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1 Introduction

Computational linguistics assumes from linguistics a characterization of grammar—
the relation between meaning and form—in order to focus on processing, e.g., the
algorithms needed to compute meaning given form (parsing), etc. Computation-
alists naturally construe grammar as a set of constraints on the meaning-form re-
lation, which suggests constraint-resolution as a processing strategy. This paper
illustrates the constraint-based view of semantics and semantic processing and at-
tempts to draw implications for semantic theory. This introductory section explains
background assumptions, particularly about the division of labor between linguis-
tics and computational linguistics and also about constraint-based linguistics theory.
Section 2 illustrates how constraint-based theory reconstrues the syntax-semantics
interface, and Section 3 illustrates how constraint resolution provides a welcome
freedom for processing. Section 4 offers some modest conclusions about this work.
The present paper is NOT an attempt to provide a picture of the state of the
art in computational semantics, which includes some sensible attention to Artificial
Intelligence, and also to the needs of attempting to deal with applications. The
papers in Rosner and Johnson 1992 provide a good overview of trends in the fields
(see also the review in Nerbonne 1994), while Nerbonne et al. 1993 sketches one

*T had hoped to coauthor this with Per-Kristian Halvorsen of Xerox PARC, but we both
became too busy for effective collaboration. He certainly influenced my ideas on these mat-
ters, as did the audience at the 1990 Annual Meeting of the Association for Computational
Linguistics, where he and I presented related material as a tutorial. Thanks too to Ron
Klopstra, who implemented a parser illustrating the ideas in Section 4, as part of his 1993
Groningen Master’s Thesis.



approach to trying to accommodate applications even while making use of work
in theoretical semantics. The present paper focuses on topics which lie closer to
the core of interest in theoretical semantics—the syntax-semantics interface and the
processing of semantic information.

1.1 What is Computational Semantics?

There is a natural division of THEORETICAL labor between the disciplines of lin-
guistics and computational linguistics, namely that linguistics is responsible for the
description of language and computational linguistics for the algorithms and archi-
tectures needed to compute with these. On this view the theoretical fields are related
by their common focus on language, and moreover, computational linguistics is de-
pendent on linguistics for the characterization of the relations it computes. Kaplan
1987 articulates this view further, and it is popular among computationalists.

Each of the fields has its more empirical and more theoretical aspects—the dis-
tinction at hand is orthogonal. Linguistics has its descriptive and theoretical per-
spectives, and so does computational linguistics. Computationalists DESCRIBE con-
crete algorithms and architectures (and report on their relative successes), but they
also analyze these theoretically—in terms of their decidability, time/space complex-
ity, the data structures they require, and, in the case of parallel algorithms, the
communication protocols needed.

The division of theoretical labor suggested here is sometimes obscured by the
many other purposes which computers serve in linguistic research, e.g., as vehicles
for projects in applied linguistics (natural language interfaces, information retrieval,
computer-assissted language learning, etc.); as visualization tools; as laboratories
for linguistic experiments; as channels to immense data reserves in the form of cor-
pora; as repositories for data organization, storage, and retrieval; etc. But clearly
the use of computers cuts across the usual divisions of theory/application, the-
ory/experiment and theory/data.

1.2 Feature-Based Theories

The extensive use of features and various concepts of feature matching gave rise
in the 80’s to “feature-based grammars” and eventually “feature logics” (Bresnan
1982, Gazdar et al. 1985, Carpenter 1992). Although these were initially developed
by linguists, mathematical work on feature-based formalisms was also taken up by
computational linguistics. The present paper is too limited in scope to provide an
introduction to all this work; Shieber 1986 is the fundamental introduction and
may be studied accompanied by PATR-II (Shieber et al. 1983), an implementation
of the basic mechanisms. The uses we make of the work should be clear from
the informal illustrations. The main aspects of feature grammars we wish to exploit
here is their ability to encode PARTIAL INFORMATION, including information specified
variably. We turn to this below after providing some illustration of the use of feature
description languages in semantics.



1.3 A Simple Illustration

There are several alternative means of specifiying the constraints associated with
a grammar (cf. Bresnan 1982, Gazdar et al. 1985, Carpenter 1992). The simplest
formalism, PATR-II (Shieber 1986), sees linguistic objects as trees with feature-
value decorations. We might have used this simplest theory to emphasize that no
parochial assumptions bear on the points below, but for the sake of conciseness, we
use an attribute-value representation. The relation to PATR-II is illustrated in a
first version of a grammar, to which we now turn.

The fundamental idea is simply to use feature structures to represent semantics.
If one wishes to compute the semantics of a sentence such as Sam runs, one first de-
fines a primitive grammar which admits this. In PATR-II this can take the following
form:

;; Lexicon (cont.)

Word Sam: <cat> = NP Word runs: <cat> = VP
<agr> = sg <agr> = sg
<sem> = m. <sem pred> = run

<sem arg> <subj sem>.

;; Grammar Rule

Rule {Sentence}

S -> NP VP <NP agr> = <VP agr>
<sem> = <VP sem>
<NP sem> = <VP subj sem>.

The context-free notation in this example grammar can be read in the usual way,
while the equations constrain properties of the grammatical objects. For example,
the first equation associated with Sam specifies that its category is NP, while the
first equation associated with the rule specifies that the agreement of NP and VP
must coincide. Note that equations specifying syntactic as opposed to semantic
properties have no special status. Accordingly, various strategies about the optimal
order in which to process constraints are possible.

The feature SEMANTICS (sem) is included in this example in order to show how
the mechanism can be used to encode semantics. The semantics feature is lexically
provided for in the case of Sam and runs, and is specified for the example sentence
on their basis. As primitive as this example is, it illustrates two techniques crucial
to using features-based systems to specify semantics: first, specifications may be
complex, as the lexical semantics for runs (involving <sem pred> and <sem arg>)
illustrates. Second, variables may be employed esp. to specify the semantics of
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Figure 1: A sketch of the semantic derivation of Sam runs, run’(s) as this
would proceed using unification. Unification applies to syntactic and semantic
representations alike, eliminating the need to compute these in distinct pro-
cesses, and unification is employed to bind variables to argument positions,
eliminating the need for (a great deal of) f-reduction as used in schemes de-
rived from Montague and the lambda calculus. The reader may verify that the
matrices of feature-value specifications are equivalent to those in the PATR-II
grammar in the text, but the representation of shared structure via the boxed
numbers allows grammars to be more concise.

complex expressions. Thus the semantics of sentences is specified via a variable
(required to be equal to the VP semantics). Figure 1 illustrates this employing a
more popular representation.

