLE MACHINE TRANSLATION

An example of the rule for the first daughter will be a bilingual lexical entry and looks
as:

sort : nullary
gb : | pred : soldier |,
_ num : Num
(2) sign(sort : nullary
nl: | pred : militair
num : Num

The second daughter will be translated by a general rule translating argument struc-
tures of sort ‘modifier’ (this rule will be modified later in this section):

[sort : modifier
gb: | mod : Gpoq
. | argl : Ggrg
(3) sign([sort : modifier
nl: | mod: Npoa

| argl : Ngpg

) b: Gmo
o 275,

) b: Gy
szgn(l le : ngg])

The complex English expression ‘prime minister’ has to be translated as a simple
expression in Dutch: ‘premier’. This rule can be defined as:

sort : nullary
nl: | pred : premier
num : Num

[sort : modifier

(4) sign(mod : prime)-
gb : sort : nullary
argl : | pred : minister

num : Num

where it is assumed that the construction is analyzed in English as an ordinary modi-
fied construction (rather than as a single idiomatic expression), and where the semantic
representation of the modifier (‘prime’) takes the semantic representation of the noun
as its argument. Note that a similar rule could be written to deal with the ‘schimmel
- white horse’ example. As a result of the rule applications we obtain the following
feature structure from which the generator generates the sentence

(5) De militairen hebben het vuur niet geopend op de Columbiaanse premier

5.4. CONSTRAINT-BASED TRANSFER 163

gb : open_fire_on(soldier,|col|([prime|(minister)))
nl : het_vuur_openen_op(militair,[col|(premier))

_— T~

gb : soldier gb : [col]([prime](minister))
nl : militair nl : [col](premier)

_— T~

gb : columbian gb : [prime](minister)
nl : columbiaans nl : premier

Figure 5.5: Parse tree of transfer example

gb: ...
sort : binary
pred : het_vuur_openen_op
[sort : nullary
argl : | pred : militair
| num : pl
nl [sort : modifier 1
mod - sort : nullary.
arg? - pred : columbiaans
argl - l sort : nullar.y]
pred : premier
neg : ne
i | neg :neg I 5

The abbreviated ‘parse tree’ for this example can be shown as in figure 5.5.

In the foregoing examples the relation between semantic representations is rather
straightforward. Note however that the full power of a unification grammar can be
used to settle more difficult translation cases, because different labels can be used
to represent the ‘translational syntax’. For instance we can build a tree as value of
the label tree to represent the derivational history of the translation process. Or
we can ‘thread’ information through different nodes to be able to make translations
dependent on each other. Translation parameters such as style and subject field can
be percolated as labels of nodes to obtain consistent translations; but these labels
themselves need not be translated. Some examples of more interesting translation
rules using some of these possibilities are defined in the next sections.

164 CHAPTER 5. REVERSIBLE MACHINE TRANSLATION

5.4.2 Translating reentrancies

The discussion of reentrancies in relation with the definition of the p-parsing problem
in the foregoing chapter (section 2.4) is not without ramifications for the organization
of a transfer grammar and the definition of semantic structures. Some constructions
such as control verbs and relative clauses may be represented using such reentrancies
(essentially as in LFG’s f-structure); for example

(6) The soldiers tried to shoot the whisky priest

may be represented by an argument structure where the first argument of ‘try’ is
reentrant with the first argument of ‘shoot’, cf. :

[sort : binary

pred : try
[sort : nullary
argl : | pred : soldier
num : pl X,

sort : binary

pred : shoot

argl : Xy
sort : nullary

arg? : | pred : whisky_priest
num : sg

arg? :

The translation of such argument structures to Dutch equivalents can be defined
as in the following rule in matrix notation:

sort : binary

pred : try
gb : argl : Gy

arg2 : [argl : Gy]G
. 2
(7) sign(-)=

sort : binary

pred : proberen

ni: argl : Ny

arg? : [argl : N;]N2

. b:G
sign(ZZ:NE])’
. : b:G

sign(le:N;])

In this rule the equality representing the control relation is explicitly mentioned for two
reasons. The first reason simply is that, given the definition of the p-parsing problem,
transfer will not produce anything without explicitly mentioning the reentrancy! The

5.4. CONSTRAINT-BASED TRANSFER 165

second reason is, that we do not want to translate the two noun phrases in isolation,
but rather we want to obtain the same translation for both arguments. These two
problems are now explained as follows.

Suppose we did not explicitly mention the reentrancy in the transfer rule. In
that case, one of the signs defined by the transfer grammar has the leftmost feature
structure in the following figure as the value of its gb label (leaving the sort attribute
out for reasons of space):

[pred : try [pred : try
argl - pred :. solldler l argl - pred :' solldler]
| num :p X, | num :p X,
[pred : shoot + [pred : shoot
aral - pred : soldier arad - pred : soldier
arg? : 9L um pl X, arg2 95 num pl X,
| arg2: ... | arg2: ...

On the other hand, the gb value of the input for transfer would be the rightmost feature
structure. The definition of the p-parsing problem (12) requires that the constraints on
the gb path should be equivalent. However, the second constraint has more solutions
than the first constraint (and hence is not equivalent) because the first constraint
requires that the paths Xy arg! and Xy arg2 argl be mapped to the same feature
graph, whereas solutions of the second constraint may map these paths to different
feature graphs. Hence transfer does not produce a solution if the reentrancy is not
‘reproduced’ in the transfer grammar.

Even if we were to allow the p-parsing problem to produce translations in the case
discussed above this would result in some (practical) problems. Suppose indeed that
the p-parsing problem were relaxed in order to ignore reentrancies. In this case the
transfer grammar might be written without mentioning the reentrancy. However, this
is also not what we want: the translation of the arg? and the embedded arg? should
clearly be the same. Note that the translation of ‘soldier’ into Dutch can be both
‘soldaat’ or ‘militair’. If the reentrancy is not mentioned the transfer grammar might

166 CHAPTER 5. REVERSIBLE MACHINE TRANSLATION

also produce the corresponding Dutch semantic representation:

[sort : binary

pred : proberen
[sort : nullary
argl : | pred : soldaat
num : pl

[sort : binary

pred : neerschieten

[sort : nullary
argl : | pred : militair

arg2 : num : pl

[sort : nullary
arg? : | pred : whisky_priester
| num : sg

In most cases the monolingual grammar fails to relate such representations to an
utterance, and the system may eventually come up with the appropriate translation
as well. However, it is not clear that the monolingual grammar can always be used as
a filter for such ill-formed structures. Furthermore such a generate-and-test approach
is grossly inefficient.

Note though that unbounded reentrancies can be translated directly in case the
reentrancy is between variables. Suppose that the representation for control verbs is
not the one shown above, but rather the following (cf. chapter 1):

[sort : binary
pred : try
[sort : nullary

argl : pred : soldier

num : pl
| index : 1
[sort : binary 1
pred : shoot
arad - sort : refer
arg2 : g | index : 1

[sort : nullary
arg? : | pred : whisky_priest
| num : sg

where I introduce the sort ‘refer’ as a special sort of argument structure. In this
case, the reentrancy is only between ‘variables’ and not between ‘structure’. Hence, it
suffices to simply state that the value of the attribute ‘index’ translates as itself, eg.

5.5. REVERSIBLE TRANSFER 167

in bilingual lexical entries which translate nullary argument structures:

sort : nullary
pred : munk
num : Num
index : 1

gb :

sign(sort : nullary

pred : monnik
num : Num
index : 1

nl :

What remains to be done is to define the following rule for argument structures of
type ‘refer’:

b sort : refer
. " | index : 1
sign(/- sort : refer)-
e index : 1

Hence if we can limit the need for reentrancies in semantic structures to reentrancies
between variables, then the problem disappears.

5.5 Reversible transfer

The formalism also allows transfer grammars that define transfer relations that are
not reversible, as is clear from the proof in section 2.5. The objective, though, is to
build an reversible machine translation system. In this section I will define a simple
condition on transfer rules such that a top-down interpreter is guaranteed to terminate
for grammars of which the rules satisfy the condition.

The constraint I am about to propose embodies the hypothesis that translation
is defined compositionally; i.e. the translation of some structure is defined in terms
of the translations of the parts of that structure. In section 5.6 I show that certain
types of non-compositional translation can still be handled by a reversible transfer
grammar. Therefore I argue that the constraint to be proposed embodies an interesting
compromise between expressive power and computability.

Assume the transfer rules define a relation between the paths p and ¢. I will require
that for each rule the value of p of the mother node is strictly larger than the value of
p of each of the daughters, and similarly, the value of ¢ of the mother node is strictly
larger than the value of ¢ of the mother. I define these sizes in terms of the underlying
feature graph models. The size of a feature graph simply is defined as the number of
nodes of the graph. For a rule

sign(Xo) : =sign(Xy) . . . sign(X,), ¢.

I require that for all assignments o € ¢, and all j, 1 < j < n,

168 CHAPTER 5. REVERSIBLE MACHINE TRANSLATION

a(Xo)” > a(X;)P
a(Xo)? > a(X;)?

