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Abstract. We examine the results of applying inductive logic programming (ILP)
to a relatively simple linguistic task, that of recognizing monosyllables in one lan-
guage. ILP is suited to linguistic problems given linguists’ preference for formulating
their theories in discrete rules, and because of ILP’s ability to incorporate various
background theories. But it turns out to be difficult to rival the performance that
statistical theories achieve on the same task. Finally, we note that the theoretically
preferred solutions are quite compact, but not optimally comprehensive. Perhaps
this should better be interpreted as a reflection of what theoretical linguists prefer,
rather than as a reflection of the learning technique.

1 Introduction

This paper reflects on the the results of applying a machine learning technique
inspired by logic programming to a relatively simple problem in language de-
scription, the notion of syllable. We review INDUCTIVE LOGIC PROGRAMMING
(ILP), a machine learning technique that produces logic programs describing
a set of data in Section 2, arguing that this technique is particularly well-
suited for problems that engage theoretical linguistics—either because the
problem could benefit from existing partial solutions or because one wished
to exam solutions for potential theoretical interest. Section 3 reviews the
syllable learning problem, earlier studies and the set up for the experiments,
whose results are presented and discussed in several subsections. A concluding
section suggests an interpretation of the results thus far, including a reflection
on the comparison of the learned results with linguistic theories.

2 Inductive Logic Programming and Aleph

Inductive Logic Programming (ILP) is a machine learning discipline which
develops algorithms to construct Predicate Logic hypotheses that explain a
set of empirical data or observations. The central idea is to INDUCE theo-
ries from data and theoretical primitives. For example from the background
knowledge ‘Socrates is human’ and a set of observations (training data), e.g.
‘Socrates is mortal,” we induce the hypothesis that ’All humans are mortal.’
In more formal terms, given a logic program B modeling the background
knowledge and a set of ground terms D representing the training data, ILP
constructs a logic program H, such that BAHFE D .
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Sequential-covering See Mitchell, [1], p.276

e Learned-rules «— {}
e Rule «— LEARN-ONE-RULE(Target-attribute,Attributes,Examples)
e while Performance(Rule,Examples) > Threshold, do
— Learned-rules < Learned-rules 4+ Rule
— Examples «— Examples — {Examples covered by Rule}
— Rule «+ LEARN-ONE-RULE(Target-attribute, Attributes,Examples)
e Return Learned-Rules

Table 1. Sequential covering seeks best rules in a greedy fashion. Once a rule
is adopted, examples covered by it are eliminated from further consideration.

A contribution of ILP is the construction of the search space within which
hypotheses are sought. The basic algorithm used in the experiments reported
on here is the SEQUENTIAL COVER ALGORITHM, which inputs a data on
the one hand and background hypotheses and concepts on the other. The
algorithm examines each data point in turn and tries to construct a theory
which predicts the data (see Table 1). In doing this, it constructs a hypothesis
which covers the data point under examination, and which is then evaluated
for its ability to generalize to other data points. Once a rule is adopted, the
data it explains is removed from further consideration.

Sequential covering is basically simple, but the space of hypotheses in
which rules must be sought is daunting. The size of the search space is an ex-
ponential function of the number of background concepts (predicates) which
may be used to describe instances, and which must be considered not only
in all conjunctions, but likewise in combination with all interesting variable
bindings. ILP uses Muggleton’s [2] structuring of the hypothesis space using
an inverse resolution operator mechanizing the notion ‘induction.’

We repeatedly pick a positive example from the training data and con-
struct the most specific, non-ground clause that entails it. We do this by re-
peatedly applying inverse resolution on the example, until we obtain a clause
covering the original ground positive example and no other. This maximally
specific clause the BOTTOM CLAUSE, and it provides a boundary for the rule
search. Rule search then proceeds from the maximally general, empty-bodied
clause and the maximally specific bottom clause, looking for a ‘good’ clause,
i.e., one which allows the explanation of a large amount of data. The search
traverses the lattice it defined by Plotkin’s #-subsumption [2].

It is interesting to include SYNTACTIC BIAS in constructing candidate rules
(hypotheses), e.g., to enforce conformance to a particular theory, and to avoid
traversing search paths that are known to be fruitless.