Syntax/Semantics interfaces using feature-based formalisms may be found in
Shieber 1986, Pollard and Sag 1987, Fenstad et al. 1987, and Moore 1989. The
motivation for these early attempts was certainly the success feature-based descrip-
tions enjoyed in syntax. Treating semantics in the same way meant that syntactic
and semantic processing (and indeed all other feature-based processing) can be as
tightly coupled as one wishes—indeed, there needn’t be any fundamental distinc-
tion between them at all. In feature-based formalisms, the structure shared among
syntactic and semantic values constitutes the syntax/semantics interface.

Our earlier papers have explored several advantages of the constraint-based view
of the syntax/semantics relation over standard views, including (i) the opportunity
to incorporate nonsyntactic constraints on semantics, such as those arising from
phonology or context (Nerbonne 1992a); (ii) the opportunity to formulate principles



which generalize over syntax and semantics, such as those found in HEAD-DRIVEN
PHRASE STRUCTURE GRAMMAR (Pollard and Sag 1987, Nerbonne 1992a). Halvorsen
1988, Nerbonne 1992a elaborate on the virtue of understanding feature-based seman-
tics as specifying constraints on logical forms, not model structures. The virtues of
viewing semantics processing as manipulation of logical form descriptions includes
not only a characterization of semantic ambiguity, which in turn provides a frame-
work in which to describe disambiguation, but also the opportunity to underspecify
meanings in a way difficult to reconcile with other views. The latter point is illus-
trated with an application to the notorious scope ambiguity problem.

1.4 The Constraint-Based View

Montague’s famous characterization of the relation between syntax and semantics
as a homomorphism naturally gives way here to a CONSTRAINT-BASED view. The
constraint-based view was originally motivated by the close harmony it provides with
syntax, which is universally processed in a constraint-based fashion. Employing the
same processing discipline in syntax and semantics allows that their processing (and
indeed other processing) can be as tightly coupled as one wishes—indeed, there
needn’t be any fundamental distinction between them at all.

In this paper we shall focus on two consequences of the constraint-based view—
one linguistic, one computational. Given our own interests it will not be surprising
that the lion’s share of attention is paid to the computational point. We discuss
a linguistic consequence of the constraint-based view in order to give some of the
flavor of the linguist-computationalist dialectic.

Given a constraint-based view, it is natural to formulate hypotheses about syn-
tax/semantic interfaces as manipulations of constraints rather than as functions on
the semantic objects directly. This leads immediately to a relaxing of composition-
ality requirement, i.e. the requirement that the meanings of phrases be the values of
functions defined on the constituents’ meanings. We illustrate this linguistic point
briefly with an eye toward illuminating the computational perspective on linguistic
theory.

The computational point is addressed at more length. In order to view semantics
as a homomorphic mapping from syntax, Montague needed an artificially “disam-
biguated syntax”—the only plausible candidate to serve as basis for a function from
syntax to semantics: f: DS +— S. DS, the level of disambiguated syntax, was
normally seen as a minor technical inconvenience in the Montague framework. After
all, one may always eliminate the apparent unnaturalness by viewing the “real rela-
tion” as the image of the disambiguated mapping under a suitable notion of syntactic
equivalence (perhaps string identity). R: sRo < 3s'disambig(s’,s) A f(s') = 0.
It has always been clear that syntax/semantics constraints may not uniquely de-
termine a semantics. Instead, the constraints UNDERSPECIFY the semantics (in
general). We interpret this technically in the following way: the syntax/semantics
interface is a relation between syntactic structures (decorated trees) and formulas
in a meaning representation language. The relation is underspecified if a single



syntactic structure is interpreted as two or more formulas (which are moreover not
merely alphabetic variants). Of course the formulas may normally have a good deal
in common. We then ignore the function f above and attempt to specify R directly.

This wider view of the syntax/semantics interface has a liberating effect: it
becomes quite natural to exploit the set of constraints associated with any stretch
of syntactic material—even if that material does not form a constituent. We shall
exploit this property in order to illustrate how constraint-based semantics allows a
particularly simple approach to the problem of computing semantics incrementally.
In this case the partial constraints may combine to restrict syntactic processing
hypotheses significantly. The advantage our approach has over others here lies in
the fewer assumptions we make about syntactic structure.

There is finally a deeper perspective on our eschewing compositionality. Our
motivation for exploring constraint-based formulations of grammar is the freedom
this allows in processing. Concretely, this means that we wish to experiment with
the order in which information is combined, which translates mathematically into
the requirement that we base our semantic specifications on information-combining
operations which are COMMUTATIVE—which composition most clearly is not: fog #
go f. This also explains the preference for UNIFICATION as an information-combining
operation in constraint-based theories, but, in fact, it is only one of several choices.

2 Noncompositional Constraints

In this section we illustrate the linguistic benefits of focusing on constraints. Into
the primitive grammar above we successively introduce lexical ambiguity, phrasal
ambiguity, and noncompositional constraints on interpretation.

The constraint-based view has a RELATIONAL take on ambiguity that is fun-
damentally different (from that of the homomorphic view). Consider further the
example in Figure 1 by way of illustration. The verb runs is, like most natural lan-
guage words, highly ambiguous. It can mean ‘to go quickly by foot’ She’s running
in the Marathon, but also ‘to function’ The printer’s not running, ‘to flow’ Your
mascara is running, ‘to flee’ At the first sign of danger, they ran, etc. (any large dic-
tionary will list several more). Now, if we require a homomorphic relation between
syntax and semantics, then we must define a mapping with this range. Since the
mapping must be functional, we can only do this by assuming the ambiguity in the
syntax, and then carrying it forward into the semantics. The constraint-based view
suggests postulating a non-functional relation between syntax and semantics. There
is then a single syntactic item corresponding to run, which is constrained to mean
one of the things in its dictionary entry. This may be accomplished by changing
the specification for runs’s semantics (we continue here and throughout with the
notation of Figure 1):