The most straightforward way to satisfy this condition is for a mother node to share
proper parts of its p and ¢ values with the p and ¢ values of each of its daughters
(making the simplifying assumption that semantic structures are not cyclic). For
example, all of the rules given so far satisfy the condition by sharing sub-parts of the
value of the gb and nl attribute. A rule such as the following would fail to meet the
condition:

pred : Kiss
gb: | argl : Gy
arg? : Go
[pred : kus
nl: | argl : N;
| arg2: Ny

(8) sign()i-

41X
_gb.largzzGll

' arg? : Gy
sign(nl - argl : Nq)
arg? : Ny v

To see that this rule violates the condition, consider the assignment o which assigns
both X and Y to a graph whose subgraph at path p is the graph

(Z,{Z pred kus,Z argl c¢1,Z arg2 cs, })

Another way to understand this, is to see that the feature structure associated with the
daughter node, in fact unifies with the feature structure associated with the mother
node. Thus, even though the daughter node does not ‘mention’ the pred attribute,
this does not mean that there cannot be a value for this attribute. The rules in the
previous sections of this chapter all satisfy the condition, as in these rules the daughter
nodes are associated with proper sub-parts of the feature structure associated with
the mother node.

A top-down interpreter for transfer grammars can be defined as the meta-interpreter
defined in chapter 2, repeated here for convenience in figure 5.6. This algorithm thus
simply performs a top-down expansion of the input sign. By the size condition we
know however that each recursive call constitutes a smaller problem and hence transfer
will terminate, given that the ordering on sizes is well-founded. Given the equivalence
condition on the p-parsing problem, we know also that there is an upper limit to the
possible size of either path p or path ¢ (in principle the interpreter can check at each
inference step whether or not it is hypothesizing a further instantiated value of p.
Note that the current algorithm does not implement this coherence check; the algo-
rithm can be modified to implement coherence and completeness, as discussed in the
preceding chapter.

5.6. CONTEXT-SENSITIVE TRANSLATIONS 169

refutation(Goal) : -
rule(Goal, Ds),
refutations(Ds).

refutations(()).

refutations((H|T)): -
refutation(H),
refutations(T).

Figure 5.6: Meta interpreter for R(L)-grammars

5.6 Reversible Transfer of Context-sensitive Trans-
lations

The purpose of this section is to show that the formalism proposed for transfer is more
powerful than some previously defined transfer formalisms such as the CAT framework
(Arnold et al., 1986; van Noord et al., 1989), but also some of the constraint-based
transfer formalisms (Alshawi et al., 1991; Russell et al., 1991), even taking into account
the constraint on transfer grammars defined in the previous section. Furthermore, this
extra power is required to handle some non-compositional translations. As in mono-
lingual uses of constraint-based grammars we may percolate all kinds of information
in the feature structures, for example to define context-sensitive translations.

In formalisms such as CAT, a transfer rule essentially translates a tree by trans-
lating parts of the tree recursively. The rules thus always operate on parts of the
input object; this input object cannot be modified. This leads to complex rules for
the treatment of context-sensitive translations. For example, the English adjective
‘strong’ is normally translated into ‘sterk’ in Dutch. In the case of ‘strong criticism’,
however, the translation has to be ‘scherpe kritiek’ (sharp criticism). Assuming that
this regularity has to be treated in transfer, the only possible way to obtain this result
in CAT is to define a transfer rule that translates the structure in which both ‘strong’
and ‘criticism’ occur. This is problematic in cases where this larger structure contains
other parts that have to be translated as well; the translation of these other parts can
however also be irregular. This leads to special rules to handle the combination of
such irregular cases (see also Arnold et al. (1988)). It may also be problematic if the
representation of the adjective and the noun do not appear as sisters in the represen-
tation but may be arbitrarily far away from each other (e.g. because other adjectives
intervene). In that case a rule has to be written for each different possibility. In cases
where there is no limit to the distance even this escape will not work.

The current framework allows a compositional treatment of such context-sensitive
cases because we simply can percolate information using the constraints. The validity
of this claim is established with the following an example. First, recall that the

170 CHAPTER 5. REVERSIBLE MACHINE TRANSLATION

argument structures for noun phrases such as ‘very strong whisky’, look as follows:

[sort : modifier
[sort : modifier

mod l sort : nullary]

mod. : pred : very

argl pred : strong

) [sort : nullary]

argl : | pred : whisky
| num : sg

[sort : nullary]

The basic rule to translate argument structures of sort ‘modifier’ is defined as in the
following rule (this rule replaces the preceding rule for modifier structures). In this
rule the information of what the ‘head’ of a modified structure is, is percolated through
the features ‘gbhead’ and ‘nlhead’. This value will then be equated with the features
‘ebheaded’ and ‘nlheaded’ that are associated with the modifiers.

nl: | mod: Npoa
| argl : Ngpg

[sort : modifier]

[sort : modifier] |

, gb: | mod: Gpog
(9) sign(| argl : Gy
gbhead : Gpeaq
nlhead : Npeqd
gbheaded : Gpegged
nlheaded : Npegdeq

[nl: Nood
gb : Gmod)
gbheaded : Gpeaq |7’
| nlheaded : Npeqq

[nl: Ngpyg

gb : Ggrg
gbhead : Gpeqq
nlhead : Npead)
gbheaded : Gpeaded

| nlheaded : Npended |

sign(

sign(

The rule translating nouns such as ‘whisky’ is defined as:

5.7. CONCLUSION 171

[sort : nullary
nl: | pred : whisky
| agr: Agr
[sort : nullary
gb : | pred : whisky
| agr: Agr
nlhead : whisky
gbhead : whisky

(10) sign(

Now we are ready to define a special rule for the translation of ‘strong’ into ‘scherp’
if the adjective is headed by the noun ‘criticism’/‘kritiek’.

- sort : nullary | |
e pred : scherp

(11) sign(| gb - [sort : nullary]

pred : strong

nlheaded : kritiek
| gbheaded : criticism

Hence, the parse tree of the translation of ‘very strong unmotivated criticism’ can be
given as in figure 5.7. We thus showed how the use of ‘extra’ constraints allows for a
compositional (in fact reversible) treatment of context-sensitive translations.

5.7 Conclusion

This chapter presented the reversible architecture of the MiMo2 prototype. The ar-
chitecture is motivated by considering the ‘subset problem’, as discussed by Landsber-
gen (1987). The linguistically possible translation relation between two languages is
defined by a series of reversible constraint-based grammars. I showed how constraint-
based grammars can be used to define transfer rules. By requiring that transfer rules
are ‘compositional’ in a certain sense made precise, we showed that grammars can be
guaranteed to be reversible. I also showed that certain non-compositional translations
can still be handled in the framework I proposed. This motivated the claim that
reversible transfer grammars provide an interesting compromise between expressive
power and computational feasibility.

172 CHAPTER 5. REVERSIBLE MACHINE TRANSLATION

gb [[very] (strong)] ([unmotivated](criticism))
[[zeer](scherp)]([ongemotiveerd)(kritiek))

_—

gb : [very](strong) gb : [unmotivated](criticism)
nl : [zeer](scherp) nl : [ongemotiveerd|(kritiek)
gbheaded : criticism gbhead : criticism

nlheaded : kritiek nlhead : kritiek

N\ N\

gb : strong gb : criticism
gb : very nl : scherp gb : unmotivated nl : kritiek
nl : zeer gbheaded : criticism nl : ongemotiveerd gbhead : criticism

nlheaded : kritiek nlhead : kritiek

Figure 5.7: Translating ‘very strong unmotivated criticism’

Summary

Introduction

Constraint-based grammars are often used for natural language processing. One of
the interesting properties of a constraint-based grammar is, that such a grammar is
completely declarative: it does not enforce a specific processing regime, but allows
various parsing and generation algorithms. The order of processing is independent on
the result of the computation.

For that reason, such declarative grammars can, at least in principle, be used both
for parsing and generation. However, from a somewhat more practical point of view,
several problems must be solved once the same grammar is used for both parsing and
generation. Some of these problems are the subject of this thesis. For example, it
turns out that applying a ‘naive’ processing strategy for the purpose of generation,
gives rise to severe problems for grammars which are not written with the purpose of
generation in mind.

The first chapter of the thesis provides the motivation for reversible grammars, and
clarifies some of the fundamental issues involved. A grammar is seen as a device which
defines a relation between form and meaning. Form and meaning are represented by
phonological structures and semantic structures. A parsing algorithm computes for
a given phonological structure its corresponding semantic structure. A generation
algorithm computes the relation between form and meaning in the opposite direction.

An effectively reversible (or reversible for short) grammar is defined as a grammar
which defines an effectively reversible relation (between form and meaning). A binary
relation is effectively reversible if and only if it can be computed in both directions
by a program which terminates for all inputs. Hence, a grammar is reversible if both
parsing and generation is guaranteed to terminate (for all inputs).

Reversible grammars are interesting for linguistic, technological and psychological
reasons. Linguistically it can be argued that a single language should be described by
a single grammar. Furthermore, if such a single grammar is to be used as a ‘theory’
about the language, it can be argued that it should be possible to check the predictions
the theory makes about the language, and hence the grammar should be reversible.

From a language technological point of view, I argue in section 1.1 that reversible
grammars make it easier to build good natural language processing systems. It is
sometimes thought that grammars which are used for parsing only, can be very liberal
in that such grammars may allow ungrammatical sentences (as these are not expected
to occur in the input). I argue, on the contrary, that this type of overgeneration

173

174 SUMMARY

is bad, because it generally leads to false ambiguities. Hence, even if one is only
interested in building a parsing system, it may be the case that a reversible grammar
is a good method to obtain such a system. Moreover, it may be easier to build a
single, reversible grammar, than two separate grammars.