An EVALUATION FUNCTION determines how ‘good’ a clause under consid-
eration is. The evaluation needs to strike a balance between OVERFITTING,
i.e. covering data too tightly and making no essential generalizations and
OVERGENERALIZING, i.e. covering data too loosely and accepting too many
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negatives. Note that evaluation involves seeking a Prolog proof for each of the
data still to be explained, a computationally complex task. Konstantopoulos
[3] provides a parallel implementation of Aleph, in order to overcome this.

There is a trivial theory covering the positive instances of a concept while
ignoring the negative examples, C' — {}, i.e., postulating that everything is
a (positive) instance. For this reason, most versions of ILP require that data
consist of both positive and negative instances. There are ways of avoiding
the need for negative data, but they function in general less well.

Aleph [4] implements the PROGOL algorithm [5]. It allows for single-
predicate learning only, without background theory revision or predicate in-
vention. It incrementally constructs the clauses of a single-predicate hypoth-
esis in a sequential covering fashion (see Table 1), using the bottom clause
suggested by Muggleton and allowing the use of syntactic bias.

3 Syllable Structure

PHoNoTAcTICS identifies what sequences of phonemes constitute a possible
word or syllable in a given language. Since words are as sequences of syllables
(with some adjustments allowed at boundaries), we reduce the problem to de-
termining what constitutes a syllable, what sequences of phonemes constitute
a possible syllable. Languages vary as to which sequences of sounds are used,
so /ps/ is an impossible initial segment in English, but fine in Greek. We
restrict our attention to monosyllables here to avoid the added complexities
of the boundary phenomena noted above and also segmenting (dividing the
word into syllables). The training data consists of 5095 monosyllabic words
found in the Dutch section of the CELEX Lexical Database [6], with an ad-
ditional 597 reserved for evaluation. CELEX contains a large number of loan
words, which, however, are also found in common parlance. Including these
makes the learning task more difficult, but also more realistic.

Tjong Kim Sang and Nerbonne [7] studied this same task, also using
a logical technique. They adduce a bigram-inspired baseline which accepts
99.0% of positive data (precision) and rejects 76.8% of the negative data
(recall). Where Tjong Kim Sang and Nerbonne restricted representations to
concrete phonological segments, and expressed rules without variables, the
present paper explores a variety of more abstract phonological representations
and makes full use of the Horn-clause logic provided in ILP. This likewise
entails changes in the problem set up (see Section 3.1). We compare our
results to Tjong Kim Sang and Nerbonne’s below (Section 4).

3.1 Representation

We construe the learning task as the learning of valid affixes to a partial
syllable, beginning with a vowel. The CELEX data is transformed to instances
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of a predicate matching syllable fragments with phonemes that can be affixed
at that point.

The positive examples are constructed by breaking the phonetic transcrip-
tions down to three parts: a prevocalic and a postvocalic consonant cluster
(consisting of zero or more consonants) and a vowel or diphthong. The con-
sonant clusters are treated as ‘affixes’ to the vowel, so that syllables are
constructed by repeatedly affixing consonants, if the CONTEXT (the vowel
and the pre- or post-vocalic material that has been already affixed) allows
it. So, for example, from the word /ma:kt/ (maakt ‘makes’) the following
positives would be generated:

prefix( m, [1, [a,:] ). suffix( k, [1,[:,al ).

prefix( =, [m], [a,:] ). suffix( t, [k], [:,al ).

suffix( =, [tk], [:,a] ).
For example, the first two suffix rules read as follows: ‘/k/ can be suffixed
to the /az/ nucleus’ and ‘/t/ can be suffixed to an /aik/ syllable fragment’.

We reverse context lists in suffix rules so that the processes are symmet-
rical and use the same background predicates (manipulating lists).

The caret, =, is used to mark the beginning and end of a word. We need to
explicitly license affix termination on the one hand in order to avoid errors. In
Dutch, for example, a monosyllable with a short vowel has to be closed, which
means that the null suffix is not valid. The end-of-word mark allows this to
be expressed as a theory that does not have the following clause: suffix( =,
[0, [V] ). We also prefer to require the syllable boundary to be learned in
order to avoid over-informing the process, in effect assuming that all partial
sub-affixes of a valid affix are necessarily valid as well. Tjong Kim Sang and
Nerbonne [7] in fact made this assumption, and obtained good results, but
they also provides the learner with too much information.

The positives are all the prefixes and suffixes that occur in context, so
that all the monosyllables in the training data can be constructed: 11,067
and 10,969 instances of 1,428 and 1,653 unique examples, respectively.