HEAD|CAT VP
SEM|PRED {go-fast’, function’, flow’, flee’, ...}



This is a disjunctive specification with the content: the semantic predicate is
exactly one of the values go-fast’,....! It is quite simple, but it already breaks the
compositional mold: a single syntactic entity is mapped to several semantic entities.
Of course, it is a simple matter to “carry” the ambiguity back into the syntax, and
so preserve compositionality, but there is no need to.? In fact on reflection it seems
strained to postulate various lexical items for run—all sharing the same syntactic
and morphological properties. The approach taken here can postulate a single lexical
item with a variety of semantics interpretations.3

Before continuing to remark on issues of “compositionality”, we need to clarify
the sense in which we use this term. In linguistic semantics the term has normally
been taken to require that the meaning of a phrase be the value of a function de-
fined on the meanings of its subconstituents. Taken this way, compositionality is a
hypothesis about the semantics of natural language—i.e., the hypothesis that the
correct semantics for a natural languge is such that, for any construction (grammar)
rule, there is a function which takes the meanings of its constituents as arguments,
and yields the meaning of the composed phrase as value. Now, Zadrozny 1994
has shown that, if any semantic mapping exists, then it has a compositional refor-
mulation, which shows the hypothesis to be unfalsifiable. Zadrozny adds that the
functions in question are not guaranteed to be computable or even finitely specifi-
able, and that there may well be nonvacuous hypotheses about compositionality if
limited to particular classes of functions, but this is not our concern here. The com-
positionality hypothesis has such widespread acceptance that in fact grammatical
descriptions and description schemes normally simply assume it—and implicitly or
explicitly require it. Our point is just that stepping back from this common assump-
tion allows one to assume a different perspective on some problems of grammatical
description and processing.

A relational treatment of lexical ambiguity is a harmless deviation from compo-
sitionality introduced here for the sake of suggesting that the semantic community
has come to assume compositionality rather too automatically. A more interest-
ing variation occurs when we begin treating semantics by manipulating constraints
rather than writing functions. In compositional treatments the function yielding the
semantics of a mother node views the semantics of daughter constituents as black
boxes—as units whose internal make-up is ultimately irrelevant. We automatically
shed such blinders when we manipulate constraints.

Consider the case of prepositional phrases used on the one hand as free adjuncts
and on the other as optionally subcategorized arguments. These are quite common,

n fact, this involves a mild (and well-studied) extension of the PATR-II formalism to
allow disjunction. Kasper and Rounds 1986, Carpenter 1992 have details.

2More interesting (but also more difficult to illustrate briefly) are attempts to provide
constraint-based theories of nonlexical ambiguity. Nerbonne 1993 provides the foundation
for a constraint-based treatment of quantifier scope ambiguity, but it would take us too far
afield to present it here.

30f course, this is not the same as a single disjunctive semantics, either. See Nerbonne
1992a for discussion.



as a few examples easily suggest:

(1) The mill ran on Wednesday

The mill ran on methane

Sam waited on Wednesday/Mary

Sam waited for hours/Mary

Sam decided on Wednesday (ambig., cf. on Mary)
Sam decided about Wednesday/Mary

Sam voted for Mary (ambig.)

Sam invested in May/Texaco

Sam went on about Christmas (ambig.)

e

N

Clearly some strings (e.g., (1d)) are ambiguous. In the adjunct reading, Wednes-
day was the time Sam’s decision was made; in the argument reading it was (part
of) the decision itself (in this case the sentence might be taken to mean that Sam
decided on Wednesday as the day for a meeting, for example, but the decision might
have been made on another day). The analytic question is not vexing: the ambiguity
correlates with the argument/adjunct distinction.

But now consider just the prepositional phrase on Wednesday in isolation: what
meaning should it be assigned in a compositional treatment? In case it appears as
a temporal adjunct, it expresses a relation between an event and a time, but in case
it’s a subcategorized-for argument (as it might also be interpreted in (1d)), it seems
merely to denote the day Wednesday. Thus the meaning of the PP phrase seems to
depend, not just on the meanings of its parts, but rather on its syntactic context—
the fact that it occurs in construction with a particular verb. The difference in
the two kinds of PPs is particularly striking in some cases, e.g. (lc), where the
subcategorized phrase is interpreted merely as standing in a particular relation to
the rest of the arguments, while the adjunct is interpreted as scoping over the relation
denoted by the verb (this is a standard analysis for duratives—cf. e.g., Dowty 1979).

In the adjunct (frame adverbial) reading the preposition makes an independent
contribution to semantics, at the very least distinct from other adpositions which
can head free adjuncts such as with, on, in spite of, notwithstanding etc., or the
other temporal or locative prepositions such as before or after. In the argument (co-
specifying) case the preposition is simply required so that no independent contribu-
tion to semantics is discernible (which is not to deny that the choice of preposition
is “partially motivated”, i.e., semantically rather better suited to function here than
most alternatives). I believe that semanticists are agreed that very different treat-
ments of these phrases are required. Although both types of phrase are optional, the
adjuncts may occur multiply in a single clause, which requires recursive structure
in representation. (Benefactives are admittedly strained if iterated, so perhaps they
ought to be classed with optional arguments.) Arguments, on the other hand, occur
once or not at all. It is most straightforward to simply reserve a position for them
in a relation.*

40Of course this means that provision must be made for the case where arguments are



Just as in the case of lexical ambiguity, one can avoid noncompositional treat-
ments in this phrasal case by postulating ambiguity—beginning with the preposition
on, which can be translated as expressing a relation in the adjunct case, and as vacu-
ous (an identity function) in the argument case. The ambiguity percolates naturally
to the PP. Technically, there is nothing amiss with such a treatment, but it seems
counterintuitive—in particular, in locating the ambiguity in the preposition, rather
than the combination of verb plus prepositional phrase.

We now sketch an alternative, continuing to focus discussion on (1d), because
its representation is logically simple. For the sake of concreteness, let’s suggest
representations: the meaning of the optional argument as part of the relation denoted
by decide: decide-on'(e, s, w) holds iff e is an event of Sam deciding in Wednesday’s
favor. We’ll then represent the temporal adjunct on Wednesday as a relation between
the event denoted by the verb and Wednesday: C; (e, w), i.e., a relation which holds
just in case the event is temporally contained within Wednesday. More generally,
any theme argument may be specified to stand in the containment relation with
respect to the object of the preposition on, but we focus on the example (1d).

