Entailment above the word level in distributional semantics

Marco Baroni Raffaella Bernardi

Free University of Bozen-Bolzano Ngoc-Quynh Do

Chung-chieh Shan

Cornell University

University of Trento

Outline

- Abstract
- Background
- Problem: Entailment
- Datasets
- Experiments
- Conclusion

Introduction

- Goal: detecting (phrase level) entailment using Distributional Semantics
- Corpus-harvested Datasets
- Experimental evidence

Background

Formal Semantics

- Sentence level
- Complex models of meaning
- Lack of resources

Background

Distributional semantics

- Large-scale
- Successful in many tasks
- Word level

Previous work

Two strands of research

Model compositionality within DS

(Baroni and Zamparelli, 2010; Grefenstette and Sadrzadeh, 2011; Guevara, 2010: Mitchell and Lapata, 2012)

• Reformulate logical inference (FS) in DS

(Erk, 2009; Geffet and Dagan, 2005; Kotlerman et al., 2010)

DS above the word level

Harvesting AN is meaningful

Entailment

Entailment relation (\models) is a core notion of logic

$A \models B$

it cannot be that A is true and B is false

Entailment in FS

Sentences in FS denote a truth value

$A \models_{S} B$

it cannot be that A is true and B is false

Entailment in FS

Nouns in FS denote sets of entities

$A \models_{N} B$

inclusion relation between sets

Entailment in FS

Quantifiers in FS denote sets of sets of entities

$$A \models_{QP} B$$

inclusion relation between of sets of sets

Entailment in DS

Ability of one term to substitute for another

- $baseball \vDash sport$
- Inclusion of contexts (or features)
- Asymmetric!
- Possible measure: balAPinc (Kotlerman et al. 2010)

Semantic space

- British National Corpus, WackyPedia and ukWaC
- Tokenized, lemmatized, POS-tagged
- Pointwise Mutual Information matrix
 - 48K rows (phrases of interest)
 N, AN, QP
 - 27K columns (content words)

AN ⊨ N dataset

 $big cat \models cat$

- Restrictive adjectives
- Nouns from BLESS dataset (not too polysemous)
- 1246 AN sequences for which $AN \models N$ holds
- Negative examples: $AN_1 \nvDash N_2$

 $N_1 \models N_2$ dataset

 $pope \vDash leader$

- WordNet nouns
- Hyponym-hypernym chains
- 1385 positive instances
- Negative examples by inversion
 leader ⊭ pope

$Q_1 N \models Q_2 N$ dataset

$many \ dogs \vDash several \ dogs$

• 12 quantifiers:

all, both, each, either, every, few, many, most, much, no, several, some

- 13 clear cases where $Q_1 \models Q_2$
- 17 clear cases where $Q_1 \not\models Q_2$
- Cartesian product with WordNet nouns
- 7537 positive examples, 8455 negative examples

Classification methods

balAPinc

average two terms: APinc (Capture feature (context) inclusion) LIN (Capture relative relevance of features)

- SVM classifier (plus SVD)
- Two baselines (frequency and cosine distance)

First experiment

Generalizing from $AN \models N$ to $N_1 \models N_2$

- Training set $AN \models N$, test set $N_1 \models N_2$
- Tune balAPinc threshold
 - $balAPinc_{AN \models N}$
 - balAPinc
- Train SVM classifier
 - $SVM_{AN \models N}$
 - SVM

First experiment

Generalizing from $AN \models N$ to $N_1 \models N_2$

	Р	R	F	Accuracy (95% C.I.)
SVM _{upper}	88.6	88.6	88.5	88.6 (87.3–89.7)
$balAPinc_{AN \models N}$	65.2	87.5	74.7	70.4 (68.7–72.1)
balAPinc _{upper}	64.4	90.0	75.1	70.1 (68.4–71.8)
$SVM_{AN \models N}$	69.3	69.3	69.3	69.3 (67.6–71.0)
$\cos(N_1, N_2)$	57.7	57.6	57.5	57.6 (55.8–59.5)
$fq(N_1) < fq(N_2)$	52.1	52.1	51.8	53.3 (51.4–55.2)

Second experiment

Generalizing $QN \models N$ entailment

- Hold out one quantifier pair as testing data
 - SVM pair-out
- Hold out one of the 12 quantifiers
 - SVM quantifier-out
- Ignore the nouns altogether
 - SVM^Q pair-out
 - SVM^Q

quantifier-out

Include classifiers from previous experiment

Second experiment

Generalizing $QN \models N$ entailment

	Р	R	F	Accuracy (95% C.I.)
SVM _{pair-out}	76.7	77.0	76.8	78.1 (77.5–78.8)
SVM _{quantifier-out}	70.1	65.3	68.0	71.0 (70.3–71.7)
SVM ^Q _{pair-out}	67.9	69.8	68.9	70.2 (69.5–70.9)
SVM ^Q _{quantifier-out}	53.3	52.9	53.1	56.0 (55.2–56.8)
$\cos(QN_1, QN_2)$	52.9	52.3	52.3	53.1 (52.3–53.9)
$balAPinc_{AN \models N}$	46.7	5.6	10.0	52.5 (51.7–53.3)
$SVM_{AN \models N}$	2.8	42.9	5.2	52.4 (51.7–53.2)
$fq(QN_1) < fq(QN_2)$	51.0	47.4	49.1	50.2 (49.4–51.0)
balAPinc _{upper}	47.1	100	64.1	47.2 (46.4–47.9)

Conclusions

- Semantic vector representations of AN constructions encode entailment
- Semantic vectors of quantifiers also encode entailment
- QN entailment is different from feature inclusion