The negative data is randomly generated words that match the template
C3VCs5 and do not appear as positives. The random generator balances the
number of examples at each affix length to avoid having large numbers of
long, uninteresting sequences overwhelm the shorter, more interesting ones.
Since the randomly generated negatives must also contain false negatives, we
cannot expect even a good theory to fit perfectly. In order to avoid overfitting,
the learning algorithm was set to only require an accuracy of 85% over the
training data. The negative data is also split into evaluation and training
data, and the negative examples are derived from the training negative data
by an algorithm detailed by Konstantopoulos [8,9], omitted here.

3.2 Alternative Backgrounds

Since we are viewing the problem as the task of identifying the consonants
that may be prefixed or suffixed to a partially constructed monosyllable, the
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clauses of the target predicate must have a means to refer to various subsets of
C and V. This is achieved by specifying a (possibly hierarchical,) linguistically
motivated description of C and V. Each class described can be referred to as
a feature-value pair, for example LAB+ to denote the set of the labials or
Voic+ for the set of voiced consonants. Intersections of these basic sets are
allowed: the feature-value vector [Voic+,LAB+] refers the voiced labials.

BACKGROUND KNOWLEDGE plays a decisive role in the quality of the
constructed theory by providing a descriptive vocabulary in which to for-
mulate hypotheses. This is operationalized as relations between segments
and feature values, e.g. labial (m,+) or voiced(m,+). Feature-value vectors
are expressed as conjunctions, e.g., labial(C,+) A voiced(C,+). The back-
ground knowledge also contains the head/2 and rest/2 list access predicates.
These were preferred over direct list access with the nth/3 predicate, as bias
towards rules with more local context dependencies.

The theories described in Sections 3.3, 3.4 and 3.5 below, are based on
background knowledge that encodes increasingly more information about
Dutch phonology as well as Dutch phonotactics: for the experiment in 3.3
the learner has access to the way the various symbols are arranged in the In-
ternational Phonetic Alphabet (IPA), a standard set of predicates designed
to facilitate the description of arbitrary languages, whereas for the experi-
ment in 3.4 a classification that is sensitive to features important in Dutch
phonology was chosen. Finally, in Section 3.5 a scalar (as opposed to binary)
sonority feature is implemented, which has been proposed with the explicit
purpose of solving the problem of syllable structure [10].

The quantitative evaluation for each of the three experiments was carried
out using the same 597 words and the same part of the randomly generated
negative data that were reserved for this purpose.

3.3 The IPA segment space

For the first experiment the background knowledge reflects the system of
the International Phonetic Alphabet (IPA, 1993 version): the phonological
inventory consists of two disjoint spaces, one of consonants and one of vowels,
with three and four orthogonal dimensions of distinction, respectively.

Consonants vary in PLACE, MANNER OF ARTICULATION, and VOICING.
Manner can be PLOSIVE, NASAL, LATERAL APPROXIMANT, TRILL, FRICA-
TIVE or APPROXIMANT. Place can be BILABIAL, ALVEOLAR, VELAR, LABIO-
DENTAL, POSTALVEOLAR or PALATAL. Voicing can be present or absent. Vow-
els have four dimensions: PLACE (FRONT, CENTRE, BACK); HEIGHT (OPEN,
MID-OPEN, MID-CLOSED, CLOSED); length and roundedness. The end-of-word
mark has no phonological features whatsoever and it does not belong to any
of the classes of either C or V. This schema was implemented as one back-
ground predicate per dimension relating each segment with its value along
that dimension: manner(plosive, p). etc.
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We evaluated using the LAPLACE FUNCTION %, where P and N is
the number of positive and negative examples covered, respectively.

The resulting hypothesis consisted of 199 prefix and 147 suffix clauses and
achieved a recall rate of 99.3% with 89.4% precision. All the false negatives
were rejected because of prevocalic material, typically from loan words could
not be licensed. The /&/ segment found in ‘jeep’ and ‘junk’, for example,
was not permitted and so these words were rejected.

The most generic rules found were:

prefix(A,B,C) :- A= ’7. suffix(A,B,C) :— A= "7,
prefix(A, [1,C). suffix(a, [1,0).

meaning that (a) the inner-most consonant can be anything, and (b) all sub-
prefixes (-suffixes) of a valid prefix (suffix) are also valid. We also noted pairs
of rules which might have collapsed given a richer background vocabulary.