This is the puzzle for compositional treatments: how can the semantics of the PP
construction be a function yielding m (from on’ and m) (Sam decided on Mary), but
on'(e,w) (from on’ and w) (Sam decided on Wednesday)? One might hypothesize a
type senstivity (distinguishing the PERSON m from the TIME w), but the ambiguous
examples (e.g., (1d,f,h)) indicate that this does not generalize—more is at stake
than polymorphic functions. We seem ultimately forced to postulate ambiguity in
the semantics of on (and the phrases headed by it), which seems counterintuitive.

Proceeding from a constraint-based perspective, we have a slightly different re-
sponse available—wiz., that there is a single set of constraints which entail that the
semantics of the PP is always on’(e, NP’), but that the constraints specifying the
semantics of the VP sometimes uses this entirely, and sometimes use only the se-
mantics of the NP object—a clearly noncompositional step (see Davis 1995 for a
more compositional suggestion in a constraint-based vein). Below, we extend the
grammar presented in Section 1.

Before presenting the extended grammar, it is worth noting two things about this
sort of effort. First, by virtue of its being concrete (and implemented), the example
grammar is specific about some irrelevant points. This can be distracting, but it
has the advantage of being more reliable and perhaps more easily understandable
(for being concrete). Second, the example is formulated in an “HPSG” style (4
la Pollard and Sag 1987, Pollard and Sag 1994), but this is strictly inessential to
the points being made. The same demonstration could be given in LFG, Word
Grammar, Definite Clause Grammar, or a logical formulation of GB or minimalism
(e.g., that of Stabler 1992). HPSG is used here because I use it elsewhere, and its

missing. In fact there is a variety of interpretations, depending on the verb, but including at
least the narrow scope existential (He sang iff He sang something), contextually definite (He
noticed iff He noticed what is contertually definite), and reflexive (wash). We shall simply
use the appropriate meaning for the case at hand, the narrow scope existential (decide).



attribute-value “boxes” may be easier to read.

We first need to encode the new lexical items. In a larger fragment, most of
the specifications included here would be “inherited” from more abstract word class
specifications (see Flickinger and Nerbonne 1992 for an extended presentation).

HEAD|CAT p

SUBCAT <

HEAD|CAT np
SEM
PRED [,
SEM | THEME
GOAL

on

HEAD|CAT v

HEAD|CAT PP-on
SUBCAT
SEM [ GOAL [Z] ]

)

decided | SUBIISEM
PRED decide-on’

EVENT
SOURCE
THEME

SEM

Like all our specifications, these are partial. (We shall have occasion to flesh out the
prepositional specifications directly.) In comparison with the earlier example, we
have first complicated the verb semantics by adding the event argument (to allow
a simple treatment of the time adverbial). Second, we make use of a SUBCATEGO-
RIZATION feature to specify the complements which these words select. Its value
is enclosed in angle brackets because it is a list (of potentially several items). The
specification of the prepositional phrase selected by decide is further enclosed by
parentheses to indicate that it is optional, as is standard. Finally, we assume that
Mary is entered in the lexicon as Sam is.
A sketch of a (partial) analysis tree is provided in Figure 2. What is noncom-
positional here is the specification of the THEME semantics of decide as covarying
NOT with the semantics of the selected complement, but rather with the semantics
of its complement’s complement. This is a natural noncompositional specification
in the formalism here. The (single) rule licensing the different head-complement
combinations in the two interior nodes has not been provided, but it is just the
head-complement schema of HPSG (Pollard and Sag 1994, p.38), which is subject
to the subcategorization principle (ibid., p.34), requiring that specifications imposed
by the head must unify with those on complement daughters. The example likewise
assumes (uncontroversially) that semantic specifications follow head lines (in head-
complement structures).

In order to contrast the adjunct reading to this we need to sketch a treatment
of adjuncts. We assume, fairly standardly, that adjuncts selects the heads they
combine with, rather than wvice versa, and we encode selection in the feature MOD.
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SEM . PRED decide-on’
THEME [2]|LI[4] m

/ \ FORM .

FORM deczde on Mary ]

PRED L.
/ \ coAL[Elm
decide
FORM decide
HEAD|CAT PP-on
SUBCAT
SEM [ GOAL ]
PRED decide-on’
EVENT on Mary
SEM
SOURCE _
THEME FORM on
PRED L¢ FORM Mar
SEM THEME y
SEM [4]m
GOAL
L SUBJ-SEM[4]

Figure 2: A sketch of the semantics of the VP decide on Mary, as it is de-
rived from noncompositional specifications. The semantics of the verb decide
is specified to bind its theme role to the semantics of the object (goal) of the
preposition—without intermediate reference to the semantics of the preposi-
tional phrase it stands in construction with.

Like subcategorization information, this will unify with the information associated
with structures admitted by the rule. The earlier lexical entry for the prepostion on
suppressed this information, which we therefore now supplement:

[ CAT p i
HEAD
MOD [ SEM[ EVENT [1] ] ]
HEAD|CAT np
SUBCAT SEM
on
SUBJ|SEM
PRED L[,
SEM | THEME
GOAL

Note that the argument position bound to the variable i’ is now further specified
as the EVENT (time) of the object modified. This will eventually account for the
semantic effect of the frame adverbial—that of restricting the time at which the
event is said to take place.

The received view of the semantic contribution of adjuncts is that they fall into
two classes—one class, typified by conditional clauses, serves as an OPERATOR. scop-
ing over the head it is in construction with, and a second class, typified by locative
and most temporal adverbials, serves as a RESTRICTOR. of some argument position
within the head. Kasper 1994 provides an elegant means of reducing the second
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class to the first, so that the apparent grammatical distinction may be reduced to
a purely lexical one. Kasper’s specifications are too sophisticated to be introduced
and explained here in full (but see note). We shall assume the effect of his specifi-
cations: the semantics of a head-adjunct construction with a restrictor adjunct will
be assumed from the head, and the adjunct semantics will serve to restrict some
argument with the head semantics.> In order to implement Kasper’s ideas on re-
strictive adjunction, we require a minor complication of the grammar: the feature
SEMANTICS (abbreviated ‘SEM’ above), which has heretofore specified the semantic
translations of words and phrases, will now be divided into NUCLEUS (abbr. NUCL),
the core around which the full-fledged semantics is built, and RESTRICTIONS (abbr.
RSTR), which describe constraints the arguments in the nucleus are subject to. The
few examples treated thus far may all be construed as manipulating only the nucleus
part of the semantics.

