Search Engines

Gertjan van Noord

October 7, 2024

Overview

- Some notes regarding assignments
- Pagerank

Some Python notes

- Python and typing of variables
- Updating the value of a dict

Python and typing of variables

Some purists despise Python because of its dynamic typing

Python and typing of variables

wrong.py

```
import sys
for terms in sys.stdin:
    terms = terms.split()
    print(terms)
```

better.py

```
import sys
for terms in sys.stdin:
    term_list = terms.split()
    print(term_list)
```

Both variants work, but only the second variant is acceptable.

Python and typing of variables

It is good practice to use "static types" where possible. You can check with the mypy tool.

```
$ mypy wrong.py
wrong.py:4: error: Incompatible types in assignment
  (expression has type "List[str]", variable has type "str")
Found 1 error in 1 file (checked 1 source file)
$ mypy better.py
Success: no issues found in 1 source file
```

Updating the value of a dict

This works:

```
if el in my_dict:
    my_dict[el] += 1
else:
    my_dict[el] = 1
```

Updating the value of a dict

This works:

```
if el in my_dict:
    my_dict[el] += 1
else:
    my_dict[el] = 1
```

Where possible, this idiom is preferred:

my_dict[el] = my_dict.get(el,0) + 1

Defaultdict

Another option is defaultdict:

```
from collections import Defaultdict
my_dict = defaultdict(int)
my_dict['jan'] += 1
my_dict
defaultdict(<class 'int'>, {'el': 1})
my_dict['piet']
0
```

Defaultdict

```
Another option is defaultdict, but be careful!
```

```
from collections import Defaultdict
my_dict = defaultdict(int)
my_dict['jan'] += 1
my_dict
defaultdict(<class 'int'>, {'el': 1})
my_dict['piet']
0
my_dict['karel']
0
len(my_dict)
3
```

Defaultdict

Another option is defaultdict:

```
from collections import Defaultdict
my_dict = defaultdict(int)
my_dict['jan'] += 1
my_dict
defaultdict(<class 'int'>, {'jan': 1})
my_dict['piet']
0
my_dict['karel']
0
len(my_dict)
З
my_dict
defaultdict(<class 'int'>, {'jan': 1, 'piet': 0, 'karel': 0})
```

Last week: Evaluation

- Precision, Recall, F-measure (F-score)
- Precision and recall at rank
- Interpolated precision
- n-pt average precision, p@n, r@n, R-precision
- Mean Average Precision (MAP)
- Annotator Agreement, Kappa-score

This week: Pagerank

Some "documents" are more important, popular, authorative than others

Pagerank applied to web search engine: Google

This week: Pagerank

Some "documents" are more important, popular, authorative than others

Pagerank applied to web search engine: Google

Ranking of documents not only on their contents, but also on their importance/popularity/authority/...

Search engines on the web

- The first search engine only indexed a few million pages
- In 1995, AltaVista arrives (indexes 20 million pages)
- Altavista was extremely popular from 1995-2000
- In 2000, it suddenly lost almost all its visitors to a new search engine: Google

Search engine popularity

What did Google do that Altavista did not do?

It implemented a technique so that "better" web sites are preferred

Using an **existing** algorithm, PageRank, developed in the field of citation studies

Citation analysis

How to rank scientific articles?

Scientific articles cite other scientific articles

A scientific article that is cited a lot is a better scientific article

The number of citations indicates the quality of a scientific article

Citation analysis: pagerank

The number of citations indicates the quality of a scientific article

Why stop there?

Rather than count citations, you can weigh the citations: a citation from an article that is cited a lot counts more heavily

Pagerank for Web pages

Web pages do not cite other pages, but they refer to other pages through hyperlinks

A web page that many other pages link to is (assumed to be) a "better" page

A web page is better if better web pages link to it

Pagerank more precise

- Imagine a browser doing a random walk on web pages
 - Start at a random page
 - At each step, select one of the hyperlinks randomly
- If you visit a page often, then apparantly there are many ways to get to that page
- In the "steady state", each page has a long-term visit rate this is the score of that page

Pagerank more precise

- Imagine a browser doing a random walk on web pages
- In the "steady state", each page has a long-term visit rate this is the score of that page

Problem: there may be web pages without any outgoing links ("dead ends"). Solution: Teleporting

Teleporting

- At a dead end, jump to a random web page
- At any non-dead end:
 - with probability α (say 0.1), jump to a random web page, and
 - with probability $1-\alpha,$ take one of the links randomly

Random walk with teleporting

- cannot get stuck
- there is a long-term rate at which any page is visited
- can we compute this? Yes!

Markov Chain

- Markov Chain consists of *n* states (here: web pages)
- For each state i and j, we know the probability of going to state j if we are in state i
- These probabilities form a *transition probability matrix* **P**.
- The matrix entry \mathbf{P}_{ij} indicates the probability that, if your are in i, you now move to j.

Probability Matrix example

	1	2	3	4	5
1	0.1	0.3	0.3	0.2	0.1
2	0.1	0.2	0.5	0.1	0.1
3	0.4	0.3	0.1	0.1	0.1
4	0.3	0.2	0.2	0.1	0.1
5	0.1	0.3	0.2	0.3	0.1

Note: the **rows** of the matrix always sum to 1.

Where do these probabilities come from?

- Just assume every outgoing link is equally probable
- Take care of "teleporting"

An Example

Three web pages. An arrow from 1 to 2 indicates that there is a hyperlink from web page 1 to web page 2.

