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Abstract

In this project report we describe work in
statistical parsing using the maximum en-
tropy technique and the Alpino language
analysis system for Dutch. A major diffi-
culty in this domain is the lack of sufficient
corpus data available for training. Among
other problems, this sparseness of data in-
creases the danger of the model overfitting
the training data, making it particularly im-
portant that the selection of statistical fea-
tures upon which to base the model be opti-
mal. To this end we have adapted the notion
of feature merging, a means of construct-
ing equivalence classes of statistical features
based upon common elements within them.
In spite of promising preliminary results,
subsequent tests have not enabled us to con-
clude whether this approach helps the kind
of models we are working with.

1 Introduction

Recent years have seen a considerable amount of re-
search in the field of maximum entropy-based “log lin-
ear” modeling for disambiguation (Berger et al., 1996;
Della Pietra et al., 1997; Johnson et al., 1999). This
is in large part due to the fact that such models are
superior to others in modeling linguistic phenomena
which contain internal dependencies, since the log lin-
ear modeling framework allows weights to be assigned
to features without assuming independence of the fea-
tures.

An important issue in any area of statistical NLP is
the problem of insufficient amounts of training data.
The maximum entropy framework of statistical mod-
eling is theoretically sound, but like most other model-
ing methods its efficacy depends upon having a suffi-
cient amount of informative training data. For parsing,
this data is sometimes available in the form of hand-
parsed corpora, or “treebanks”. Such data is often dif-
ficult to come by. Several large treebanks exist for En-
glish, but the resources available for other languages

are significantly less developed. For this reason, it is
imperative to get the most out of what is available.

In the current experiments the goal is to maximally
exploit the small but informative training data set we
have by taking a more sophisticated view of the fea-
ture set itself. To this end we employ the method of
feature merging, a means of constructing equivalence
classes of statistical features based upon common el-
ements within them. This technique allows the model
to retain information which would otherwise be dis-
carded in a simple frequency-based feature cutoff by
producing new, generalized features which serve as a
variant of backed-off features. We discuss work done
in Alpino, a new language analysis system for Dutch
(Bouma et al., 2001).

2 Alpino: Wide-coverage Parsing of
Dutch

Alpino is a wide-coverage computational analyzer of
Dutch which aims at accurate full parsing of unre-
stricted text. The system is described in more detail
in (Bouma et al., 2001). The grammar produces de-
pendency structures, thus providing a reasonably ab-
stract and theory-neutral level of linguistic represen-
tation. The dependency relations encoded in the de-
pendency structures are used to develop and evaluate
disambiguation methods.

2.1 Grammar

The Alpino grammar is an extension of the success-
ful OVIS grammar (van Noord et al., 1999; van Zanten
et al., 1999), a lexicalized grammar in the tradition of
Head-driven Phrase Structure Grammar (Pollard and
Sag, 1994). The grammar formalism is carefully de-
signed to allow linguistically sophisticated analyses as
well as efficient and robust processing.

In contrast to earlier work onHPSG, grammar rules
in Alpino are relatively detailed. However, as pointed
out in (Sag, 1997), by organizing rules in an inheri-
tance hierarchy, the relevant linguistic generalizations
can still be captured. The Alpino grammar currently
contains over 250 rules, defined in terms of a few
general rule structures and principles. The gram-



mar covers the basic constructions of Dutch as well
as a number of more idiosyncratic constructions (see
Bouma et al. (2001) for details). The lexicon contains
definitions for various nominal types (nouns with var-
ious complementation patterns, proper names, pro-
nouns, temporal nouns, deverbalized nouns), various
complementizer, determiner, and adverb types, adjec-
tives, and about 150 verbal subcategorization types.

The lexicon contains about 100,000 entries. In ad-
dition, lexical analysis is extended by a number of
heuristics to treat unknown words.

2.2 Robust Parsing

The construction of a dependency structure proceeds
in two steps. In the first step a parse forest is con-
structed. The second step consists of the selection of
the best parse from the parse forest.

Creating Parse Forests. The Alpino parser takes
the set of feature structures found during lexical anal-
ysis as its input, and constructs aparse forest: a com-
pact representation of all parse trees. The Alpino
parser is a left-corner parser with selective memoiza-
tion and goal-weakening, a variant of the parsers de-
scribed in (van Noord, 1997).

Unpacking and Parse Selection. The motivation to
construct a parse forest is efficiency: the number of
parse trees for a given sentence can be enormous. In
addition to this, in most applications the objective will
not be to obtainall parse trees, but rather thebestparse
tree. Thus, the final component of the parser consists
of a procedure to select these best parse trees from the
parse forest.