The specifications foresee the following schema for this restricting class of ad-
juncts:

X NUCLEUS
SEM
/ \ o
X Adj
CAT|HEAD|MOD|SEM|NUCLEUS|EVENT [2
[ SEM [ NUCLEUS [ EVENT ] ] ] | | | LRED P |
RSTR SEM|NUCLEUS [ ARG ]

The schema distinguishes a nucleus within the semantics from a set of restrictions on

5Kasper’s treatment is particularly attractive in that it requires no idiosyncratic assump-
tions about syntactic structure; in particular, it is compatible with there being multiple
adjuncts within a single (nonrecursive) VP node. The following contains (a simplification
of) the relevant specifications (from Kasper 1994, p.63, which contains full explanation and
justification):

NUCL
CAT|HEAD|MOD|SEM | RSTR
CONTEXT|REF-TIME

NUCL

i
gestern PRED Cs
SEM RSTR [3]U THEME
GOoAL ([4|yest’([4],[5]))

CONTEXT|SPEECH-TIME

}

The features SEM|NUCL “semantic nucleus” and HEAD|MOD|SEM|NUCL are coindexed to
require that the semantics of the adjunct (which is to be passed on as the semantics of the
adjunct-head phrase) be taken from the head it modifies. The effect is that the semantics
of head-adjunct constructions involving this class of adverbials is determined by the head.
The contribution of the adjunct itself is to contribute to the set of restrictions associated
with this semantics. This may be found in SEM|RSTR, in the right side of the set-union
operator, where it is specified that the time ‘@ (reference time of the head semantics) fall
within the day before speech time. This sort of specification is itself a further example of
the sort of noncompositionality possible in this approach.
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its arguments. Within a head-adjunct phrase (involving the class of adjuncts under
discussion), the head determines the semantic nucleus of the phrase and contributes
whatever restrictions it has accumulated, while the adjunct adds its own restriction.
Figure 3 illustrates how this scheme is applied to the case of the frame adverbial on
Wednesday.

In the illustration in Figure 3, the head-adjunct phrase decided on Wednesday
would have a head semantics consisting of a nucleus specifying an event of decid-
ing, and a restriction arising from tense that the event be past. It would have an
adjunct semantics specifying that the event occur on (a contextually determined)
Wednesday. The phrasal semantics has the same nucleus as the head and contains
all the daughters’ restrictions.

The purpose of this section has been the illustration of the advantage of the
added freedom which contraint-based semantics allows as compared to strictly com-
positional treatments of syntax-semantics interaction. For further applications of

FORM decide on Wed.

PRED decide-on’
NUCL EVENT
THEME [2
SEM
PRED [¢
RSTR [5]U ¢ [6] | THEME
GOAL [4]w
VP FORM on Wed.
.. .MOD|SEM|NUCL|EVENT [3]
PRED [4
SEM[6] | THEME
GOAL [4]wW
A% PP
decide P NP
[ FORM decide h
HEAD|CAT PP-on
SUBCAT SEM [ GOAL ]
PRED decide-on’
EVENT on Wednesday
NUCL[1]
SEM SOURCE FORM on
THEME [2] PRED L rorM Wed
- RSTR 5] e SEM [6] | THEME [ OR ed. ]
SEM [4]w
GOAL

SUBJ-SEM

Figure 3: A sketch of the semantics of the VP decide on Wednesday, as it
is derived from (incidentally) compositional specifications. The semantics of

the verb decide includes a set of restrictions to which the adjunct semantics is
added.
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constraint-based semantics, the reader is referred to the references in this section,
but also to Dalrymple et al. 1991, which contains an interesting treatment of ellipsis
which makes essential use of constraint-based description.

3 “Noncompositional” Processing

In this section we interpret “selectional restrictions” semantically, exploiting the
fact that they can be used to reduce the number of parses available.® Once one
takes this step, it is natural to try to take advantage of such information early
in processing—maximizing the efficiency benefits, and plausibly modeling human
language users more faithfully in this respect as well. Taken to its extreme, this
means that semantic processing must allow information flow along noncompositional
lines. This does NOT reject the grammatical thesis that syntax-semantics dependence
is ultimately compositional, only that processing is organized along the same lines.

COMPOSITIONALITY concerns the relation between syntax and semantics—i.e.,
(static) linguistic structure, not processing. Nonetheless, the compositional view
often extends to a natural and popular procedural interpretation, that of bottom-
up processing. This is a natural interpretation because compositional semantics
specifies the semantics of phrases via functions on the semantics of their daughters.
It is natural to evaluate arguments before attempting to apply functions to them
(although partial and so-called “lazy” evaluation schemes certainly exist) (see, e.g.,
Kahn 1987). We will use the term BOTTOM-UP EVALUATION for semantic process-
ing which proceeds bottom-up in the analysis tree, evaluating arguments and then
functions applied to them along the lines suggested by compositional grammatical
theory. We will therefore try to reserve the term COMPOSITIONAL for theses about
grammatical structure (or the formulation of hypotheses about this)—the title of
the present section notwithstanding. But the general subject will be processing, so
if a bit of metonmymy creeps into the discussion, it should not be overly distract-
ing. To forestall misunderstanding, let us reiterate immediately our position that
processing considerations may not be conflated with linguistic ones. That fact that
purely bottom-up processing is less than optimal is completely consistent with there
being a compositional syntax-semantics interface.

For the purposes of the present section, we may view semantic interpretation
as a form of PARSING, i.e., computing the (set of) structure(s) which a grammar
associates with a string. In syntactic parsing the relevant structures are syntax
trees, while in semantic processing the structures are semantic representations—
normally, expressions in a logic designed for meaning representation. It is possible
to separate syntax and semantic processing, in which case one views semantic pro-
cessing as inputing, not strings, but syntactic analyses. This division of labor is
normal, practical, and—depending on assumptions about the temporal organization
of the putative processes—possibly tenable from computational and psychological

6This has been common practice in computational linguistics at least since Wilks 1975.
But see Gale et al. 1992 for arguments that some such selection is not semantic.
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viewpoints as well. This section will not simply assume this, however. The ideas
advanced here are independent of whether there are distinct process for syntax and
semantics.

Bottom-up processing is only one of many possiblities, not distinctly superior
either by virtue of its technical properties or by its fidelity to the psycholinguistic
facts.” In fact, pure bottom-up parsing is clearly poor both in efficiency and as a
psychological model (see previous note). It is easy to see why this should be, since
bottom-up processing restricts the amount of information which is accessible when
forming and prioritizing hypotheses. Top-down information can be useful.