In section 1.1 it is discussed whether humans base their language production and
language understanding on a single body of grammatical knowledge. This claim would
explain why humans speak the same language they understand and vice versa. It is
argued that observed differences in language understanding and production may be
due to differences at another level of cognitive behavior, rather than to differences in
the grammatical component.

An important goal of the thesis is to improve upon existing parsing and generation
techniques along the following two dimensions. Firstly, an important motivation is to
extend the types of grammar for which the proposed parsing and generation techniques
are applicable. Secondly, the parsing and generation techniques are motivated from
a linguistic perspective. It is hoped that such a ‘linguistic’ motivation for deduction
improves the efficiency of parsing and generation as compared with non-linguistic
deduction techniques.

The formalism: R(L)

Chapter 2 defines a formalism, called R(L), which is in several respects typical for
formalisms in use in computational linguistics. It can be characterized as a constraint-
based formalism, where the constraints are restricted to the path-equations known
from PATR II. Unless PATR II, the formalism does not prescribe that phrases are built
by concatenation. Hence the formalism is comparable to pure Prolog, but instead of
first-order terms, the data-structures of the formalisms are feature structures (defined
by path equations). Furthermore, the formalism is defined within a very general
setting, provided by the work of Hohfeld and Smolka (1988). This provides for more
powerful constraints to be added to the formalism, without affecting some of the
properties of the formalism, if the necessary constraint-solving techniques are available
for these more powerful constraints.

The resulting formalism, R(L), is used in the thesis as a language to define gram-
mars with, but moreover as a language to define meta-interpreters in. A grammar of
R(L) is a definite clause specification of the relation sign/1. A simplified clause of a
grammar might read as follows:

(1) sign(M):-
Sigln’(Dl)a
Sign(DZ)a
M cat = s,
D; cat = np,
Dy cat = vp,
D; agr = Dy agr,
M phon in = D, phon n,

SUMMARY 175
D1 phon out = Dy phon in,
Dy phon out = M phon out,

M sem = D; sem.

Such a clause will generally be written in matrix notation as follows:

syn : s
(2) sign(| phon:Py—P |):-
sem : S
[syn : np
sign(| agr: A),
| phon : Py — Py
[syn : np
. agr: A
sign(sem : S)
| phon : P, —P

The procedural semantics of the formalism is comparable to Prolog’s proof pro-
cedure. Thus, refutation of a goal proceeds in a top-down manner. A left-most
computation rule is assumed, such that the leftmost atom of a goal is reduced first.
Furthermore, the search tree is traversed in a depth-first backtrack manner. Alter-
native proof strategies for R(L) grammars are defined later as meta-interpreters in
R(L).

In the case we use R (L) for grammars, the p-parsing problem for a path p is defined
as follows. Assume the input for parsing is a feature structure with phonological
representation ¢ as the value of the attribute phon. The answers to the phon-parsing
problem will be those compatible signs in the grammar which have ¢ as the value
of their phon attribute. Similarly, assume the input for generation is some feature
structure with semantic representation ¢ as the value of the attribute sem. The
answers to the sem-parsing problem are those compatible signs in the grammar which
have sem as their semantic structure.

It is shown that in general the p-parsing problem for R(L£) grammars is not solv-
able, by showing that an undecidable problem, Post’s Correspondence Problem, can
be defined in a R(L£) grammar. It can thus be concluded that in the general case,
grammars of R(L) are not reversible.

In practice however, the grammars computational linguists tend to write are re-
versible. For this reason an important task consists in the construction of proof proce-
dures which solve the p-parsing problem for the grammars typically encountered. This
is the goal of the third and fourth chapter of the thesis. In these chapters generation-
and parsing techniques are presented, which are more generally applicable than some
competing techniques. Moreover these techniques are motivated linguistically in that
certain head-driven and lexicalistic aspects of most modern grammars are exploited
in those techniques. It is hoped that the linguistic foundation of these processing
techniques leads to an increased efficiency.

176 SUMMARY

Semantic-head-driven Generation

In the third chapter, I discuss the generation problem for R(L) grammars, and pro-
pose a semantic-head-driven generation technique which I claim is superior to some
other approaches to generation that have been proposed previously. In order for this
technique to be useful, the semantic structures should be defined in a lexical and
semantic-head-driven fashion. Typically, the semantics of a phrase is a further instan-
tiation of the semantics of the semantic-head of the phrase. And furthermore, the
semantics of the other parts of the phrase, is determined by the semantic-head of the
phrase. Semantic-head-driven generation proceeds by predicting the lexical head of a
given phrase. This lexical head is then connected upward to the goal by successive
rule applications.

Clauses which have a daughter with identical semantics as the mother node, are
called chain-rules, and are, for the purpose of the generation meta-interpreter, repre-
sented as:

cr(Head, Mother, (D ...D,)):-¢.

On the other hand, rules without a head (such as lexical entries) are called non-chain-
rules and are represented as

ner(Mother, (D ...Dy)):-¢.

The following meta-interpreter in figure 1 defines a simple instantiation of the
semantic-head-driven processing strategy. In chapter 3 several improvements and
variations of this strategy are discussed.

The semantic-head-driven strategy is compared with the top-down oriented ap-
proaches of Wedekind (1988) and Dymetman and Isabelle (1988), and the chart-based
approach of Shieber (1988). Semantic-head-driven generation is more general than
those top-down oriented approaches as it handles certain linguistically motivated left-
recursive analyses of subcategorization. On the other hand semantic-head-driven gen-
eration must be favored over Shieber’s chart-based generator because it allows certain
non-compositional analyses, such as those proposed for idiomatic constructions.

An important problem for semantic-head-driven generation are linguistic analyses
which are based on a threading implementation of head-movement. I provide an anal-
ysis of verb-second in Dutch along those lines, which is problematic for semantic-head-
driven generation (because it violates the assumptions about the construction of the
semantic structures mentioned above). A further problem for semantic-head-driven
generation is exemplified by an analysis of English raising-to-object constructions.

Although I do provide some ad-hoc solutions to these problems, it can be argued
that a more general solution is available only, if we allow grammars in which phrases
can be built with other operations than concatenation. For example, raising-to-object
constructions can be analyzed using Bach’s ‘wrap’ mechanism. The resulting analysis
is not problematic for semantic-head-driven generation. On the other hand, such more
powerful operations on strings lead to an increased burden on the parser.

SUMMARY 177

bug(Goal) : -
predict_head(Goal, Lex),
sem_head(Lex, Goal).

sem_head(Goal, Goal).

sem_head(Head, Goal): -
cr(Head, Mother, Others),
bug_ds(Others),
sem_head(Mother, Goal).

bug-ds(())-

bug_ds((H|T)):-
bug(H),
bug-ds(T).

predict_head(Goal, Head) : -
Goal sem = Head sem,
ncr(Head, Ds),
bug-ds(Ds).

Figure 1: A simple version of the semantic-head-driven meta-interpreter. In chapter 3
some improvements of this algorithm are discussed.

178 SUMMARY

Head-corner parsing

In chapter 4 I discuss some proposals for string operations beyond concatenation, such
as Pollard’s proposal for an incorporation of several head-wrapping operations in a
GPSG; Joshi’s Tree Adjoining Grammars; and Reape’s proposal for an incorporation
of sequence-union constraints in an HPSG. I define a head-driven parsing algorithm,
called ‘head-corner’ parsing, for a class of grammars in which strings are constructed
in a linear and non-erasing fashion. Linearity (or ‘non-copying’) requires that a given
rule only introduces some constant number of terminal symbols. A grammar rule is
non-erasing, if the terminal symbols associated with the mother node is a superset
of those associated with the daughter nodes. The proposals mentioned above are in
this class. The head-corner parser thus is applicable for a superset of concatenative
grammars, whereas most other parsers are only applicable for concatenative grammars.

Head-corner parsing is a parsing technique which proceeds head-driven and bidi-
rectionally; both in the sense that the parser does not proceed from left-to-right, nor
does it proceed either bottom-up or top-down. As the parser proceeds head-driven
it is possible to exploit the usual percolation of syntactic features between the head-
daughter and the mother node, in order to improve upon the goal-directedness of
the algorithm. Furthermore, such an order of processing exploits the fact that heads
determine what other categories may occur.

In order for the head-corner parser to be generally applicable for linear and non-
erasing grammars, the input string is used as a guide during the parsing process. In
contrast to parsers for concatenative grammars, the elements from this guide are not
necessarily removed from left to right, but can be removed in any order. In other
words, the guide functions as a set, rather than a stack. To understand the basics of
this algorithm, assume that rules are represented as follows.

For simplicity, assume that all terminal symbols are introduced on rules without
daughters (lexical entries), and that all rules with daughters have a head (in chapter 4
no such simplification is assumed). A clause with a head daughter is represented as:

cr(Head, Mother, (D; ...D,)):-¢.
Lexical entries dominating the terminal symbol Word are represented as:
lex(Word, Mother) : -¢.

Finally assume that the predicate head/2 defines the information which is shared
between a syntactic head and its mother node. This information might for example
be defined as HPSG’s Head Feature Principle. Given these assumptions, a simple
version of the head-corner parser can be defined as in figure 2.

The remainder of chapter 4 discusses extensions and variations of this general
scheme. As an example, it is shown how constraint-based versions of Lexicalized
Tree Adjoining Grammars can be parsed by a variant of the head-corner parser. An
important reduction of the search space for head-corner parsing can be achieved for
grammars in which the operations on strings are monotonic with respect to the order-
ing of the terminal symbols they define. Such a monotonicity property is exhibited
by TAGs. It is shown how a simple check improves the efficiency of the parser.

