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What Is PCA?

• Dimensionality reduction technique
• Aim: Extract relevant info from confusing data sets
• Similar to Factor Analysis, SVD
• Used in various domains (neuroscience, comp graphics,

sociolinguistics, dialectology, . . . )
• Employs matrix algebra concepts



Dim Reduction

• When numerous variables involved
• Question whether they have something in common
• Are they independent?
• Or do they measure the same ‘underlying’ variable?
• To what extent a variable contributes to the underlying

one?
• Aim: Reduce number of variables in a meaningful way



A Toy Example

X1 X2 z1 z2
7.0 10.0 −0.81497 −0.89393

10.0 12.0 −0.06653 −0.4749
12.0 15.0 0.43243 0.15364
13.0 18.0 0.68191 0.78219
16.0 21.0 1.43036 1.41073
14.0 16.0 0.93139 0.36316

6.0 10.0 −1.06445 −0.89393
11.0 13.0 0.18295 −0.26539

6.0 9.0 −1.06445 −1.10344
14.0 21.0 0.93139 1.41073

5.0 7.0 −1.31393 −1.52247
10.0 14.0 −0.06653 −0.05587
17.0 23.0 1.67984 1.82976

5.0 11.0 −1.31393 −0.68441
8.0 14.0 −0.56549 −0.05587

Table: Measurements (X ) and
standardized scores (z)

• 15 subjects measured on 2
variables (X1 and X2)

• z facilitate computations
• z =

(
X − X̄

)
/s

• Values seem to correlate...



A Toy Example

−1.0 −0.5 0.0 0.5 1.0 1.5

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

z1

z2

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

• Correlated, r = 0.937
• Perhaps one variable is

enough
• But which one?
• Better to combine both

somehow



Employing PCA

• Attempts to uncover the underlying variable(s)
• New variables called principal components
• Principal components are sorted

• First: max part of variance
• Second: max part of the remaining variance
• . . .

• Scores on PCs should not correlate
• PCs are orthogonal



Employing PCA
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• Like rotating data points to fit
the X axis

• Actually a matrix
transformation

• We may ignore PC2



Some Matrix Algebra...

• We have the correlation matrix R =

[
1.000 0.937
0.937 1.000

]
• We can compute the eigenvalues of the matrix

λ1 = 1.937 λ2 = 0.063

• Notice that sum of λ equals sum of variance (the diagonal)
• Represent ‘contribution’ of the dimensions
• E.g. if λ1 = 2, λ2 = 0, variables would be dependent
• Eigenvalues correspond to eigenvectors, used to transform

the data



Data Transformation
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• Initial data matrix multiplied by eigenvector matrix
• PC values are in different space than initial variables!



A Bigger Example

Grades of students on school courses

X1 X2 X3 X4 X5 X6 X7 X8
Spanish X1 1.00
German X2 0.65 1.00

Maths X3 0.01 0.04 1.00
Physics X4 −0.07 0.13 0.65 1.00
History X5 0.14 0.22 −0.03 −0.34 1.00
English X6 0.78 0.59 0.04 0.21 −0.04 1.00

Chemistry X7 0.14 0.14 0.66 0.50 0.03 0.11 1.00
Geography X8 0.12 0.12 0.32 0.08 0.38 −0.05 0.12 1.00

Table: Correlation matrix

Three groups: {X1, X2, X6}, {X3, X4, X7}, {X5, X8}



Picking Components
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• Calculate the eigenvalues
• Eigenvalue λ ↔ PC
• λ ∼ variance explained by PC
• Keep those larger than 1 or
• Keep those before the ‘elbow’

or
• Keep those for 70% to 80% of

variance (sum of λs)



Contribution of Initial Variables

Variable PC1 PC2 PC3
Spanish X1 −0.439 −0.407 0.057
German X2 −0.438 −0.324 −0.002

Maths X3 −0.353 0.485 −0.139
Physics X4 −0.334 0.452 0.228
History X5 −0.060 −0.221 −0.669
English X6 −0.449 −0.313 0.287

Chemistry X7 −0.375 0.371 −0.070
Geography X8 −0.183 0.072 −0.625

Var explained 32.4% 26.4% 18.4%

Table: Correlations of variables and PCs (loadings)

• Columns are the eigenvectors actually
• 3 groups expected: {X1, X2, X6}, {X3, X4, X7}, {X5, X8}
• But this is not very clear...



Cleaning the Picture: Rotation

Variable PC1 PC2 PC3
X1 −0.597 ∼0.0 ∼0.0
X2 −0.533 ∼0.0 −0.105
X3 ∼0.0 0.601 −0.124
X4 ∼0.0 0.559 0.235
X5 ∼0.0 −0.127 −0.693
X6 −0.591 ∼0.0 0.178
X7 ∼0.0 0.525 ∼0.0
X8 ∼0.0 0.177 −0.630

Table: Correlations after
VARIMAX

• VARIMAX rotation: Maximizes
the variance of loadings per
factor

• Orthogonal rotation of
loadings

• Amount of variance explained
not affected



Assumptions – Limitations

• Linearity – change of basis
• Mean and variance are sufficient (variables normally

distributed)
• Principal components are orthogonal
• Non-parametric method (there is a kernel PCA extension)
• Does not distinguish variance due to error (unlike Factor

analysis)



Application in Dialectology

• Geographic patterns of surnames (Manni et al., 2006)
• List of Dutch surnames (excluding very common and rare)
• Distance matrix of locations with respect to surname

differentiation (Nei measure):

di,j =
∑

s

nsinsj

/(∑
s

n2
si

∑
s

n2
sj

)1/2

nsi : frequency of surname s in location i



Initial Data

Loc `1 `2 · · · `226
`1 0 d1,2 · · · d1,226
`2 d2,1 0 · · · d2,226
...

...
...

. . .
...

`226 d226,1 d226,2 · · · 0

Table: Distance matrix

• Based on 19,910 surnames
• 226 Dutch locations
• Symmetric matrix
• Variables: distance from

locations
• PCA conducted on this matrix



Plot of First Two PCs

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45 46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82
83

84

85

86

87

88

89
90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116
117

118

119

120

121

122

123

124

125

126

127

128

129

130

131
132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194 195
196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213
214

215

216

217
218

219

220

221

222
223

224

225

226

Coord. 1

C
o

o
rd

.
2

North Brabant

Limburg

Northeastern provinces

Northwestern provinces

Zeeland

Fig. 2



Remarks

• Dialect distinction
• Limburg and North Brabant clusters clear
• North/south distinction
• No overlap between NE and NW samples in the swarm

• 2 PCs account only for 30% of variance
• Following PCs clarify more



Conclusions

• Non-parametric method for Dim reduction
• Reduces the variable space
• Often meaningful clusters possible
• Easy to apply
• Be careful with the assumptions
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