Note that best-first parsing methods pro-
posed for stochastic context-free grammars (e.g.
Caraballo and Charniak (1998)) cannot be used in this
context. In attribute-value grammars, it might easily
happen that the locally most promising sub-trees
cannot be extended to global parses because of
conflicting feature constraints.

In (Bouma et al., 2001) some initial experiments
with a variety of parse evaluation functions are de-
scribed. A naive algorithm constructs all possible
parse trees, assigns each one a score, and then se-
lects the best one. Since it is too expensive to con-
struct all parse trees, we have implemented an algo-
rithm which computes parse trees from the parse for-
est as an approximate best-first search. This requires
that the parse evaluation function is extended to partial
parse trees. We implemented a variant of a best-first
search algorithm in such a way that for each state in
the search space, we maintain theb best candidates,
whereb is a small integer (thebeam). If the beam
is decreased, then we run a larger risk of missing the
best parse (but the result will typically still be a rela-

tively ‘good’ parse); if the beam is increased, then the
amount of computation increases too.

2.3 Dependency Structures

The Alpino grammar produces dependency structures
compatible with theCGN-guidelines. Within theCGN-
project (Oostdijk, 2000), guidelines have been devel-
oped for syntactic annotation of spoken Dutch (Moort-
gat et al., 2000), using dependency structures similar
to those used for the German Negra corpus (Skut et
al., 1997). Dependency structures make explicit the
dependency relations between constituents in a sen-
tence. Each non-terminal node in a dependency struc-
ture consists of a head-daughter and a list of non-head
daughters, whose dependency relation to the head is
marked. Control relations are encoded by means of
co-indexing. Note that a dependency structure does
not necessarily reflect (surface) syntactic constituency.

2.4 Treebank

We have started to annotate various smaller fragments
with dependency structures. The largest fragment con-
sists of a subset of thecdbl (newspaper) part of the
Eindhoven corpus (den Boogaart, 1975). This tree-
bank is used in the experiments described below. It
contains 1,396 sentences (16,925 words): all sen-
tences of twenty words or less from the first 2500 sen-
tences ofEindhoven-cdbl.

3 Maximum entropy modeling and
Alpino

The maximum entropy (maxent) technique is an ap-
proach to statistical modeling usinglog linear distri-
butions. In this framework, events are considered as
multiplicities of weightedfeatures. In training, the
features’ weights are derived based upon the distribu-
tion of the features in the training data, using an itera-
tive algorithm such asimproved iterative scaling(IIS)
(Della Pietra et al., 1997). Weights are chosen to max-
imize the entropy of the model while minimizing the
divergence between the model and the training data.
In employing the model, events of a given context are
evaluated by summing the weights of their representa-
tive features and normalizing over the context to ob-
tain a probability distribution, as in equation 1, where
p(y|x) represents the probability of eventy given con-
text x, andλi represents the weight for featurefi . The
value of each functionfi reflects the number of times
the feature is active for a given event.

p(y|x) =
1

Z(x)
exp

[
∑
i

λi fi(x,y)
]

(1)

andZ(x) is the normalization factor:



Z(x) = ∑
y

exp

[
∑
i

λi fi(x,y)
]

(2)

The most important aspect of the maxent modeling
technique is that distributions of statistical features are
modeled without requiring an assumption that the fea-
tures be independent. This allows accurate modeling
using feature sets in which the features’ distributions
are dependent upon each other. Exploiting this fact is
an important consideration in constructing feature sets
for maxent modeling.

For parse selection, we consider a context to be a
sentence and the events within this context are the
possible parses of the sentence. Each parse is char-
acterized by a set of feature values, and may be com-
pared on the basis of those features with other possi-
ble parses. Parsing is performed as described in sec-
tion 2.2. Following Johnson et al. (1999), the best-
first search proceeds on the basis of the unnormalized
conditional probabilities derived from equation 1 for
each possible subtree.

4 The Features and Feature Merging

The model depends on the distribution of the features
and their informativeness, thus it is important that the
features used be germane to the task. In parsing, fea-
tures should reflect the sort of information pertinent to
making structural decisions.

In the present experiments, we employ several types
of features corresponding to grammatical rules, va-
lency frames, lexicalized dependency triples, and lex-
ical features constituting surface forms, base forms,
and lexical frames. Instances of each feature type were
collected from the training data in advance to yield a
feature set consisting of 82,371 distinct features.