SUMMARY 179

(3) parse(Goal, Py, P):-
head(Lex, Goal),
del(Word, Py, Py),
lex(Word, Lex),
head_corner(Head, Goal, Py, P).

del(EL, (E1|T), T).
del(El, (H|T), (H|T5)):-
del(El, T, Ts).

parse_ds((),P,P).

parse_ds((H|T), Py, P):-
parse(H, Py, Py),
parse_ds(T, Py, P).

head_corner(X, X, P, P).

head_corner(Small, Big, Py, P): -
cr(Small, Mid, Ds),
parse_ds(Ds, Py, Py),
head_corner(Mid, Big, P, P).

Figure 2: A simple version of the head-corner parser. In chapter 4 I discuss a more
general version, and some improvements.

180 SUMMARY

Reversible MT

The final chapter of the thesis proposes an application of reversible grammars. It is
shown how a series of reversible grammars can be used to implement Landsbergen’s
notion of a linguistically possible translation. In this proposal reversible monolingual
grammars of two languages are interfaced using a third, reversible, transfer grammar.
A transfer grammar defines a relation between language specific semantic structures.
Such a transfer grammar can be defined as a grammar of R(L) as well.

As an example of a rule of such a transfer grammar, consider the translation of
the following pair of sentences of English and Dutch:

(4) John bevalt Mary
John is-liked-by Mary
Mary likes John

It is assumed that the Dutch semantic structure takes John to be the first, and Mary
the second argument. In the English semantic structure the situation is reversed. The
following transfer rule might be written to translate such structures into each other.
The labels nl and gb refer to the Dutch resp. the English semantic structure.

[pred : bevalt
nl: | argl : NI
| arg2: Nl
[pred : likes)=
gb: | argl : Gby
| arg?2 : Gby

. nl : Nl
Szgn(l gb: Gby])’

ign(nl : N1)
ST gb: Gby |77

It is discussed how a simple constraint on such transfer grammars can be defined,
to guarantee that transfer is effective. This constraint requires that for a given transfer
rule between languages [; and Iy, the value of the /; attribute of the mother node is
strictly larger than each of the values for this attribute of the daughters. The same
condition holds for the /; attribute. It can easily be shown that for a grammar whose
rules adhere to this condition, termination is guaranteed for all inputs.

It might be expected that such a constraint reduces the expressive power of a
transfer grammar. It is shown, by means of an example, that powerful feature per-
colations can be used to implement certain ‘non-compositional’ translation cases. It
can thus be argued that reversible transfer grammars in fact constitute an interesting
compromise between expressive power and computability.

(5) sign(

Samenvatting in het Nederlands

Omkeerbaarheid in natuurlijke-taalverwerking

Introductie

‘Constraint-based’ grammatica’s worden vaak gebruikt bij het automatisch verwerken
van natuurlijke taal. Declarativiteit is een interessante eigenschap van zulke gramma-
tica’s. De grammatica schrijft niet voor hoe de verwerking van de grammatica plaats
moet vinden. Verschillende parseer- en genereertechnieken kunnen worden gebruikt,
omdat de volgorde van de berekeningen onafhankelijk is van het uiteindelijke resultaat
van de berekeningen. Om deze redenen kunnen constraint-based grammatica’s in prin-
cipe zowel voor parseren, als voor genereren gebruikt worden. Praktisch gezien dienen
echter nog verschillende problemen opgelost te worden voor dit ideaal verwezenlijkt
kan worden. Het blijkt bijvoorbeeld dat een naieve genereerstrategie problemen op-
levert voor grammatica’s die in eerste instantie niet voor generatie bedoeld waren.
Sommige van deze problemen vormen het onderwerp van deze dissertatie.

Het eerste hoofdstuk bespreekt de motieven voor omkeerbare grammatica’s. Een
grammatica definieert een relatie tussen vorm en betekenis. Vorm en betekenis worden
in zo'n grammatica gerepresenteerd met fonologische en semantische strukturen. Een
parseeralgoritme berekent voor een gegeven fonologische structuur de bijbehorende
semantische strukturen. Een genereeralgoritme berekent voor een gegeven semantische
structuur de bijbehorende fonologische strukturen.

Een effectief omkeerbare (of kortweg omkeerbare) grammatica wordt gedefinieerd
als een grammatica die een effectief omkeerbare relatie definieert (tussen fonologische
en semantische strukturen). Een relatie is effectief omkeerbaar dan en slechts dan
als deze relatie kan worden uitgerekend in beide richtingen door een programma dat
gegarandeerd termineert voor iedere mogelijke invoer.

Omkeerbare grammatica’s zijn interessant om taalkundige, taaltechnologische en
psychologische redenen. De taalkundige relevantie blijkt uit de stelling dat één taal
door één grammatica beschreven dient te worden. Bovendien kan worden beargu-
menteerd dat de voorspellingen die deze grammatica doet over de taal controleerbaar
moeten zijn. In een omkeerbare grammatica is het controleerbaar op welke manier
semantische en fonologische structuren zijn gerelateerd.

In sectie 1.1. wordt aangetoond dat het gebruik van omkeerbare grammatica’s het
bouwen van goede taalverwerkende systemen kan vergemakkelijken. Men denkt soms
dat grammatica’s die slechts voor het ontleden van taal gebruikt worden wat vrijer

181

182 SAMENVATTING

kunnen zijn en ongrammaticale zinnen kunnen toestaan. In praktische toepassingen
komen ongrammaticale zinnen misschien toch niet voor. In de meeste gevallen leidt
dit type overgeneratie echter ook tot foute ambiguiteiten: het systeem geeft meerdere
analyses voor een zin, terwijl in feite slechts één analyse juist is. Dus ook al is men
alleen geinteresseerd in het ontwerpen van een parseersysteem dan kan het gebruik
van omkeerbare grammatica’s toch interessant zijn.

In dezelfde sectie wordt de vraag opgeworpen of het taalgebruik van mensen ge-
baseerd is op een enkele taalkundige component. Dit zou verklaren waarom mensen
altijd dezelfde taal spreken als ze verstaan, en omgekeerd. Het kan worden beargumen-
teerd dat de verschillen tussen receptief en produktief taalgebruik misschien verklaard
kunnen worden door verschillen op een ander nivo van cognitief gedrag, en niet door
verschillen in de taalkundige component.

Een belangrijk doel van de dissertatie is om bestaande parseer- en genereerpro-
cedures te verbeteren wat betreft hun toepasbaarheid en hun taalkundige relevantie.
Dus een belangrijk doel is om parseer- en genereertechnieken te ontwerpen die voor
meer soorten grammatica’s toepasbaar zijn. Ten tweede dienen zulke technieken taal-
kundig gemotiveerd te kunnen worden, in de hoop dat zulke taalkundige motivatie
uiteindelijk leidt tot een verbeterde efficiéntie.

Het formalisme R(L)

In hoofdstuk 2 wordt een formalisme gedefinieerd dat in verschillende opzichten re-
presentatief is voor de formalismen die binnen de computationele taalkunde gebruikt
worden. Het formalisme, R(L), is gebaseerd op ‘constraints’. De constraints die
gebruikt worden zijn de ‘path equations’ (pad vergelijkingen) bekend van PATR II.
Echter in het formalisme wordt niet voorgeschreven dat zinsdelen worden opgebouwd
door middel van concatenatie, maar wordt de mogelijkheid opengehouden dat andere
methoden gebruikt worden om zinsdelen samen te voegen. Het formalisme is dus te
zien als een variant van puur Prolog, waarbij feature-strukturen de plaats van eerste
orde termen overnemen. Bovendien wordt het formalisme gedefinieerd binnen het al-
gemene kader van Hohfeld and Smolka (1988), waardoor het mogelijk is om krachtigere
constraints aan het formalisme toe te voegen zonder dat bepaalde eigenschappen van
het systeem verloren gaan, zolang de juiste ‘constraint-solving’ technieken hiervoor
beschikbaar zijn.

Het resulterende formalisme wordt in de dissertatie zowel gebruikt om gramma-
tica’s in te definiéren, als om ‘meta-interpreters’ in te definiéren. Een grammatica in
R(L) is een ‘definite clause’ specificatie van de relatie sign/1. Een simpel voorbeeld
van een regel uit zo’n grammatica is de volgende clause:

(1) sign(M):-
Sign(Dl)a
Sign(D2)7
M cat = s,
D; cat = np,
Dy cat = vp,

SAMENVATTING 183

D; agr = Dy agr,

M phon in = Dy phon n,
D1 phon out = Dy phon in,
Dy phon out =M phon out,
M sem = D, sem.

Z0’n regel wordt in de matrix notatie als volgt weergegeven:

syn : s
(2) sign(| phon:Py—P |):-
sem : S
[syn : np
sign(| agr: A),
| phon : Py — Py
[syn : np
. agr: A
sign sem : S)
| phon : P, —P

De procedurele semantiek van R(L) is vergelijkbaar met Prologs zoekmethode.
Dat wil dus zeggen dat een refutatie van een ‘goal’ plaats vindt volgens de ‘top-
down’ methode. De ‘computation rule’ die wordt gebruikt selecteert steeds het meest
linkse atoom. Daarnaast wordt de zoekruimte doorzocht met een ‘depth-first back-
track’ strategie. Andere zoekprocedures worden later gedefinieerd in R(L) als meta-
interpretators.