INCREMENTAL PROCESSING computes analyses while inputting strings one word
at a time, in the order in which they’re read (the left-right order in text). It en-
joys wide acceptance in psycholinguistic research, and it is useful in many applica-
tions, since it exploits information as quickly as it is available. The intuitive notion
of ‘incremental procesing’ requires some sharpening: after all, almost all parsing
algorithms—including bottom-up ones—read input from left to right. Schabes 1990
suggests that procedures be regarded as incremental when they obey the VALID
PREFIX PROPERTY:

If the input tokens a; ...a; have been read then it is guaranteed that
there is a string of tokens b ...b,, (b; may not be part of the input)
such that the string a;...agb1 ... by is a valid string of the language.
(Schabes 1990, p.54)

That is, an incremental procedure must reject a string as soon as there is no valid
continuation. This seems like a good definition; in particular, purely bottom-up and
purely top-down parsing algorithms certainly do not count as incremental according
to this definition, which is just as it should be.

We turn now to an illustration of how the computation of partial constraints on
semantics can be useful in incremental evaluation. This should also further serve to
clarify the distinction between incremental and nonincremental processing. For this
purpose, we provide a brief feature-based treatment of selectional restrictions (see
Nerbonne 1992b for further detail).

The word chair is ambiguous, possibly referring to a piece of furniture but also to
the head of an organization, as in the chair of the committee. In a sentence such as
The chair decided on Mary, we spontaneously understand only the reading of chair
as human—or, at least as a mental agent.? It is trivial to write feature specifications
which enforce the requirement that subjects of decide be things capable of mental

"It would far exceed the bounds of this contribution to attempt to review the range of
possibilities or issues in parsing. Some recent surveys are useful. Sikkel 1993 reviews the
formal properties of a very wide range of parsing algorithms, Bouma and van Noord 1993
reviews the practical performance of a range of algorithms, controlling for grammar type,
and Mitchell 1994 reviews the psycholinguistics of human parsing.

8We ignore here and henceforth the status of the problematic “reading” in which a
decision is attributed to a piece of furniture. Nothing crucial seems to hinge on it. There
is a tricky issue associated with the exact representation of the deviant “reading”, however.
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agency. We simply introduce a feature, e.g. M-AGT and then require that subjects
of decide be compatible with this feature:

FORM decide

PRED decide-on’
SEM|NUCL

SOURCE|M-AGT +
Similarly, we shall wish to differentiate the readings of chair using this same feature:

FORM chair

PRED furn-for-sitting’ PRED org-head’
SEM|NUCL ,
THEME|M-AGT — THEME|M-AGT +

(We again employ set braces to denote a disjunction of potential readings, as in the
first example in Section 2 above.) The SOURCE role of decide is thus incompatible
with the THEME role of chair in the furniture reading—the two values do not unify
and therefore cannot be identified. This is sufficient to guarantee that any attempt
to use use chair as the subject of decide will force the reading in which the chair
is a potential mental agent. The other reading is simply unavailable given these
specifications (see previous note for discussion).’

We are deliberately vague about the details of the grammatical specifications
that necessitate the identification of the subject’s features and those of the verb’s
subject specification, since these vary rather a lot depending on one’s grammatical
assumptions. For the sake of concreteness we sketch how the identification would
be effected in HPSG (Pollard and Sag 1994). In HPSG the subcategorization prin-
ciple would ensure that the VP would assume the undischarged (subject) valence
requirements of its lexical head V, and a grammatical rule (Schema 1) would allow
the sentential node only where the NP could be identified with the VP’s subject
specifications. The relation between the NP and its head N is analyzed variously,
and surely not many researchers would simple identify the semantic specifications of
the two (preferring perhaps to view the semantics of the N as a predicate, and that
of the NP as a generalized quantifier). But that is not essential, only that the sortal
information associated with the noun somehow continue on to the NP, and that this
be required to unify with the verb’s subject specifications. In the examples below
we assume that such a requirement is enforced without providing the specifications
on rules, etc., which would effect it.

Suppose it is a genuine reading, and therefore something which should be accounted for
linguistically. Then it would seem wrong to provide a linguistic account of its ill-formedness,
as we are about to do. We do not simply embrace this conclusion, because it seems equally
plausible that what happens here is that the “normal” linguistic construal of furniture as
non-agentive is put aside. A deeper reason for not caring whether this attribution is, strictly
speaking, linguistic, is that we shall want to represent all the information need to support
linguistic processing, and if this leads us into borderline areas, so be it.

9The treatment suggested above may be extended to be compatible with the existence of
a complex hierarchy of sorts of the kind found in knowledge-representation systems. Some
further details may be found in Nerbonne 1992b, but we shall omit them here.
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FORM decide ]

PRED decide-on’
SEM|NUCL [ SOURCETM-AGT 4]

The ' 5 6

FORM chair

[ PRED furn-for-sit’

THEME [1][M-AGT —]

SEM|NUCL PRED org-head’ on Mary
THEME[1][M-AGT +]

Figure 4: In (pure) bottom-up processing, no parent node is processed until
all of its daughters are. The coindexing noted as ‘@ is compatible only with
the second, lower construal of the word chair. In bottom-up processing the
alternative, incompatible reading cannot be noted (and rejected) until the
sentence level (given standard assumptions about constituent structure). The
traversal indicated above by the numerical node annotations is the optimally
incremental bottom-up traversal of the example sentence The chair decided on
Mary. Since it is effectively the sentence node at which subject-verb agreement
is enforced, including agreement of semantic selectional restrictions, there is
no way to reject the senseless reading until the entire sentence is processed.
Given the strong preference for right-branching structures in grammar, purely
bottom-up processing can have no account of incremental understanding.

The purpose of developing this (perhaps overly brief) treatment of selectional
restrictions is to provide an example to illustrate the consequences of some assump-
tions about semantic processing. The incompatibility of the furniture reading of
chair with the mental agency required of subjects of decide must be enforced in any
correct processing scheme—but in incremental schemes, it must be enforced at the
point at which the word decide is encountered.

Figure 4 illustrates why purely bottom-up processing cannot be incremental (at
least for standard grammars).

