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Thomas Bayes

(British mathematician, c. 1702 — 7 April 1761)

of Bayes.

Figure: Signature

Figure: The correct identification
of this portrait has been
questioned
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Thomas Bayes

(British mathematician, c. 1702 — 7 April 1761)

of Bayes.

Figure: Signature

_ P(DIH)P(H)
P(HID) = ==y —
Figure: The correct identification Figure: Another signature
of this portrait has been
questioned
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Two Schools of Views

Frequentist

P(x) ~ 2x

ne

Summary

an event's probability is the limit of its relative frequency in a

large number of trials.

a long-run fraction: P(x) = limp, o0 7
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Two Schools of Views

the Frequentist

o P(x) ~ I

ne
e an event's probability is the limit of its relative frequency in a
large number of trials.

e a long-run fraction: P(x) = limp, o0 7=

Bayesian

o P(H|D) = 7"(9/!37}3')’(”)
e the probability is a measure of a state of knowledge.

e a degree of believability.
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e Digital text

e Sentence segmenter
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Application

Calculation and Estimation

the average sentence length of a book
calculation

e Digital text

e Sentence segmenter

estimation

o Frequentist

e Bayesian
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the Frequentist Approach

the Catcher in the Rye, J. D. Salinger, 1951

That's the thing about girls{5}. Every time they do something
pretty, even if they're not much to look at, or even if they're sort of
stupid, you fall half in love with them, and then you never know
where the hell you are{3s}. Girls{1}. Jesus Christ{2}. They can
drive you crazy{s}. They really can{s}.
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the Frequentist Approach

the Catcher in the Rye, J. D. Salinger, 1951

That's the thing about girls{5}. Every time they do something
pretty, even if they're not much to look at, or even if they're sort of
stupid, you fall half in love with them, and then you never know
where the hell you are{3s}. Girls{1}. Jesus Christ{2}. They can
drive you crazy{s}. They really can{s}.

Frequentist

e 5 sentences, with length [5, 38, 1, 2, 5, 3]

° Sentral Limit Theorem: as n increases, ,
Xnp=Sp/n= (Xt +--Xp)/n~ N(u, %)
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the Frequentist Approach

the Catcher in the Rye, J. D. Salinger, 1951

That's the thing about girls{5}. Every time they do something
pretty, even if they're not much to look at, or even if they're sort of
stupid, you fall half in love with them, and then you never know
where the hell you are{3s}. Girls{1}. Jesus Christ{2}. They can
drive you crazy{s}. They really can{s}.

Frequentist

e 5 sentences, with length [5, 38, 1, 2, 5, 3]

° gentral Limit Theorem: as n increases, ,
Xnp=Sp/n= (Xt +--Xp)/n~ N(u, %)

e Frequentist estimation: u =9.0,0 = 35.0 %/mmsmf
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the Bayesian Approach

the prior knowledge of sentence length?

SENTENCE LENGTH DISTRIBUTION OF TOTAL INMATE POPULATIO?
AS OF JUNE 30, FISCAL YEARS 2004 - 2008
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the Bayesian Approach

the prior knowledge of sentence length?

Search "sentence length distribution

SENTENCE LENGTH DISTRIBUTION OF TOTAL INMATE POPULATION
AS OF JUNE 30, FISCAL YEARS 2004 - 2008

SeNTENCE LENGTH CEPIT T TT
¢ e b e
 ortess o ool 0
M Dy 1 Ver ré o o
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e — I
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Figure: Sentence
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the Prior Knowledge of Sentence Length

log-normal distribution

Introduction
[e]e]
[o]e]

e Ref: Contributions to the Science of Text and Language:
Word Length Studies and Related Issues, By Peter Grzybek

e Sentence length has a right skewness. It cannot be
approximated by normal distribution. Thus log-normal
distribution is proposed and testified.

Figure: Normal and log-normal distribution
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the Problem Rephrased

P(X|p)P(p
P(u|X) = (P\/())Q(A)

e P(X|u): observation in normal distribution.

e P(u): prior knowledge in log-normal distribution.
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the Problem Rephrased

P(X|p)P(p
P(u|X) = (P\/())Q(A)

e P(X|u): observation in normal distribution.

e P(u): prior knowledge in log-normal distribution.

if P(1) oc logN(p1, 02), then P(tijog) o< N(t, 02)
1
o P(Xioglttiog) o< efzaT/n(X’%*“)2

1

® 'D(Mlog) x e 22 :

(u—m)

e The posterior distribution will also be normal.
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the Posterior Probability

’D(M/og‘xlog) X ’D(Xlog|lu’log)'D(/Llog) X
o m+52X
siz Xiog—1)? o= 32 (1=m)? = 55202,y pzge o

e
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the Posterior Probability

'D(Mlog‘xlog) X ’D(Xlog|lu’/og)'D(M/og) X
o' m+s< X
720252/1-024—52)('“4 ;-Fs g )2