Indien R(L) gebruikt wordt om grammatica’s in te definiéren dan wordt het p-
parseer probleem als volgt gedefinieerd. Stel, de invoer voor het parseren is een fea-
ture structuur waarvan de fonologische structuur ¢ is als de waarde van het attribuut
phon. De antwoorden op het phon-parseerprobleem zijn dan al die signs uit de gram-
matica die niet in tegenspraak zijn met de invoer, en bovendien ook ¢ als waarde
voor hun phon attribuut hebben. Op dezelfde manier worden de antwoorden op het
sem-parseerprobleem gedefinieerd als die signs uit de grammatica die compatibel zijn
met de invoer, en dezelfde waarde hebben voor het sem attribuut.

In hoofdstuk 2 wordt aangetoond dat in zijn algemeenheid het p-parseer probleem
voor R(L) grammatica’s onoplosbaar is, omdat het mogelijk is een onbeslisbaar pro-
bleem (Post’s Correspondence Problem) te coderen als een R(L) grammatica. Hieruit
volgt dan ook onmiddellijk dat R(L) grammatica’s in zijn algemeenheid niet omkeer-
baar zijn.

In de praktijk is het echter zo dat de grammatica’s die door computationeel taal-
kundigen geschreven worden wel degelijk omkeerbaar zijn. Om deze reden is het dus
een belangrijke taak bewijsprocedures te construeren die het p-parseer probleem op-
lossen voor de grammatica’s die in de praktijk gebruikt blijken te worden. Deze taak
beslaat het belangrijkste deel van deze dissertatie (de hoofdstukken 3 en 4). In deze
hoofdstukken worden genereer- en parseertechnieken ontwikkeld die ruimer toepasbaar
zijn dan sommige andere methoden. Bovendien worden deze technieken gemotiveerd

184 SAMENVATTING

vanuit een taalkundig oogpunt omdat bepaalde ‘head-driven’ en lexicalistische eigen-
schappen van moderne grammatica’s uitgebuit worden, in de hoop dat dit zal leiden
tot een grotere efficientie.

‘Semantic-head-driven’ generatie

In het derde hoofdstuk bediscussieer ik het generatie probleem (i.e. het sem-parseerprobleem).
Ik stel een generatieprocedure voor die gestuurd wordt door de notie ‘semantisch
hoofd’. Ik laat zien dat deze methode voordelen biedt boven sommige andere me-
thoden die eerder voorgesteld zijn. De techniek is bruikbaar in het geval semantische
strukturen gedefinieerd worden op een lexicale en door het semantisch-hoofd gestuurde
manier. De semantische structuur van een zinsdeel is in die methode een verdere in-
stantiatie van de semantische structuur van zijn hoofd. Bovendien bepaalt het hoofd
van een zinsdeel de semantische strukturen van de andere onderdelen van dat zinsdeel.

‘Semantic-head-driven’ generatie gaat in zijn werk door middel van het voorspellen
van het semantische hoofd van een zinsdeel, waarna door middel van het toepassen
van de regels van de grammatica getracht wordt dit hoofd in verbinding te brengen
met het oorspronkelijke doel.

Regels waarbij één der dochters dezelfde semantische structuur als de moeder heeft,
worden ‘chain-rules’ genoemd, en worden ten behoeve van de meta-interpretator ge-
representeerd als:

cr(Hoofd, Moeder, (D; ...D,)):-¢.

Regels zonder hoofd (zoals lexicale elementen) worden ‘non-chain-rules’ genoemd en
worden gerepresenteerd als:

ncr(Moeder, (D; ...D,)):-¢.

De meta-interpretator in figuur 1 definieert een eenvoudige instantiatie van de
generatiemethode die gestuurd wordt door semantische hoofden.

De ‘semantic-head-driven’ generatiemethode wordt vergeleken met de methoden
van Wedekind (1988) en Dymetman and Isabelle (1988) die top-down georienteerd
zijn, en de op Earley gebaseerde methode van Shieber (1988). ‘Semantic-head-driven’
generatie is algemener dan top-down generatie omdat het bepaalde taalkundig ge-
motiveerde links-recursieve analyses aankan die problematisch zijn voor top-down ge-
neratie. Daarnaast staat ‘semantic-head-driven’ generatie bepaalde analyses toe van
idiomatische constructies die problematisch zijn voor de Earley-methode van Shieber.

Een belangrijk probleem voor ‘semantic-head-driven’ generatie zijn bepaalde taal-
kundige analyses die gebruik maken van een ‘threading’ implementatie van ‘head-
movement’. Tk geef zo’n analyse voor ‘verb-second’ in het Nederlands, die problema-
tisch is voor dit type generatie (omdat de constructie van de semantische structuur
niet plaatsvindt zoals hierboven werd aangegeven). Nog een ander probleem wordt
besproken aan de hand van een analyse van Engelse ‘raising-to-object’ constructies.

Hoewel het mogelijk is enige ‘ad-hoc’ oplossingen te ontwerpen, zal ik beargumen-
teren dat een algemenere oplossing voor deze problemen slechts mogelijk is wanneer

SAMENVATTING 185

bug(Doel): -
voorspel_hoofd(Doel, Lex),
sem_hoofd(Lex, Doel).

sem_hoofd(Doel, Doel).

sem_hoofd(Hoofd, Doel) : -
cr(Hoofd, Moeder, Andere),
bug_ds(Andere),
sem_hoofd(Moeder, Doel).

bug-ds(())-

bug_ds((H|S)): -
bug(H),
bug-ds(S).

voorspel_hoofd(Doel, Hoofd) : -
Doel sem = Hoofd sem,
ner(Hoofd, Ds),
bug-ds(Ds).

Figuur 1: Een eenvoudige variant van ‘semantic-head-driven’ generatie. In hoofdstuk
3 worden verschillende verbeteringen van deze eenvoudige variant besproken.

186 SAMENVATTING

aangenomen kan worden dat zinsdelen geconstrueerd kunnen worden door middel
van andere operaties dan concatenatie. Bijvoorbeeld, de Engelse raising-to-object
constructies kunnen geanalyseerd worden met Bach’s ‘wrapping’ mechanisme. De re-
sulterende analyse is niet problematisch voor ‘semantic-head-driven’ generatie. De
mogelijkheid van krachtigere operaties op strings vergroot de belasting voor parseer-
technieken.

‘Head-corner’ parseren

In hoofdstuk 4 bespreek ik een aantal voorstellen voor het combineren van zinsdelen
die uitgaan boven concatenatie, zoals bijvoorbeeld Pollard’s ‘head-wrapping’ opera-
ties binnen een GPSG; Joshi’s Tree Adjoining Grammars, Reape’s incorporatie van
‘sequence-union constraints’ binnen een HPSG, of ‘liberation’ binnen een categoriale
grammatica.

Ik definieer een parseerprocedure, ‘head-corner parsing’ genaamd, voor een klasse
van grammatica’s waarbij zinsdelen geconstrueerd worden op een ‘non-erasing’ en li-
neaire manier. Een grammaticaregel is lineair wanneer de regel slechts een constant
aantal terminale symbolen introduceert. Een regel is ‘non-erasing’ wanneer de ter-
minale symbolen geassocieerd met de dochterknopen een deelverzameling is van de
terminale symbolen geassocieerd met de moederknoop. De genoemde voorstellen be-
horen tot deze klasse van grammatica’s. De head-corner parser is dus bruikbaar voor
een verzameling grammatica’s die de concatenatieve grammatica’s omvat.

Head-corner parsing is een parseertechniek die zowel hoofdgestuurd als bidirectio-
neel te werk gaat (niet van links naar rechts, noch top-down of bottom-up). Omdat
de parser hoofdgestuurd te werk gaat is het mogelijk de gebruikelijke percolatie van
eigenschappen tussen de moederknoop en het hoofd uit te buiten, om zodoende de
doelgerichtheid van de parser te vergroten. Daarnaast gebruikt deze parseervolgorde
het feit dat het hoofd normaliter bepaalt uit welke andere onderdelen een zinsdeel
kan bestaan. Als je weet wat het hoofd van een zinsdeel is, weet je dus welke andere
onderdelen je nog moet tegenkomen.

Om de head-corner parser bruikbaar te laten zijn voor lineaire en ‘non-erasing’
grammatica’s wordt de invoerzin als een ‘gids’ gebruikt tijdens het parseren. Echter,
de manier waarop elementen uit de gids geconsumeerd worden is niet van links naar
rechts, maar onbepaald. De gids is dus geen stapel maar een verzameling.

Om te begrijpen hoe de parser werkt nemen we aan dat regels als volgt gedefinieerd
zijn. Alle terminale symbolen worden geintroduceerd op een regel zonder dochter
(‘lexical entry’), en elke regel met dochters heeft ook een hoofd (in hoofdstuk 4 worden
deze aannames niet gemaakt). Een regel met een hoofd wordt gerepresenteerd als:

cr(Hoofd, Moeder, (D; ...D,)):-¢.
Lexicale elementen worden gerepresenteerd als:

lex(Woord, Moeder) : -¢.

