Tests on artificial data with 70% noise
library(adabag)
library(naivebayes)
# files available in: /net/aistaff/kleiweg/spraak/fa
train = read.table("data070.train", header=TRUE, sep="\t", quote="", row.names=1)
test = read.table("data070.test", header=TRUE, sep="\t", quote="", row.names=1)
train[1:10,]
bag <- bagging(C.Class ~ ., data=train)
train.bagging <- predict(bag, newdata=train)
test.bagging <- predict(bag, newdata=test)
100 * (1 - train.bagging$error)
100 * (1 - test.bagging$error)
boost <- boosting(C.Class ~ ., data=train)
train.boosting <- predict(boost, newdata=train)
test.boosting <- predict(boost, newdata=test)
100 * (1 - train.boosting$error)
100 * (1 - test.boosting$error)
score <- function(obs, exp) {
return(100 * sum(obs == exp[,"C.Class"]) / length(obs))
}
nb <- naive_bayes(C.Class ~ ., data=train)
train.nb <- predict(nb, train)
test.nb <- predict(nb, test)
score(train.nb, train)
score( test.nb, test)
out <- system2(c("./simpel", "data070.train", "data070.test"), stdout=TRUE, stderr=TRUE)
cat(out, sep="\n")