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What Is PCA?

Dimensionality reduction technique
Aim: Extract relevant info from confusing data sets
Similar to Factor Analysis, SVD

Used in various domains (neuroscience, comp graphics,
sociolinguistics, dialectology, . ..)

Employs matrix algebra concepts



Dim Reduction

When numerous variables involved

Question whether they have something in common
Are they independent?

Or do they measure the same ‘underlying’ variable?

To what extent a variable contributes to the underlying
one?

Aim: Reduce number of variables in a meaningful way



A Toy Example

Xi Xo Z4 Zo
70 100 —0.81497 —0.89393
10.0 120 —0.06653 —0.4749
120 150 043243  0.15364
13.0 180  0.68191 0.78219
16.0 21.0  1.43036  1.41073
140 160 093139  0.36316
6.0 100 —1.06445 —0.89393
11.0 13.0  0.18295 —0.26539
60 9.0 —1.06445 —1.10344
140 21.0  0.93139 1.41073
50 7.0 —1.31393 —1.52247
10.0 140 -0.06653 —0.05587
170 230  1.67984  1.82976
50 11.0 —1.31393 —0.68441
80 140 —0.56549 —0.05587
Table: Measurements (X) and

standardized scores (z)

15 subjects measured on 2
variables (X7 and X5)

z facilitate computations
z=(X-X)/s
Values seem to correlate...
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Correlated, r = 0.937

Perhaps one variable is
enough

But which one?

Better to combine both
somehow



Employing PCA

Attempts to uncover the underlying variable(s)
New variables called principal components
Principal components are sorted

o First: max part of variance
e Second: max part of the remaining variance
e ...

Scores on PCs should not correlate
PCs are orthogonal



Employing PCA

e Like rotating data points to fit
the X axis

e Actually a matrix
transformation

e We may ignore PC2



Some Matrix Algebra...

0.937 1.000
We can compute the eigenvalues of the matrix

We have the correlation matrix R = [ 1.000 0.937 }

A =1.937 X =0.063

Notice that sum of A\ equals sum of variance (the diagonal)
Represent ‘contribution’ of the dimensions
E.g. if Ay =2, Ao = 0, variables would be dependent

Eigenvalues correspond to eigenvectors, used to transform
the data
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Data Transformation
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e Initial data matrix multiplied by eigenvector matrix
e PC values are in different space than initial variables!



A Bigger Example

Grades of students on school courses

Xi X X3 Xy Xs Xs X7 Xg

Spanish X 1.00

German X 0.65 1.00

Maths X3 0.01 0.04 1.00

Physics X, | —0.07 0.13 0.65 1.00

History X5 0.14 022 —-0.03 -0.34 1.00

English  Xg 0.78 0.59 0.04 0.21 —0.04 1.00

Chemistry X7 0.14 0.14 0.66 0.50 0.03 0.11  1.00
Geography  Xg 0.12 0.12 0.32 0.08 038 -0.05 0.12 1.00

Three groups

Table: Correlation matrix

X4, Xo, X}, {Xa, Xa, X7}, { X5, X}



eigenvalues
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Picking Components

Calculate the eigenvalues
Eigenvalue A — PC

A ~ variance explained by PC

Keep those larger than 1 or

Keep those before the ‘elbow’

or
— ‘ ° e Keep those for 70% to 80% of
4 s 6 71 8 variance (sum of \s)



Contribution of Initial Variables

Variable PC4 PCs PCs
Spanish  X; | —0.439 —0.407 0.057
German X, | —0.438 —0.324 —0.002

Maths X3 | —0.353 0.485 —0.139
Physics X; | —0.334 0.452 0.228

History Xs | —0.060 —0.221 —0.669
English Xs | —0.449 —0.313 0.287

Chemistry X7 | —0.375 0.371  —0.070
Geography Xg | —0.183 0.072 —0.625
Var explained 32.4% 26.4% 18.4%

Table: Correlations of variables and PCs (loadings)

e Columns are the eigenvectors actually
e 3 groups expected: {Xi, Xo, Xe}, {Xs, X4, X7}, {Xs5, Xz}
e But this is not very clear...



Cleaning the Picture: Rotation

Variable PC4 PC» PC3
X -0.597 ~0.0 ~0.0
Xo —0.533 ~0.0 —0.105
X3 ~0.0 0.601 —0.124
X4 ~0.0 0.559 0.235
X5 ~0.0 —-0.127 —-0.693
Xs —0.591 ~0.0 0.178
X7 ~0.0 0525 ~0.0
X ~0.0 0.177 —0.630

Table: Correlations after

VARIMAX

e VARIMAX rotation: Maximizes
the variance of loadings per
factor

¢ Orthogonal rotation of
loadings

o Amount of variance explained
not affected



Assumptions — Limitations

Linearity — change of basis

Mean and variance are sufficient (variables normally
distributed)

Principal components are orthogonal
Non-parametric method (there is a kernel PCA extension)

Does not distinguish variance due to error (unlike Factor
analysis)



Application in Dialectology

e Geographic patterns of surnames (Manni et al., 2006)
e List of Dutch surnames (excluding very common and rare)

e Distance matrix of locations with respect to surname
differentiation (Nei measure):

1/2
dy =S many/ (DAY )
S S S

ng;: frequency of surname s in location J



Initial Data

Based on 19,910 surnames

Loc ‘ 44 Ly loog
& 0 dip oo dios e 226 Dutch locations

£ o 1 0 o

Symmetric matrix

Variables: distance from
locations

PCA conducted on this matrix

[ ]

loog | Ooos 1 Ooog 2

Table: Distance matrix
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Plot of First Two PCs
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Remarks

e Dialect distinction

¢ Limburg and North Brabant clusters clear
¢ North/south distinction
o No overlap between NE and NW samples in the swarm

e 2 PCs account only for 30% of variance
¢ Following PCs clarify more



Conclusions

Non-parametric method for Dim reduction
Reduces the variable space

Often meaningful clusters possible

Easy to apply

Be careful with the assumptions
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