SAMENVATTING 187

(3) parse(Doel, Py, P): -
hoofd(Lex, Doel),
del(Woord, Py, P1),
lex(Woord, Lex),
head_corner(Hoofd, Doel, Py, P).

del(El, (E1|T), T).
del(EL (H|T), (H|T,)):-
del(EL, T, Ty).

parse_ds({), P, P).

parse_ds({H|T), Py, P):-
parse(H, Py, Py),
parse_ds(T, Py, P).

head_corner(X, X, P, P).

head_corner(Klein, Groot, Py, P): -
cr(Klein, Mid, Ds),
parse_ds(Ds, Py, Py),
head_corner(Mid, Groot, Py, P).

Figuur 2: Een eenvoudige variant van de head-corner parser. In hoofdstuk 4 wordt
een algemenere variant gedefinieerd, en worden enkele verbeteringen besproken.

Daarnaast definieert het predikaat hoofd/2 de informatie die hoofden gemeen heb-
ben met hun moederknoop. Een simpele versie van de head-corner parser kan nu
gedefinieerd worden zoals in figuur 2.

Het vervolg van hoofdstuk 4 bespreekt enkele uitbreidingen en verbeteringen van
de head-corner parser. Bij wijze van uitgewerkt voorbeeld laat ik zien hoe Lexicalized
Tree Adjoining Grammars geparseerd kunnen worden met behulp van een variant van
de head-corner parser. Een belangrijke reductie van de zoekruimte kan worden bereikt
voor grammatica’s waarbij de operaties op strings monotoon zijn met betrekking tot
de volgorde van de terminale symbolen. TAG’s bezitten deze monotonieeigenschap
bijvoorbeeld. Ik laat zien hoe door middel van een simpele uitbreiding de head-corner
parser deze eigenschap kan benutten, om zo de efficiéntie van de parser te vergroten.

Omkeerbaar automatisch vertalen

Het laatste hoofdstuk van de dissertatie stelt een toepassing voor van omkeerbare
grammatica’s. Ik laat zien hoe een serie omkeerbare grammatica’s gebruikt kunnen
worden om het door Landsbergen geintroduceerde begrip ‘taalkundig mogelijke ver-
taling’ te implementeren. In dit voorstel wordt een omkeerbare grammatica gebruikt
om omkeerbare monolinguale grammatica’s aan elkaar te koppelen. Zo'n ‘transfer’-

188 SAMENVATTING

grammatica definieert een relatie tussen taalspecifieke semantische structuren, en kan
ook als een R(L) grammatica geformuleerd worden.

Als een voorbeeld van een regel uit zo’'n transfer grammatica, beschouw het vol-
gende vertaalvoorbeeldje:

(4) John bevalt Mary
John is-liked-by Mary
Mary likes John

Ik neem aan dat in de Nederlandse semantische structuur ‘John’ het eerste argument,
en ‘Mary’ het tweede argument is. In het Engels is het precies omgekeerd. Om zulke
semantische structuren aan elkaar te koppelen is de volgende regel mogelijk, waarbij

de attributen nlen gb respectievelijk de Nederlandse en Engelse semantische structuur
representeren.

[pred : bevalt
nl: | argl : Nl

| arg2: Nly

[pred : likes
gb: | argl : Gby

| arg?2 : Gby

(5) sign(

. ’rll : N12
37’9”([gb : Gb,])a
si TL(nl Nll)

9™ gb: Gby |

In hoofdstuk 5 wordt een eenvoudige conditie op regels uit zo’n transfergrammatica
opgesteld, die garandeert dat de transfergrammatica omkeerbaar is. Kort gezegd komt
deze conditie er op neer, dat in een transferregel tussen de talen [, en /5, de waarde van
het [;-attribuut ‘groter’ is dan elk van de waardes voor dit attribuut van de dochters.
Voor [; geldt dezelfde conditie. Het kan gemakkelijk aangetoond worden dat voor
grammatica’s waarbij elke regel aan de conditie voldoet een eenvoudige top-down
procedure gegarandeerd termineert.

Zo’n conditie op mogelijke transferregels verkleint natuurlijk de kracht van het for-
malisme. Ik laat echter zien dat het nog steeds mogelijk is krachtige featurepercolaties
te gebruiken om bijvoorbeeld context-gevoelige vertaalvoorbeelden te kunnen analyse-
ren. Ik beargumenteer daarom dat omkeerbare transfergrammatica’s een interessant
compromis vormen tussen expressieve kracht, en berekenbaarheid.

Bibliography

Anne Abeille. Parsing french with tree adjoining grammar: some linguistic accounts.
In Proceedings of the 12th International Conference on Computational Linguistics
(COLING), Budapest, 1988.

Hiyan Alshawi and Stephen G. Pulman. Ellipsis, comparatives, and generation. In
Hiyan Alshawi, editor, The Core Language Engine, pages 251-275. ACL-MIT
press, 1992. chapter 13.

Hiyan Alshawi, David Carter, and Manny Rayner. Translation by quasi logical form
transfer. In 29th Annual Meeting of the Association for Computational Linguistics,
Berkeley, 1991.

Douglas E. Appelt. Bidirectional grammars and the design of natural language gen-
eration systems. In Theoretical Issues in Natural Language Processing 3, pages
206-212, New Mexico State University, 1987.

K.R. Apt. Introduction to logic programming. Technical Report CS-R8741, Centrum
voor Wiskunde en Informatica (Centre for Mathematics and Computer Science),
Amsterdam, 1987. also appears in: Handbook of Theoretical Computer Science
(J. van Leeuwen, managing editor), North Holland.

Doug Arnold, Steven Krauwer, Mike Rosner, Louis des Tombe, and Nino Varile. The
CAT framework in eurotra: A theoretically committed notation for MT. In Pro-
ceedings of the 11th International Conference on Computational Linguistics (COL-
ING), Bonn, 1986.

Doug Arnold, Steven Krauwer, Louisa Sadler, and Louis des Tombe. Relaxed com-
positionality in machine translation. In Proceedings of the Second International
Conference on Theoretical and Methodological issues in Machine Translation of
Natural Languages, Pittsburgh, 1988. Carnegie Mellon University.

Emmon Bach. Control in Montague grammar. Linguistic Inquiry, 10:515-553, 1979.
Hans Ulrich Block. Compiling trace & unification grammar for parsing and generation.

In Proceedings of the ACL workshop Reversible Grammar in Natural Language
Processing, Berkeley, 1991.

189

190 CHAPTER 5. REVERSIBLE MACHINE TRANSLATION

Joan Bresnan, editor. The Mental Representation of Grammatical Relations. MIT
Press, 1982.

Stephan Busemann. Generierung natuerlicher Sprache mit Generalisierten
Phrasenstruktur-Grammatiken. PhD thesis, University of the Saar, 1990. Also
available as TU Berlin, Dept. of Computer Science, KIT report 87.

Jonathan Calder, Mike Reape, and Henk Zeevat. An algorithm for generation in
unification categorial grammar. In Fourth Conference of the European Chapter of
the Association for Computational Linguistics, pages 233—-240, Manchester, 1989.

Alain Colmerauer. PROLOG II: Manuel de réference et modéle théorique. Groupe
d’Intelligence Artificielle, Faculté, des Sciences de Luminy, Marseille, France, 1982.

Luis Damas and Giovanni B. Varile. Constraint logic grammars. In Proceedings of the
13th International Conference on Computational Linguistics (COLING), Helsinki,
1990.

David Dowty. Towards a minimalist theory of syntactic structure. In Proceedings of
the Symposium on Discontinuous Constituency, ITK Tilburg, 1990.

Marc Dymetman and Pierre Isabelle. Reversible logic grammars for machine trans-
lation. In Proceedings of the Second International Conference on Theoretical and
Methodological issues in Machine Translation of Natural Languages, Pittsburgh,
1988.

Marc Dymetman, Pierre Isabelle, and Francois Perrault. A symmetrical approach to
parsing and generation. In Proceedings of the 13th International Conference on
Computational Linguistics (COLING), Helsinki, 1990.

Marc Dymetman. Inherently reversible grammars, logic programming and com-
putability. In Proceedings of the ACL workshop Reversible Grammar in Natural
Language Processing, Berkeley, 1991.

Jay Earley. An efficient context-free parsing algorithm. Communications of the ACM,
14, 1970. Also reprinted in Grosz et al. (1986).

Arnold Evers. The Transformational Cycle in Dutch and German. PhD thesis, Rijk-
suniversiteit Utrecht, 1975.

J.E. Fenstad, P-K Halvorsen, T. Langholm, and J. van Benthem. Situations, Language
and Logic. Reidel, Dordrecht, 1987.

Clare Gardent and Agnes Plainfossé. Generating from a deep structure. In Proceedings
of the 13th International Conference on Computational Linguistics (COLING),
Helsinki, 1990.

Gerald Gazdar, Ewan Klein, Geoffrey Pullum, and Ivan Sag. Generalized Phrase
Structure Grammar. Blackwell, 1985.

5.7. CONCLUSION 191

Dale Douglas Gerdemann. Parsing and Generation of Unification Grammars. PhD
thesis, University of Illinois at Urbana-Champaign, 1991. Cognitive Science tech-
nical report CS-91-06 (Language Series).

Barbara Grosz, Karen Sparck Jones, and Bonny Lynn Webber, editors. Readings in
Natural Language Processing. Morgan Kaufmann, 1986.

Andrew Haas. A parsing algorithm for unification grammar. Computational Linguis-
tics, 15(4), 1989.

Per-Kristian Halvorsen and Ronald Kaplan. Projections and semantic description
in lexical-functional grammar. In Proceedings of the International Conference on
Fifth Generation Computer Systems, Tokyo, 1988. Institute for New Generation
Computer Technology.