Examples of these features may be seen below,
where example 1 is a rule for creating a VP, 2 contains
a valency frame for the nounmens, 3 describes a de-
pendency triple between the nounmensand the adjec-
tive modern, and the direction of the modification, and
finally example 4 contains lexical information about
the wordmodernas it occurs in context.

1 vp arg v(np)
2 noun(de):mens:[mod]
3 noun:mens:mod:left:adjective:modern
4 moderne:modern:adjective(e,adv)

4.1 Noise reduction and feature merging

The feature set used here exploits the maxent tech-
nique in that it relies on features which are overlapping
and mutually dependent. The features represent vary-
ing degrees of linguistic generality and hence some oc-
cur much more frequently than others. Furthermore,
the features may also represent information which is

redundant in the sense that it is represented in multi-
ple different features, in which case we say that the
features “overlap”. Features which share information
in this way are necessarily dependent in their distribu-
tions.

The overlapping features allow for a variety of
“backing off” in which features which share a struc-
ture but contain less specific information than others
are used in the same model as features with more spe-
cific information.

It is desirable that the features be as informative as
possible. The model should contain specific features
to the extent that the features’ distributions are accu-
rately represented in the training data. There is a point,
however, regardless of the size of the corpus, at which
the specificity of features translates to sparseness in
the data, causing noise and leading to deterioration in
the model’s performance.

A number of approaches have been taken to
smoothing exponential models, including imposing a
Gaussian prior over the distribution (Chen and Rosen-
feld, 1999) and building the feature set up by a process
of induction to ensure that only maximally representa-
tive features are admitted into the model (Della Pietra
et al., 1997). The most commonly employed and com-
putationally inexpensive approach to reducing noise is
to use a frequency-based feature cutoff (Ratnaparkhi,
1998), in which features which occur fewer times in
the training data than some predetermined cutoff are
eliminated. This has shown to be an effective way to
improve results. Because of its simplicity and effec-
tiveness, it is the approach we have focused on im-
proving on in the present research. Although it is an
effective way to reduce noise in a model, there is a
risk with a cutoff that information encoded in the dis-
carded features may be useful. A feature may be rare
due to some rare element within it, but otherwise use-
ful. To prevent discarding such useful features, we
experiment with a method offeature mergingsimi-
lar to that introduced in Mullen and Osborne (2000).
This approach considers features as being composed
of informative elements. Before any feature cutoff is
applied, features which are identical except for par-
ticular rare elements are generalized by merging; that
is, the features are unioned and considered as a sin-
gle feature. The elements upon which these merges
are done are determined with a pre-set threshold, and
merges are done on elements which occur fewer times
than this. The merging process eliminates the distinc-
tion between two features, thus eliminating the infor-
mation provided by the element which distinguishes
them, while the rest of the information provided by
the merged features remains intact in the model.

Individual unique features may be considered as
sets of instantiations in the data. A feature which is



the result of merging is thus the union of the features
which were merged. The count of occurrences of the
new feature is the sum of the counts of the merged
features. If a cutoff is incorporated subsequently, the
newly merged feature is more likely to survive in the
model, as its frequency is greater than each of the fea-
tures before merging. Thus information in features
which otherwise might have been lost in a cutoff is
retained in the form of a more general feature.

4.2 Building merged models

The first step is to determine how the features are com-
posed and what the elements are which make them up.
Factors which contribute most to sparseness, such as
lexical items and certain grammatical attributes, are
good candidates. In the present work, lexical items,
both sentence forms and word stems, are considered as
elements. Frequency counts are taken for all elements.
A threshold is determined using a held-out test set. Us-
ing this threshold, a new model is created as follows:
in the representation of the original model’s features,
all instances of elements which occur fewer times than
the threshold are replaced by a dummy element. Fea-
tures which were identical aside from these infrequent
elements are thus rendered completely identical. For
example, let

feature 1 =A : B with count 2
feature 2 =A : C with count 4

whereA, B, andC are elements. We may count the
occurrences of each element in the training data and
find that the count ofA is 20, of B is 5, and ofC is
7. We determine by use of held-out test data that an
optimal cutoff is, e.g., 10. Since bothB andC have
counts lower than this, all instances ofB andC are
replaced by a dummy elementX. Thus features 1 and
2 above are both in effect replaced by feature 3, below,
whose count is now the sum of those of the features
which have been merged.

feature 3 =A : X with count 6
Iterative scaling is performed on the new feature set

to obtain the appropriate maximum entropy weights.