3.4 Booij’s Feature Classes

The second experiment made a richer (but more language-specific) back-
ground knowledge available to the inductive algorithm, by implementing the
feature hierarchy suggested by Booij [11] and shown in figure 1.

Root [cons,son]

Laryngea [continuant] [nasal] Place [lateral]

[asp]  [voice] Labial Dorsal Coronal

[round] [back] [high] [mid] [ant]

Fig. 1. Booij’s [11] feature geometry for Dutch (simplified).

The most generic features are the MAJOR CLASS FEATURES (CONSONANT
and SONORANT) on the root, which divide the space into vowels [CONS-
,SON+], obstruents [CONS+,SON-] and sonorant consonants [CONS+,SON-+].
Since all vowels are sonorous, [CONS-,SON-] is invalid.

Most of the features bundled together under two FEATURE CLASSES, LA-
RYNGEAL and PLACE. Booij postulates these classes because they group fea-
tures that behave the same in Dutch phonology. Laryngeal features mark the
voiced-voiceless distinction, while the ASPIRATION feature distinguishes only
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/h/ from the rest. Some derived or redundant features such as GLIDE, Ap-
PROXIMANT and LIQUID are defined, but not shown in Figure 1. The vowels
do not include the schwa, which is set apart and only specified as SCHWA .
Again using Laplace evaluation the theory adduced consisted of 13 prefix
and 93 suffix rules, accepting 94.2% of the test positives and under 7.4% of
the test negatives. Among the rejected positives are loan words (‘jeep’ and
‘junk’ once again), but also all the words starting with perfectly Dutch /s/ -
obstruent - liquid clusters. The prefix rule with the widest coverage is:

prefix(A,B,C) :- head(C,D), sonorant(D,plu), rest(B,[]).

~ ‘prefix anything before a single consonant before a non-schwa nucleus.’

The suffix rules rejected only 3 positives, ‘branche’, ‘dumps’ and ‘krimpst’
(the first two are loan words) which failed to suffix /[/ or /s/. Some achieve
wide coverage (although never as wide as the prefix rules), but others make
reference to individual phonemes:

suffix(A,B,C) :- rest(C,D), head(D,E), rest(B,[]), A=t.

or, ‘suffix a /t/ after exactly one consonant, if the nucleus is a long vowel’.

The end-of-word marking rules (see Section 3.2), are interesting because
open, short monosyllables are very rare in Dutch (there are four in CELEX).
This suggests that these are exceptions to the general rule disallowing open,
short monosyllables. The learner instead adduced 29 rules for suffixing ~, the
most general of which is:

suffix(A,B,C) :- head(B,t), larynx(t,E), rest(B,F),
head(F,G), larynx(G,E), A= >~’.

or ‘suffix an end-of-word mark after at least two consonants, if the outer-most
one is a /t/ and has the same values for all the features in the LARYNGEAL
feature class as the consonant immediately preceding it’.

This experiment also exposed ILP’s computational complexity. A more
flexible background vocabulary contains more predicates and thus provides
for more interesting hypotheses, but this results in longer bottom clauses and
a larger search space.

3.5 Sonority Scale

The most popular linguistic theory on the syllable is that a syllable is defined
by a sequence of segments rising monotonically in sonority to a vowel and then
falling monotonically to the end of the syllable [12,13], even though exceptions
to this general principle are known and discussed [14,15]. We implement and
test van der Hulst’s [10] syllabic model here. We do not present the results of
a machine learning experiment, but rather a hand-crafted theory, which we
use for comparison. The Dutch syllable is analysed as having three prevocalic
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phoneme|obstruents m n | r glides vowels
sonority | 1 222525275 3 4

Table 2. The Sonority Scale

and 5 postvocalic positions (some of which may be empty), and constraints
are placed on the consonants that can occupy each.

The most prominent constraint stipulates a high-to-low SONORITY pro-
gression from the nucleus outwards. Each phoneme is assigned a sonority
value (as in table 2) and syllables are then built from the nucleus outwards,
by stacking segments of decreasing sonority.