J. Haviland. Guugu yimidhirr. In R. Dixon and B.Blake, editors, Handbook of Aus-
tralian Languages. Benjamins Amsterdam, 1979.

Mark Hepple. The Grammar and Processing of Order and Dependency: a Categorial
Approach. PhD thesis, University of Edinburgh, 1990.

Susan Hirsch. P-PATR: A compiler for unification-based grammars. In Veronique
Dahl and Patrick Saint-Dizier, editors, Natural Language Understanding and Logic
Programmang 1I. North Holland, 1988.

Jack Hoeksema. Complex predicates and liberation in dutch and english. Linguistics
and Philosophy, 14:661-710, 1991.

Markus Hohfeld and Gert Smolka. Definite relations over constraint languages. Tech-
nical Report 53, LILOG IBM, Stuttgart, 1988. to appear in Journal of Logic
Programming.

John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Languages
and Computation. Addison Wesley, 1979.

Riny Huybrechts. The weak inadequacy of context-free phrase structure grammars.
In Ger de Haan, Mieke Trommelen, and Wim Zonneveld, editors, Van Periferie
naar Kern. Foris, 1984.

Pierre Isabelle, Marc Dymetman, and Elliott Macklovitch. CRITTER: a translation
system for agricultural market reports. In Proceedings of the 12th International
Conference on Computational Linguistics (COLING), Budapest, 1988.

Pierre Isabelle. Towards reversible MT systems. In MT Summit 11, Munich, 1989.

R.S. Jackendoff. X’ Syntax: A Study of Phrase Structure. MIT press, Cambridge
Mass., 1977.

192 CHAPTER 5. REVERSIBLE MACHINE TRANSLATION

Mark Johnson. Parsing with discontinuous constituents. In 28th Annual Meeting of
the Association for Computational Linguistics, Chicago, 1985.

Mark Johnson. Attribute Value Logic and the Theory of Grammar. Center for the
Study of Language and Information Stanford, 1988.

A K. Joshi, L.S. Levy, and M. Takahashi. Tree adjunct grammars. Journal Computer
Systems Science, 10(1), 1975.

Ronald Kaplan, Klaus Netter, Jiirgen Wedekind, and Annie Zaenen. Translation by
structural correspondences. In Fourth Conference of the European Chapter of the
Association for Computational Linguistics, Manchester, 1989.

J. Katz. Effability and translation. In Guenthner and Guenthner-Reutter, editors,
Meaning and Translation. Duckworth, 1978.

Martin Kay. Syntactic processing and functional sentence perspective. In Theoretical
Issues in Natural Language Processing — supplement to the Proceedings, pages
12-15, Cambridge Massachusetts, 1975.

Martin Kay. Functional unification grammar: A formalism for machine translation.
In Proceedings of the 10th International Conference on Computational Linguistics
and the 22nd Annual Meeting of the Association for Computational Linguistics
(COLING), Stanford, 1984.

Martin Kay. Parsing in functional unification grammar. In David R. Dowty, Lauri
Karttunen, and Arnold M. Zwicky, editors, Natural Language Parsing. Ellis Hor-
wood/Wiley, 1985. reprinted in Grosz et al. (1986).

Martin Kay. Head driven parsing. In Proceedings of Workshop on Parsing Technolo-
gies, Pittsburgh, 1989.

E. Keenan. Some logical problems in translation. In Guenthner and Guenthner-
Reutter, editors, Meaning and Translation. Duckworth, 1978.

Margaret King, editor. Machine Translation, the State of the Art. Edinburgh Univer-
sity Press, 1987.

Jan Koster. Dutch as an SOV language. Linguistic Analysis, 1, 1975.
Robert Kowalski. Logic for problem solving. Elsevier Science Publishing, 1979.

Jan Landsbergen. Isomorphic grammars and their use in the Rosetta translation
system, 1984. Paper presented at the tutorial on Machine Translation, Lugano;
also appears in King (1987).

Jan Landsbergen. Montague grammar and machine translation. In Pete Whitelock,
Mary McGee Wood, Harold Somers, Rod Johnson, and Paul Bennett, editors,
Linguistic Theory & Computer Applications. Academic Press, London, 1987.

5.7. CONCLUSION 193

Jan Landsbergen. Kunnen machines vertalen?, 1989. Oratie Rijksuniversiteit Utrecht,
ISBN 90-9003208-8.

Rene Leermakers. Non-deterministic recursive ascent parsing. In Fifth Conference
of the Furopean Chapter of the Association for Computational Linguistics, Berlin,
1991.

Y. Matsumoto, H. Tanaka, H. Hirakawa, H. Miyoshi, and H. Yasukawa. BUP: a
bottom up parser embedded in Prolog. New Generation Computing, 1(2), 1983.

J. McCloskey. A VP in a VSO language? In Gerald Gazdar, Ewan Klein, and
Geoffrey K. Pullum, editors, Order, Concord and Constituency. Foris, 1983.

Kathleen McKeown. Tezrt Generation. Cambridge University Press, Cambridge, Eng-
land, 1985.

Robert C. Moore. Unification-based semantic interpretation. In 27th Annual Meeting
of the Association for Computational Linguistics, Vancouver, 1989.

Michael Moortgat. A fregean restriction on meta-rules. In Proceedings of NELS 1/,
University of Massachusetts, Amherst, 1984.

John Nerbonne. Feature-based disambiguation. In M. Rossner, C.J. Rupp, and
R. Johnson, editors, Constraint Propagation, Linguistic Description, and Com-
putation, Lugano, 1991. Istituto Dalle Molle IDSIA, Working Paper No. 5.

John Nerbonne. Constraint-based semantics. Technical Report RR-92-18, DFKI
Saarbriicken, 1992.

Giinter Neumann and Gertjan van Noord. Self-monitoring with reversible grammars.

In Proceedings of the 14th International Conference on Computational Linguistics
(COLING), Nantes, 1992.

Fernando C.N. Pereira and Stuart M. Shieber. Prolog and Natural Language Analysis.
Center for the Study of Language and Information Stanford, 1987.

Fernando C.N. Pereira and David Warren. Definite clause grammars for language
analysis - a survey of the formalism and a comparison with augmented transition
networks. Artificial Intelligence, 13, 1980. reprinted in Grosz et al. (1986).

Fernando C.N. Pereira and David Warren. Parsing as deduction. In 21st Annual Meet-
ing of the Association for Computational Linguistics, Cambridge Massachusetts,
1983.

Fernando C.N. Pereira. Extraposition grammars. Computational Linguistics, 7(4),
1981.

Carl Pollard and Ivan Sag. Information Based Syntax and Semantics, Volume 1.
Center for the Study of Language and Information Stanford, 1987.

194 CHAPTER 5. REVERSIBLE MACHINE TRANSLATION

Carl Pollard. Generalized Context-Free Grammars, Head Grammars, and Natural
Language. PhD thesis, Stanford, 1984.

Carl Pollard. Categorial grammar and phrase structure grammar: An excursion on
the syntax-semantics frontier. In R. T. Oehrle, Emmon Bach, and D. Wheeler,
editors, Categorial Grammars and Natural Language Structures. Reidel, 1988.

W. V. Quine. Word and Object. MIT Press, 1960.

Mike Reape. A logical treatment of semi-free word order and bounded discontinuous
constituency. In Fourth Conference of the European Chapter of the Association
for Computational Linguistics, UMIST Manchester, 1989.

Mike Reape. Getting things in order. In Proceedings of the Symposium on Discontin-
uous Constituency, ITK Tilburg, 1990.

Mike Reape. Parsing bounded discontinuous constituents: Generalisations of some
common algorithms. In Proceedings of the first CLIN dag. OTS RUU Utrecht,
1991.

Herbert Ruessink and Gertjan van Noord. Remarks on the bottom-up generation
algorithm, 1989. unpublished paper.

C.J. Rupp. Constraint propagation and semantic representation. In M. Rossner, C.J.
Rupp, and R. Johnson, editors, Constraint Propagation, Linguistic Description,
and Computation, Lugano, 1991. Istituto Dalle Molle IDSIA, Working Paper No.
5.

Graham Russell, Susan Warwick, and John Carroll. Asymmetry in parsing and gener-
ating with unification grammars: Case studies from ELU. In 28th Annual Meeting
of the Association for Computational Linguistics, University of Pittsburgh, 1990.

Graham Russell, Afzal Ballim, Dominique Estival, and Susan Warwick. A language
for the statement of binary relations over feature structures. In Fifth Conference
of the FEuropean Chapter of the Association for Computational Linguistics, Berlin,
1991.

Louisa Sadler and Henry S. Thompson. Structural non-correspondence in translation.
In Fifth Conference of the European Chapter of the Association for Computational
Linguistics, Berlin, 1991.

Giorgio Satta and Oliviero Stock. Head-driven bidirectional parsing. a tabular
method. In Proceedings of the Workshop on Parsing Technologies, pages 43-51,
Pittsburgh, 1989.

Giorgio Satta and Oliviero Stock. Bidirectional context-free grammar parsing for
natural language processing, 1991. Ms. IRST Trento.

5.7. CONCLUSION 195

Yves Schabes. Mathematical and Computational Aspects of Lezicalized Grammars.
PhD thesis, University of Pennsylvania, 1990.