_ﬁ(xlog_:“')ze %(# m)

e xX e

Plug in the sample mean, we get the posterior mean and variance:
2 —_ 2
(’TerszX/og 2 [

2
o2 2
n+$

pos

Mpos = 2
p 20

e n: the number of samples

Xiog: the natural logarithm of the sample

Xiog: the mean of Xjo,

(m, s?): the prior estimation of the mean and variance of
sentence length

university of

o?: the variance of the sentence length we already kno@/ groningen
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Result

Assign values

en: b5

* Xiog: In([5, 38, 1, 2, 5, 3])
e m: 10, s: 10

e 0. 9.73

e Result: mpos—13.57
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Result

Assign values

en: b

Xiog: In([5, 38, 1, 2, 5, 3])
m: 10, s: 10

e 0: 9.73

Result: mpos—13.57

Comparison

e Frequentist: 9.0
e Bayesian: 13.57

e True value: 13.64
@E / university of
3 groningen
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Confidence Interval vs. Credible Interval

Frequentist: confidence interval
X o
e X :I:z% X7
o A frequentist 90% confidence interval of 35-45 means that with a
large number of repeated samples, 90% of the calculated confidence
intervals would include the true value of the parameter.

e The probability that the parameter is inside the given interval (say,
35-45) is either 0 or 1
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Confidence Interval vs. Credible Interval

Frequentist: confidence interval
X o
e X :I:z% X7
o A frequentist 90% confidence interval of 35-45 means that with a
large number of repeated samples, 90% of the calculated confidence
intervals would include the true value of the parameter.

e The probability that the parameter is inside the given interval (say,
35-45) is either 0 or 1

Bayesian: credible interval

® Mpos = Za X Spos

e “following the experiment, a 90% credible interval for the parameter
t is 35-45" means that the posterior probability that ¢ lies in the
interval from 35 to 45 is 0.9. %/gg;ﬁguf
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What Others Say

by Charles Annis

Summary

e "probability" confidence interval = long-run fraction having this

e "probability" . edible interval = degree of believability.

characteristic.
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What Others Say

by Charles Annis

e "probability" confidence interval = long-run fraction having this
characteristic.

e "probability" . edible interval = degree of believability.

e A frequentist is a person whose long-run ambition is to be
wrong 5% of the time.
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What Others Say

by Charles Annis

"probability" confidence interval = long-run fraction having this
characteristic.

"probability" .edible interval = degree of believability.

A frequentist is a person whose long-run ambition is to be
wrong 5% of the time.

A Bayesian is one who, vaguely expecting a horse, and catching
a glimpse of a donkey, strongly believes he has seen a mule.

P(mleldonkey) - Pt deetene)
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Warning

This is only a toy example. In a real world application, the
sample size n must be big enough to ensure that the sample
has a normal distribution (Central Limit Theory).

Not every distribution is normal.

According to the Law of Large Numbers, frequentist method is
also capable of approximating the true value.

o is known in advance in this example, which makes it
inapplicable. We can estimate o from the sample data, then
extra uncertainty is incorporated. Thus in estimating the
credible interval, we should use a t distribution, rather than a
normal distribution. (mpes £ ta X Spos)
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Estimating the Proportion in a Binomial Distribution

the binomial distribution

e the discrete probability distribution of the number of successes
in a sequence of n independent yes/no experiments.

e X ~ B(n,p)

o Pr(X=k)=(p)p(1—p)"*
e E(X)=np

e Var(x) = np(1 — p)
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Summary

the Frequentist Approach

X is the number of successes in n trials
[ ] pAf = %
AN — pinef A2 s\ _ Pr(1—pr)
MSE (Br) = bias(pr)? + Var(pr) = PE=-PE
suppose n = 16, x = 10, then MSE(pr) = 0.0146484375
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the Bayesian Approach

the prior: the Beta distribution
f(pia,b) = giapyp” (1= p)’~* ~ Beta(a, b)

Summary
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the Bayesian Approach

the prior: the Beta distribution
f(pia,b) = giapyp” (1= p)’~* ~ Beta(a, b)

a

E(p) = a1b

the postirior: the Beta distribution
f(p|x) oc pPP~1(1 — p)Ptn=>=1 ~ Beta(a+ x, b+ n — x)

e L
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the Bayesian Approach

the prior: the Beta distribution

f(pia,b) = giapyp” (1= p)’~* ~ Beta(a, b)

the postirior: the Beta distribution

f(p|x) o< pPT*7H(1 — p)b+"=>*=1 ~ Beta(a + x, b+ n — x)

suppose a = b =1, then

~ _ 14x
pB_2+n

MSE(ps) = (5258)2 + (;:25)%nPs(1 — PB)
still suppose n = 16, x = 10, then
MSE (ps) = 0.011888431641518061
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Comparison of Proportion