Part of the sonority scale is based on language-independent characteristics
of the segments. For example, vowels are always more sonorant than conso-
nants, and obstruents are the least sonorant of the consonants. The scale
shown here has been further refined to account for particular idiosyncrasies
of Dutch. For example, in the original (language-independent) version nasals
and liquids are not distinguished. In the final theory, however, there are four
distinctions (see Table 2). The justification for this refinement is to explain,
e.g., why /karl/ is acceptable while /kalr/ is not. We emphasize that the scale
is not only language specific, but also “problem”-specific: it was developed
to solve the very problem under investigation. It represents a best account of
the phenomenon currently available.

In addition to the high-to-low sonority level progression from the nu-
cleus outwards, there are both FILTERS and explicit licensing rules. Filters
are restrictions referring to sonority (e.g. ‘the sonority of the three left-most
positions must be smaller than 4”) or other phonological features (e.g. the ‘no
voiced obstruents after the vowel’ filter, p. 92) and are applicable in conjunc-
tion with the sonority rule. Licensing rules are typically restricted in scope
and take precedence over the sonority-related constraints mentioned so far.
The left-most position, for example, may be /s/ or empty, regardless of the
contents of the rest of the prevocalic material. We left some constraints out
of the implementation that were too long when translated from their fixed-
position perspective to the affix-licensing one used here, or that appeared to
be fine tuning the theory to individual consonant clusters.

The sonority progression rule together with the most widely applicable
filters and rules yielded impressive compression rates matched with results
between those of the two previous experiments: 93.1% recall, 83.2% precision.

4 Results and Discussion

As can be seen in Table 3, the ILP-constructed rules compare favorably (in
both performance and hypothesis compactness) with those constructed by
the deductive approach employed in [7]. The most popular linguistic theory
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‘ Bigrams Sonority

Tjong Tjong IPA | Booij’s
(no ling.) ‘ C&F Features
Recall| 99.0% | 99.1% 99.0% | 99.3% | 94.2% | 93.1%
Precision| 76.8% | 74.8% 91.9% | 79.8% | 92.6% | 83.2%
|Clauses| 577 + 577|674 4+ 456|145 + 36| 13+ 93 | 348

Table 3. Results. The first column reports the bigram baseline, the second the lin-
guistically unbiased result in Tjong Kim Sang and Nerbonne (2000), and the third
Tjong Kim Sang and Nerbonne’s results using a biased inspired by Cairns and Fein-
stein’s theory of the syllable [16]. The last three columns report on the experiments
in Sections 3.3-3.5. Recall is the percentage of correct data accepted, precision the
percentage of incorrect data reject, and |Clauses| reports on the number of prefix
and suffix clauses in the theory learned.

on the syllable (Table 3, right column) is included as a point of comparison. Tt
is notable for its compression, but less so for its coverage (recalling, however,
that very specific details were omitted). Tjong Kim Sang and Nerbonne [7]
note that experiments with (stochastic) Hidden Markov Models performed
slightly better than the best discrete models here, achieving 98.9% recall and
92.9% precision.

The experiments demonstrate that ILP can identify sequential patterns,
and that its ability to accommodate different background theories leads to an
interesting variety of results depending on background theory. ILP does not
deal well with the fact that natural languages have irregular and semiregular
patterns, many of which are also infrequent, however, and the rather costly
learning algorithm also makes it a poor candidate for complex tasks. See,
however, Dzeroski et al [17] for further ideas on applying ILP to language.

It is likewise noteworthy that all techniques adducing rules—including
the stocahstic techniques mentioned above—seem limited to about 99% pre-
cision and 93% recall, and moreover that they rise to this level of accuracy
only at the cost of including many very specific rules. This suggests that
sheer memory plays a very significant role in learning even this very simple
sort of structure, a theme emphasized repeatedly by Daelemans [18] and his
colleagues. In this same vein, it is noteworthy that leading theoretical mod-
els do not appear to fare better. The need to accommodate very substantial
amounts of exception penetrates even into carefully constructed models.

Applying machine learning to language can inform theories of language
acquisition by showing what information is implicit in the data and also
by operationalizing the “innateness” always emphasized in discussions of
child language acquisition. Although computational modeling is sometimes
dubbed “simulation,” our experiments have not attempted to model chil-
dren’s language acquisition in any specific way, e.g., by enforcing an incre-
mental scheme, by limiting training data to a small set of initial experiences,
or limiting working memory. We note, nonetheless, the increasing interest in
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the INPUT HYPOTHESIS, i.e. that the information in children’s experience is
rich enough to inform learning in more detail than “innateness” advocates
might expect [19].
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