Since the meaning of a phrase depends on its daughters’ meanings (composi-
tionality), there cannot be a (final) computation of phrasal meaning before the all
the daughters’ meanings have been processed. One could imagine an argument for
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bottom-up evaluation proceeding from lingistic compositionality in this way. But
several escape routes open before this conclusion is reached. The two most promi-
nent ones are (i) currying and (ii) using partial specifications. If one curries an
n-place function, one expresses it as a one-place function whose values are n-1-place
functions. Thus, even if the value of the function cannot be determined in general,
there will be circumstances in which the curried function can usefully be applied. In
this paper we shall focus on the other possibility, however, that of using the partial
specifications which are the trademark of feature-based theories. Thus, even though
we cannot derive a complete semantics for a sentence before processing the entire
VP, we shall be able to derive some properties of the sentential semantics early.
In particular, we will be able to exclude some hypotheses about subject meanings
based only on the verb—without waiting for the VP meaning to be computed. (We
could in a parallel way illustrate how some hypotheses about verb meaning may
be excluded on the basis of subject meaning, but this would add little.) Thus the
programmatic point of this section is that computation with partial descriptions of
semantics—as is common in feature-based theories—provides a basis for explaining
the possibility of incremental understanding.

Steedman 1987 (and elsewhere) and Haddock 1988 have championed an approach
to incremental interpretation which allows processing to be both incremental AND
bottom-up. This approach has come to be known as FLEXIBLE CATEGORIAL GRAM-
MAR, (hence: flexible CG) and an illustration of its application to our example may
be found in Figure 5.19 The key to Steedman’s solution lies in the wholesale aban-
donment of standard assumptions about constituent structure (see example), which
Steedman takes to be rigorously left-branching in order to reconcile bottom-up and
incremental processing. Since the syntax is completely left-branching, EVERY ini-
tial segment is a constituent. In fact, as Steedman 1987 argues, under the “strong
competence hypothesis” of Bresnan 1982—the assumption of parallelism between
linguistic structure and processing, the left-branching structure would appear to be
necessary.

The flexible CG analyses have attracted attention because of their application
to difficult problems of the grammatical analysis of coordination, including gap-
ping and right-node raising (Steedman 1990). Here they have had some success,
especially compared to other frameworks. But several aspects of the overall po-
sition remaining unconvincing. First, the “flexibility” promised by the approach
cuts both ways—even if it seems appealing to posit alternative constituent struc-
tures for coordination (which motivated a great deal of the work in question), it
seems difficult to accept the wholesale ambiguity in constituent structure which is
the consequence of the flexibility. It is trivial to find sentences in which some initial
segments would constitute ridiculous constituents (the node marked ‘?B’ in Figure 5
is only suggestive—much less plausible examples are readily constructed). The pos-
tulation of such constituents is incompatible with most syntactic theory, which relies
crucially on constituent structure to account for a great deal of syntax—e.g., word

10See Jacobson (this volume) for more on semantics and categorial grammar.
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1 Q @ 2 decided

The chair

Figure 5: The flexible categorial grammar solution to incremental, bottom-up
processing. Since no parent node is processed until all of its daughters are, the
scheme indicated by the numerical traversal annotations is bottom-up. Since
the grammar is left-associative, the processing can also be incremental. This
solution is formally sound, but its linguistic assumptions are heterodox. It is
safe to say that no evidence exists for most of the novel constituents posited
on the left-associative view. If, on the other hand, the view is tenable, it indi-
cates that constituent structure—the primary explanatory device in syntax—is
relatively insignificant.
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order, long-distance dependence, island constraints, restricitions on anaphoric rela-
tions (“binding theory”). For most syntacticians, constituent structure is the pri-
mary explanatory mechanism, so many syntactic explanations are lost if constituency
is simply left-associative. Second, even within CG, the use of calucli flexible to this
degree is controversial: Houtman 1994, pp.74-90 devotes most of a chapter to “Ar-
guments against Flexibility” (focusing his attack, however, not on the combinatory
grammars which Steedman advocates, but rather on Lambek-style CG). It is con-
troversial not only because it fails to account for the coordination phenomena as
generally as it was originally claimed to (Houtman 1994), but also because it leads
to a counterintuitive collapse of categories in the analysis of adjuncts (“Dekker’s
paradox”, discussed by Houtman, pp.85-89). Third, and perhaps less directly ap-
plicable to the point at hand, the flexibility in this approach is now overused. Joshi
1990 notes that “flexibility” is variously deployed, not only to enable incremental,
bottom-up processing, but also to allow constituent structure to match intonational
grouping, and to allow constituent structure to match coordination. These three
requirements are certainly not simultaneously satisfiable. (This point is less directly
applicable because it would be conceivable to focus only on the left-associative treat-
ments, ignoring other applications of flexibility. But this would rob flexible CG of
its most impressive success, in the analysis of coordination.)

Shieber and Johnson 1993 contains a rather different view of the work on in-
cremental understanding in flexible CG, criticizing that its conclusions follow only
under the implicit assumption of synchronous computation of semantics. They claim
that incremental interpretation follows not from grammatical structure (the flexi-
ble CG position), nor even from the control structure of particular algorithms (the
position to be illustrated below), but rather from the asynchronous nature of un-
derstanding. While we find this alternative interesting psychologically, we take it
that an algorithmic solution remains of interest, at least technically. We turn to this
now.

It seems best not to explain incremental understanding on the basis of grammat-
ical structure, but rather to ask how might incremental understanding be possible
if grammatical structure is roughly as we know it (in fact, mostly right-branching).
Given our construal of understanding as parallel to parsing, we have a rich choice of
incremental processing algorithms. To illustrate how the constraint-based view of
semantics processing enables incremental semantic evaluation, we need only choose
one. A popular choice for incremental parsing is (predictive) LEFT-CORNER (hence:
LC) parsing. It is popular because it makes use of both bottom-up (lexical) and
also top-down (grammatical) information.