] proportion | MSE |
frequentist 0.625 0.015
Bayesian 0.611 0.012

Table: Estimation of proportion and MSE
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Authorship Detection
the Federalist Papers, by Alexander Hamilton, James Madison and John Jay

Inthe Press, N
sod fjeedily will be publithed,
THE

FEDERALIST, e the ratification of the United States
& mdzhgaﬂ' 'Xaiff.f?a:." e C H H
By a Citiven of NewnXork. onstitution
Correfted by :’:l Amhnr;“:iih Additions
i awerk will be prinsed on a fire Paper
ol bl dnbye /-6}7'.";:,' '.17'.:_%;

e 85 articles: Hamilton (51), Madison

Articles of the Convention,

A agreed spor ar Philadelpbia, Ecptem-
L 5 ber 1726, 1737,

m;nm-':;n;a;vdﬂ;-ﬁaf % (29)1 Jay (5)
Vb aong rguird i ey, ¢ A " A
ol Sl | e 12 are published under “Publius”.
'PHILO-PUBLIUS, |¢
AND THE 1
!
!

Figure: the
Federalist
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Authorship Detection

the Federalist Papers, by Alexander Hamilton, James Madison and John Jay

Inthe Press,
s0d feedly will be publithed,
THE

FEDERALIST,
A Colle&ion of Effays written ip fa
yor of the New ftitution,
By a Citiven of New-York.

Correlted by lll:l :vlnhnr with Additions

Ph ek il b n-m..;-.r er
al;-d '3«
livered 1o /-b/.-, frmily b
m one dollar, A few copier
wﬂh'nnh\ln h'crﬁ:rrv-lwn-[;a
’"Ih-wr 0 deliorry.
fbmlnllu wosrk more complote, will be
addedy withost any additional expence,
. - PHILO-PUBLIUS,
4ND THE
Articles of the Convention,
| 4s agreed spor a1 Philadelpbia, Ecptem-
| e sy

Figure: the
Federalist

e = OmemAG mes

e the ratification of the United States
Constitution

e 85 articles: Hamilton (51), Madison
(29), Jay (5)
e 12 are published under “Publius”.

e Statistical analysis based on word
frequencies and writing styles.

e All 12 were written by Madison.
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Bayesian POS Tagger

Combining Bayes and HMM

o T =argmaxP(T|W) = argmax%

Ter

Summary

argmaxP(T)P(W|T), where T: possible tags, W: word

Ter
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Bayesian POS Tagger

Combining Bayes and HMM

o T =argmaxP(T|W) = argmax%

Ter
argmaxP(T)P(W|T), where T: possible tags, W: word
Ter
e Incorporating the trigram model:

P(T)P(W|T) = P(t1)P(ta|t) [ | P(tilti—ati—1)[] ] P(wilti)]

i=3 i=1
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Bayesian POS Tagger

Combining Bayes and HMM

P(T)P(W|T
o T= argma>_;€£T| W) = argmax%
argmaxP(T)P(W|T), where T: possible tags, W: word

Ter

e Incorporating the trigram model:

[ )
P(T)P(W|T) = P(t1)P(ta|t) [ | P(tilti—ati—1)[] ] P(wilti)]
i=3 i=1
e counting:
o P(ti|ti—ati—1) = % and P(w;|t;) = Cfs?/gft)i)

[ ) SmOOthIng @%T/ university of

groningen
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Word Sense Disambiguation

Naive Bayesian Classifier

sentence length distribution of {text, prisoners}

e sentence.n.01: a string of words satisfying the grammatical
rules of a language

e conviction.n.02: a final judgment of guilty in a criminal case
and the punishment that is imposed

e prison__term.n.01:the period of time a prisoner is imprisoned

R . .
£ university of
4 / groningen



Application

Word Sense Disambiguation

Naive Bayesian Classifier

sentence length distribution of {text, prisoners}

e sentence.n.01: a string of words satisfying the grammatical
rules of a language

e conviction.n.02: a final judgment of guilty in a criminal case
and the punishment that is imposed

e prison__term.n.01:the period of time a prisoner is imprisoned
S = argmaxP(Sense| Context) = argmax%
Ser Ser
argmaxP( )P(C|S) = argmax[logP(S) + logP(C|S)]
Ser

Ser
e Bayesian network for WordNet

R . .
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Others

ASR
OCR
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Summary

Frequentist vs. Bayesian

e comparison of mean/proportion
e confidence interval vs. credible interval

e a priori knowledge, a posteriori probability

Applications

e Authorship detection, HMM & Bayes (POS tagger, ASR),
WSD, IR, OCR.
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