4.3 Composition of features

A quality of compositionality is necessary in features
in order to perform the merging operation. That is,
it is necessary that features be composed of discrete
elements for which frequency counts can be attained
from the data. The features described in section 4 may
be viewed as being composed of words, base forms,
POS tags, grammar attributes, and other discrete ele-
ments which occur together in a particular way. Merg-
ing proceeds by first establishing a merging threshold
via experiments on held-out data. Frequencies of all
elements are gathered from the training data. Finally,
features containing elements whose counts are fewer

than the threshold are merged. This is done by re-
placing all instances of sub-threshold elements with a
dummy element in features. For example, if it were
found that the elementmodern had a count less be-
low the threshold, all features containing that would
be altered. A feature such as

noun:mens:mod:left:adjective:modern
would be changed to

noun:mens:mod:left:adjective:xxxxx
and likewise if the elementaardig occurred with a
count below the threshold, the same would be done
with the feature

noun:mens:mod:left:adjective:aardig
so that both features merged as the single feature

noun:mens:mod:left:adjective:xxxxx
with a count equal to the sum of the two merged fea-
tures.

4.4 Why feature merging?

It is well known that many models benefit from a
frequency-based feature cutoff. Using feature merg-
ing, we seek to take a more sophisticated view of
the features themselves, allowing the same degree of
noise reduction as a feature cutoff, while simultane-
ously generalizing the features to obtain the benefits of
backing off. By operating on sub-feature information
sources, we hope to discard noisy information from
the model with a greater degree of control, maintain-
ing useful information contained by features which
would otherwise be lost.

5 Experiments

Experiments were performed using the features de-
scribed above with a training set of 1,220 sentences,
whose parses totaled 626,699 training events, initially
with a held-out set of 131 sentences and subsequently
on a test set of unseen sentences totaling 566 sen-
tences. A merging threshold of 500 and a feature cut-
off of 500 were determined by use of the held-out test
set. The number of active (non-zero weighted) fea-
tures in the original model was 75,500, the number
of active features in the model with cutoff alone was
11,639, and the number of active features in the model
which had been merged prior to the cutoff was 11,890.

5.1 Evaluation

For each sentence in the test set, the dependency struc-
ture of the highest scoring parse was extracted, and
compared to the gold standard dependency structure in
the treebank (Carroll et al., 1998). For each sentence,
we calculate theoverlap, the number of relations for
which the system agrees with the gold standard parse,
and the number of errors:

errors= max(gold,system)−overlap



Model CA Φ
baseline 63.01 0.00
maxent 77.45 56.99
maxent+cutoff 79.36 64.52
maxent+cutoff+merge 80.01 67.08
best possible 88.35 100.00

Table 1: Preliminary results on held-out data

From the error, we can compute theconcept accuracy
(Boros et al., 1996; van Zanten et al., 1999) as

CA = 100×
(

1− error
gold

)
The results given below for each model are in terms of
average per-sentence concept accuracy.

A second, related, metric is employed as well,
which allows the models to be more broadly compared
to others by incorporating not only the per-sentence
concept accuracy of the model but also the base-
line per-sentence concept accuracy (the per-sentence
concept accuracy obtained by arbitrary selection of a
parse) and the best possible per-sentence concept ac-
curacy. This latter reflects the accuracy of the gram-
mar, and provides an upper bound for the task of pick-
ing the best possible of all available parses. This mea-
sure, which we refer to as thephi measure, is shown
in equation 3:

Φ = 100× CA−baseline
possible−baseline

(3)

where CA is the average per-sentence concept ac-
curacy of the model,baseline is the average per-
sentence concept accuracy achieved by arbitrarily se-
lecting parses, andpossibleis the average per-sentence
concept accuracy that could be achieved if the parser
always selected the best possible parse licensed by the
grammar.

Preliminary results on held-out data to establish
thresholds, shown in table 1, were promising, suggest-
ing that incorporation of merging with a merge thresh-
old of 500 elements performed somewhat better than
the best possible feature cutoff of 500 elements alone.

Unfortunately, these preliminary results were not
supported by experiments on unseen data. As can be
seen in table 2, the averaged results of four folds of
ten-fold cross validation, representing a total of 566
sentences, show that the use of merging at the thresh-
old determined by the held-out data does not appear to
benefit the model.

6 Conclusion

Results so far are inconclusive. The effectiveness of
the merging technique appears to depend greatly on

Model CA Φ
baseline 58.92 0.00
maxent 71.53 45.77
maxent+cutoff 73.67 53.54
maxent+cutoff+merge 73.26 52.05
best possible 86.47 100.00

Table 2: Results on unseen data

qualities of the feature set itself. It is hoped that fur-
ther experiments with different types of features will
shed light on circumstances in which feature merging
may be most effectively employed as a tool to opti-
mize model performance.
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