
Dimensionality Reduction with PCA

Ke Tran

May 24, 2011



Introduction
Dimensionality Reduction

PCA - Principal Components Analysis
PCA

Experiment
The Dataset

Discussion

Conclusion



Why dimensionality reduction?

I To discover or to reduce the dimensionality of the data set.

I To identify new meaningful underlying variables.

I Curse of dimensionality: some problems become intractable as
the number of the variables increases.
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PCA - Basic Idea

I Projection

I Can be used to determine how many real dimensions there are
in the data.

Figure: The data forms a
cluster of points in a 3D
space

Figure: The covariance
eigenvectors identified by
PCA are shown in red.
The plane defined by the 2
largest eigenvectors is
shown in light red.

Figure: If we look at the
data in the plane identified
by PCA, it is clear that it
was mostly 2D



Linear Transformation

1. Let X be the original data set, where each column is a single
sample, X is an m × n matrix

2. Let Y be another m × n matrix related by a linear
transformation P

3. X is the original recorded data set and Y is a new
representation of that data set.

PX =

p1
...
pm

 [x1 · · · xn] Y =

p1x1 · · · p1xn
...

. . .
...

pmx1 · · · pmxn


1. What is the best way to re-express X?

2. What is a good choice of basis P?



Variance and the Goal

What is the best way to re-express X?

Figure: The signal and noise variances
σ2
signal and σ2

noise are graphically
represented by the two lines subtending
the cloud of data

I Signal-to-noise ratio (SNR)

I SNR =
σ2
signal

σ2
noise

I A high SNR indicates a high
precision measurement, while a
low SNR indicates very noisy
data.



Variance and the Goal

Figure: A spectrum of possible redundancies in data from the two
separate measurements r1 and r2. The two measurements on the left are
uncorrelated because one can not predict one from the other. Conversely,
the two measurements on the right are highly correlated indicating highly
redundant measurements.



Assumption behind PCA

1. Linearity

2. Large variances have important structure.

3. The principal components are orthogonal: pi × pj = 0



PCA algorithm

1. Select a normalized direction in m-dimensional space along
which the variance in X is maximized. Save this vector as p1.

2. Find another direction along which variance is maximized,
however, because of the orthonormality condition, restrict the
search to all directions orthogonal to all previous selected
directions. Save this vector as pi

3. Repeat this procedure until m vectors are selected.

The resulting ordered set of p’s are the principal components.



PCA algorithm - Computational Trick

1. Compute covariance matrix Cx , CX ≡ 1
nXX

T

2. We select the matrix P to be a matrix where each row pi is an
eigenvector of 1

nXX
T

3. If A is a square matrix, a non-zero vector v is an eigenvector
of A if there is a scalar λ such that Av = λv

4. Reduction: there are m eigenvectors, we reduce from m
dimensions to k dimensions by choosing k eigenvectors related
with k largest eigenvalues λ



How to choose k?

1. Proportion of Variance (PoV) explained
λ1+λ2+···λk

λ1+λ2+···λk+···+λm

when λi are sorted in descending order.

2. Typically, stop at PoV ≥ 0.9

3. Scree graph plots of PoV vs k , stop at “elbow”



Scree graph



Yale Faces B - The Dataset

standard face recognition test data set containing

I 10 subjects

I in 585 different positions and lighting conditions each

→ database of 5850 images

I representation: Matlab type

I image dimension: 30 x 40

→ image representation: 1200-dimensional vector

I split randomly into training and test set



Yale Faces B - The Dataset

Figure: Yale Faces B: selected sample pictures for one test person



SVM experiment

Procedure:

I again: random division of Yale Faces B into training and test
set:

I training set: 1800 images of 10 classes
I test set: 4050 (remaining) images
→ 30 % training, 70 % testing



Eigenfaces or Eigenvectors

1. Using PCA reduces to 10 dimensions

2. Classification with SVM: 97,5 % correctness
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Figure: 2-D Visualization of data encoded into Eigenfaces



When does PCA fail?

I non-linear data

I non Gaussian distribution

I variance due to error



PCA or not?

1. depend on the problem

2. depend on computational resource

3. there are many better methods for dimensionality reduction

PCA: 97,5 % correctness
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Figure: Visualization of 2-D projection
onto Eigenfaces showing linear
separability

Autoencoder: 99,8 % correctness
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Figure: Comparison: Visualization of
2-D autoencoded data showing better
linear separability
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Questions?

Thanks!
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