An LC parser may be viewed as a process which constantly attempts to extend
the analysis of an initial segment (“left corner”) of a string.!! The LC parser begins

U Pereira and Shieber 1987, pp.178-82 describes a nonpredictive LC parser. Cf. note 6 for
general literature on parsing. The parser and grammar (slightly modified for presentation)

described in this section were implemented by Ronald Klopstra in his Groningen Master’s
Thesis (Klopstra 1993).
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with the assumption that the empty string has an analysis as the initial segment of
S (the category to be found), and then reads words. After reading each word, it fills
in as much of the analysis as is necessary to verify that there is a way of filling in
the analysis tree from S to the segment, i.e. that the initial segment is possible in
the language. The algorithm is easiest to understand as a mutual recursion between
the following pair of routines:

proc parse(:nonterminal-category);
begin
read next word W;
CAT «— CAT(W);
if CAT = «
then SUCCESS
else if O-1¢(CAT,q)
then expand-1c(CAT,a)
else FAIL
endif
endif

end parse

proc expand-1c(CAT,goal)
begin
for-each rule § — CAT vy
if O-le(CAT,goal)
then parse(7y);
if end-of-input
then SUCCESS
else expand-1c(f,goal)
endif
endif
end-for-each
end expand-lc

We omit the definition of the relation ‘G-lc¢’, which holds between a top category and
a bottom category intuitively just in case there is path from the top to the bottom
along the leftmost categories in (the right-hand) sides of grammar rules. Thus, in
a grammar with S — NP VP, NP — Det N, the relation would hold of the pair
(S,Det), and trivially of the pairs (S,NP) and (NP,Det).

To appreciate the workings of the LC parser, let’s fill out the grammar just
mentioned by adding the usual VP — V NP rule, and the lexical items the (Det),
saw (V), and child and toy (N). Then the table below traces the execution of the
LC parser on this grammar on the input string The child saw the toy. We seek an S,
and therefore invoke parse(S). The table below provides a trace of the execution:
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parse expand-lc

step reader a word CAT | CAT goal rule
1 1 The child saw the toy S The Det
2  The 1 child saw the toy Det S NP — Det N

3 The 1 child saw the toy N child N

4 The child 1 saw the toy NP S S — NP VP
5  The child 1 saw the toy VP saw Vv
6  The child saw 1 the toy A% VP VP -V NP

T The child saw 1 the toy NP the Det

8  The child saw the 1 toy Det NP NP — Det N

9 The child saw the 1 toy N toy N

The table fills in cells only where the procedure is active. Thus, at Step 1, values
are supplied for the local variables in the parse routine, but not in the routine
expand-1c, which has not been called. At Step 2, expand-lc is executing so its
variables are filled in, and parse’s variable are omitted.

The table provides snapshots of the execution of the routines. As parse is first
called (with argument S), nothing has been read. We picture the sentence being
processed as having a pointer indicating how much has been read. So initially, the
pointer is before the first word:

1 The child saw the toy

This is reflected in the table. Since parse reads the first word, the pointer is
advanced before the following word is read. For this reason, the reader in the second
row of the table shows the pointer after the first word. And in general, whenever
parse executes, there is an advance of the pointer.

Once the word has been read (The), and its category determined (Det), parse
notes that there is no match between the category determined and the goal a (bound
to S). Therefore, expand-left-corneris called (line 2 of the table), with parameters
CAT and goal bound to Det and S. expand-1c hypothesizes about rules with LC
Det (CAT), and we show the result of hypothesizing with the rule NP — Det N.
Since Det is a possible left-corner of S, parse is recursively called (line 3), now with
the goal parameter bound to N. In this case, the category matches, and control is
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passed back to expand-1c, which calls itself, this time with arguments NP and S.
Given this much explanation, the rest of the trace should be fairly straightforward
to follow. The rule column of the expand-1c part of the table is interested because
it is there one can see how the structure for the initial segment is being built up as
the parse progresses.

This procedure is indeed incremental in the relevant sense—if there is no pos-
sible continuation of an initial segment, processing will fail immediately, without
continuing. This can be verified by attempting to execute the procedures on such
input, for example, the string The the child saw ... This would procedure exactly
as the execution in the table, but would fail at step 3—on determining that Det is
not a possbile left corner of N.!2

Figure 6 shows an application of a left-corner traversal to the sentence used as
an example of the utility of incremental processing. To make the illustration water-
tight, the LC routines above should be modified to process not only the category
information on nodes, but also the feature decorations associated with them. It is
essential that these too be checked as the parse progress. If this is done, then the
value of the subject’s feature [SEM|NUCL|THEME|M-AGT =] will be constrained to be
identical both to the verb’s subject specification, which in turn will be lexically con-
strained to be + in the case of decide, just as in Figure 4. This filters the furniture
sense of chair from further consideration.

As long as the feature specifications associated with the rules are being checked
as the rules are, then then objectionable analysis must be detected at the time the
verb is read (more exactly, once its feature specifications are processed).

4 Conclusions

While linguistics characterizes grammar—the relation between meaning and form,
computational linguistics focuses on processing, e.g., the algorithms and data struc-
tures needed to compute meaning given form (parsing), or form given meaning
(generation), etc. Of course work in one field may have ramifications in the other.
Given this division of labor, it is natural to view grammar as a set of con-
straints on the meaning-form relation—whose computation is to be considered inde-
pendently. The present paper focuses on consequences of this view for the syntax-
semantics interface and the processing of semantic information. The interface topic
is, properly speaking, linguistic, and was developed to illustrate the dialectic be-
tween grammar and processing which computational linguistics encourages. The
processing topic is computational, and the present contribution advocates an ap-
proach which minimizes linguistic assumptions. In particular, it is argued that we

12The careful reader will not that this will end one execution path, using the hypothesis
that the initial The is licensed by the NP — Det N, and that in principle all the rules
may be tried. But of course none of the other rules have Det as a leftmost category on the
righthand side. So this does indeed end the parse (in failure).
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decided 8 9

on Mary

Figure 6: In left-corner processing, a parse is sought by continually seeking to
extend the analysis of an initial segment of the string to be parsed (prefix).
This leads to a complex traversal, allowing information to flow both bottom-up
and top-down (see text for details). The processing is incremental in Schabes’s
sense, since impossible prefixes must be recognized as such. The traversal indi-
cated above by the numerical node annotations is the record of the first visits
to the node by the parsing traversal. Since subject properties are available for
computation when the verb is visited, subject-verb agreement can be enforced
at the earliest possible moment, including agreement of semantic selectional
restrictions. Thus senseless readings may be rejected even before the entire
sentence is processed. Given the strong preference for right-branching struc-
tures in grammar, (somewhat) elaborate processing models seem necessary.
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need not assume that grammar is left-associative in order to account for incremen-
tal understanding. This can arise using standard processing techniques, as long
as semantic processing consists of collecting and resolving constraints on semantic
representation.
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