Stuart M. Shieber, Hans Uszkoreit, Fernando C.N. Pereira, J. Robinson, and
M. Tyson. The formalism and implementation of PATR-II. In B. J. Grosz and
M. E. Stickel, editors, Research on Interactive Acquisition and Use of Knowledge.
SRI report, 1983.

Stuart M. Shieber, Gertjan van Noord, Robert C. Moore, and Fernando C.N. Pereira.
A semantic-head-driven generation algorithm for unification based formalisms. In

27th Annual Meeting of the Association for Computational Linguistics, Vancouver,
1989.

Stuart M. Shieber, Gertjan van Noord, Robert C. Moore, and Fernando C.N. Pereira.
Semantic-head-driven generation. Computational Linguistics, 16(1), 1990.

Stuart M. Shieber. Using restriction to extend parsing algorithms for complex-feature-
based formalisms. In 28th Annual Meeting of the Association for Computational
Linguistics, Chicago, 1985.

Stuart M. Shieber. A uniform architecture for parsing and generation. In Proceedings
of the 12th International Conference on Computational Linguistics (COLING),
Budapest, 1988.

Stuart M. Shieber. Parsing and Type Inference for Natural and Computer Languages.
PhD thesis, Stanford University, 1989. SRI International Technical note 460.

Klaas Sikkel and Rieks op den Akker. Head-corner chart parsing. In Proceedings
Computing Science in the Netherlands (CSN ’92), Utrecht, 1992.

Gert Smolka. Feature constraint logics for unification grammars. Technical re-
port, IBM Wissenschaftliches Zentrum, Institut fiir Wissensbasierte Systeme, 1989.
IWBS Report 93.

Marc Steedman. Dependency and coordination in the grammar of dutch and english.
Language, 61, 1985.

Henry Thompson. Strategy and tactics: a model for language production. In Papers
from the Thirteenth Regional Meeting, Chicago Linguistic Society, 1977.

Henry S. Thompson. Generation and translation - towards a formalism-independent
characterization. In Proceedings of ACL workshop Reversible Grammar in Natural
Language Processing, Berkeley, 1991.

Hans Uszkoreit. Categorial unification grammar. In Proceedings of the 11th Interna-
tional Conference on Computational Linguistics (COLING), Bonn, 1986.

Kees van Deemter. Structured meanings. In Proceedings of the 13th International
Conference on Computational Linguistics (COLING), Helsinki, 1990.

196 CHAPTER 5. REVERSIBLE MACHINE TRANSLATION

Kees van Deemter. On the Composition of Meaning. Four variations on the Theme
of Compositionality in Natural Language Processing. PhD thesis, Universiteit van
Amsterdam, 1991.

Jan van Eijck and Robert C. Moore. Semantic rules for english. In Hiyan Alshawi,
editor, The Core Language Engine, pages 83-115. ACL-MIT press, 1992. chapter
5.

Gertjan van Noord, Joke Dorrepaal, Doug Arnold, Steven Krauwer, Louisa Sadler, and
Louis des Tombe. An approach to sentence-level anaphora in machine translation.
In Fourth Conference of the European Chapter of the Association for Computa-
tronal Linguistics, Manchester, 1989.

Gertjan van Noord, Joke Dorrepaal, Pim van der Eijk, Maria Florenza, and Louis des
Tombe. The MiMo2 research system. In Proceedings of the Third International
Conference on Theoretical and Methodological issues in Machine Translation of
Natural Languages, University of Texas at Austin, 1990.

Gertjan van Noord, Joke Dorrepaal, Pim van der Eijk, Maria Florenza, Herbert
Ruessink, and Louis des Tombe. An overview of MiMo2. Machine Translation,
6:201-214, 1991.

Gertjan van Noord. BUG: A directed bottom-up generator for unification based for-
malisms. Working Papers in Natural Language Processing, Katholieke Universiteit
Leuven, Stichting Taaltechnologie Utrecht, 4, 1989.

Gertjan van Noord. An overview of head-driven bottom-up generation. In Robert
Dale, Chris Mellish, and Michael Zock, editors, Current Research in Natural Lan-
guage Generation. Academic Press, 1990.

Gertjan van Noord. Reversible unification-based machine translation. In Proceedings
of the 13th International Conference on Computational Linguistics (COLING),
Helsinki, 1990.

Gertjan van Noord. Head corner parsing. In Mike Rossner, C.J. Rupp, and Rod
Johnson, editors, Constraint Propagation, Linguistic Description and Computa-
tion, Lugano, 1991. Working paper No. 5, Istitute Dalle Molle IDSIA.

Gertjan van Noord. Head corner parsing for discontinuous constituency. In 29th
Annual Meeting of the Association for Computational Linguistics, Berkeley, 1991.

K. Vijay-Shanker and Aravind K. Joshi. Feature structure based tree adjoining gram-
mar. In Proceedings of the 12th International Conference on Computational Lin-

guistics (COLING), Budapest, 1988.

K. Vijay-Shanker, David J. Weir, and Aravind K. Joshi. Characterizing structural
descriptions produced by various grammatical formalisms. In 25th Annual Meeting
of the Association for Computational Linguistics, Stanford, 1987.

SAMENVATTING 197

K. Vijay-Shanker. Description theory, feature structures, and tree adjoining gram-
mars, to appear.

Jiirgen Wedekind, Jochen Dorre, Andreas Eisele, Jo Calder, and Mike Reape. A survey
of linguistically motivated extensions to unification-based formalisms. Technical
report, Dyana Esprit, Centre for Cognitive Science, University of Edinburgh, 1990.
Dyana Deliverable R3.1.A.

Jiirgen Wedekind. Generation as structure driven derivation. In Proceedings of
the 12th International Conference on Computational Linguistics (COLING), Bu-
dapest, 1988.

David J. Weir. Characterizing Mildly Context-Sensitive Grammar Formalisms. PhD
thesis, Department of Computer and Information Science, University of Pennsyl-
vania, 1988.

Pete Whitelock. Shake-and-bake translation. In Mike Rossner, C.J. Rupp, and Rod
Johnson, editors, Constraint Propagation, Linguistic Description and Computa-
tion, Lugano, 1991. Working paper No. 5, Istitute Dalle Molle IDSIA.

Rémi Zajac. A transfer model using a typed feature structure rewriting system with
inheritence. In 27th Annual Meeting of the Association for Computational Lin-
guistics, Vancouver, 1989.

Henk Zeevat, Ewan Klein, and Jo Calder. Unification categorial grammar. In Nicholas
Haddock, Ewan Klein, and Glyn Morrill, editors, Categorial Grammar, Unification
Grammar and Parsing. Centre for Cognitive Science, University of Edinburgh,
1987. Volume 1 of Working Papers in Cognitive Science.

Arnold M. Zwicky. Concatenation and liberation. In Anne M. Farley et al., edi-
tor, Proceedings of the Twenty-Second Regional Meeting of the Chicago Linguistics
Society, Chicago, 1986.

198 CHAPTER 5. REVERSIBLE MACHINE TRANSLATION

Curriculum Vitae

Gertjan van Noord was born on 8 May 1961 in Culemborg. In 1979 he obtained the
VWO certificate at the Bonifatius College in Utrecht. In 1980 he started to study at
the Pedagogische Academie in ’s Hertogenbosch. In 1983 he received the ‘onderwijzer’
degree. In 1983 he went to Utrecht to study Dutch Linguistics and Literature, and
received the propedeuse in 1984 cum laude. In 1987 he graduated cum laude from the
University of Utrecht in General Linguistics.

From 1 September 1987 until December 1990 he worked at the University of Utrecht
as a researcher for the Eurotra project, located at the General Linguistics department.
In 1991 he worked at the University of the Saar in Saarbriicken for the BiLD project
at the Computational Linguistics department. Since 1 January 1992 he works as a
lecturer at the Alfa-informatica department of the University of Groningen.

He is married with Petri Wijgergangs and has a son, Rik.

Gertjan van Noord

vakgroep Alfa-informatica RUG
PO Box 716

NL 9700 AS Groningen
+31-50-635935

vannoord@let.rug.nl

5.7. CONCLUSION 199

Acknowledgments

I would like to express my thanks to the members of the Utrecht MiMo2 group. I
furthermore thank the members of the Eurotra group in Utrecht and of the other
Eurotra groups, the members of the linguistics department in Utrecht, the students
of my Prolog classes, the people at the Computational Linguistics department and
the DFKI in Saarbriicken, and my new colleagues on the fourth and fifth floor of the
Harmony building in Groningen.

During the development of the ideas presented in this thesis I received many valu-
able comments and encouragements from at least the following people: Hiyan Al-
shawi, Rolf Backofen, Sergio Balari, Gosse Bouma, Luis Damas, Joke Dorrepaal, Marc
Dymetman, Jan van FEijck, Pim van der Eijk, Maria Florenza, Claire Gardent, Dale
Gerdemann, Jack Hoeksema, Heleen Hoekstra, Pierre Isabelle, Mark Johnson, Martin
Kay, Jan Landsbergen, Klaus Netter, Giinter Neumann, Steve Pulman, Mike Reape,
Herbert Ruessink, Stuart Shieber, Neil Simpkins, Gerd Smolka, Louis des Tombe,
Hans Uszkoreit, Nino Varile, Susan Warwick, Jiirgen Wedekind, Pete Whitelock.

Daarnaast gaat mijn speciale dank natuurlijk uit naar Anke, Gosse en Petri voor
de hulp bij het voorbereiden van de promotiefestiviteiten.