An Example

$$\mathbf{P} = \left(\begin{array}{rrr} 0 & 1 & 0 \\ 0.5 & 0 & 0.5 \\ 0 & 1 & 0 \end{array} \right)$$

Add Teleport

Every cell now gets $\alpha * 1/n + (1 - \alpha) * C$ where C is the probability in the previous matrix and n is the number of nodes

Add Teleport

$$\mathbf{P} = \begin{pmatrix} 0 & 1 & 0 \\ 0.5 & 0 & 0.5 \\ 0 & 1 & 0 \end{pmatrix}$$

Suppose $\alpha = 0.5$: $\mathbf{P} = \begin{pmatrix} 1/6 & 2/3 & 1/6 \\ 5/12 & 1/6 & 5/12 \\ 1/6 & 2/3 & 1/6 \end{pmatrix}$

Every cell: $\alpha * 1/n + (1 - \alpha) * C$

Why 1/6? There are 3 pages in total, each is equally likely. So, the probability of each cell if teleport is used is $\alpha * 1/n$.

Why 5/12? 0.5*1/3 + 0.5*0.5 = 2/12 + 3/12

Probability Vector

A probability vector $\mathbf{x} = (x_1, \dots, x_n)$ tells us where the walk is at any point.

If we only have 5 states, and we start in state 1, then the vector $\mathbf{x} = (1, 0, 0, 0, 0)$.

If we are either in state 2 with probability 0.3 or in state 3 with probability 0.7, then the probability vector $\mathbf{x} = (0, 0.3, 0.7, 0, 0)$.

Of course, the probability vector should always sum to 1.

One Step

So we have a Probability Matrix \mathbf{P} which tells us what the probabilities are of each step.

And we have a Probability Vector **x** which tells us where we are now.

We can then compute the Probability Vector which results if we perform one step. This is written \mathbf{xP} .

One Step: example

	1	2	3	4	5
1	0.1	0.3	0.3	0.2	0.1
2	0.1	0.2	0.5	0.1	0.1
3	0.4	0.3	0.1	0.1	0.1
4	0.3	0.2	0.2	0.1	0.1
5	0.1	0.3	0.2	0.3	0.1
	2 3 4	1 0.1 2 0.1 3 0.4 4 0.3	$\begin{array}{cccc} 1 & 0.1 & 0.3 \\ 2 & 0.1 & 0.2 \\ 3 & 0.4 & 0.3 \\ 4 & 0.3 & 0.2 \end{array}$	10.10.30.320.10.20.530.40.30.140.30.20.2	123410.10.30.30.220.10.20.50.130.40.30.10.140.30.20.20.150.10.30.20.3

 $\mathbf{x_0} = (1, 0, 0, 0, 0).$

After one step:

 $\mathbf{x_1} = (0.1, 0.3, 0.3, 0.2, 0.1).$

One Step: Another example

		1	2	3	4	5
P :	1	0.1	0.3	0.3	0.2	0.1
	2	0.1 0.4	0.2	0.5	0.1	0.1
	3	0.4	0.3	0.1	0.1	0.1
	4	0.3	0.2	0.2	0.1	0.1
	5	0.1	0.3	0.2	0.3	0.1

 $\mathbf{x} = (0, 0.3, 0.7, 0, 0).$

After one step:

If we had been in state 2, then the next vector would be (0.1, 0.2, 0.5, 0.1, 0.1) * 0.3 = (0.03, 0.06, 0.15, 0.03, 0.03).

If we had been in state 3, then the next vector would be (0.4, 0.3, 0.1, 0.1, 0.1) * 0.7 = (0.28, 0.21, 0.07, 0.07, 0.07).

The next **x** is the sum of these:

 $\mathbf{x} = (0.31, 0.27, 0.22, 0.1, 0.1).$

One Step: In general

 $x_1 * row of x_1 in \mathbf{P} + x_2 * row of x_2 in \mathbf{P} + \dots$

An Example

Three web pages. An arrow from 1 to 2 indicates that there is a hyperlink from web page 1 to web page 2.

An Example

$$\mathbf{P} = \left(\begin{array}{rrrr} 0 & 1 & 0\\ 0.5 & 0 & 0.5\\ 0 & 1 & 0 \end{array}\right)$$

An Example with Teleport

Suppose $\alpha=0.5$

$$\mathbf{P} = \left(\begin{array}{rrrr} 1/6 & 2/3 & 1/6 \\ 5/12 & 1/6 & 5/12 \\ 1/6 & 2/3 & 1/6 \end{array}\right)$$

• Suppose

$$\mathbf{P} = \begin{pmatrix} 1/6 & 2/3 & 1/6 \\ 5/12 & 1/6 & 5/12 \\ 1/6 & 2/3 & 1/6 \end{pmatrix}$$

• and $\mathbf{x}_0 = (1, 0, 0)$

• $\mathbf{x}_1 =$

• Suppose

$$\mathbf{P} = \begin{pmatrix} 1/6 & 2/3 & 1/6 \\ 5/12 & 1/6 & 5/12 \\ 1/6 & 2/3 & 1/6 \end{pmatrix}$$

- and $\mathbf{x}_0 = (1, 0, 0)$
- $\mathbf{x}_1 = (1/6, 2/3, 1/6)$
- $\mathbf{x}_2 =$

• Suppose

$$\mathbf{P} = \begin{pmatrix} 1/6 & 2/3 & 1/6 \\ 5/12 & 1/6 & 5/12 \\ 1/6 & 2/3 & 1/6 \end{pmatrix}$$

- and $\mathbf{x}_0 = (1, 0, 0)$
- $\mathbf{x}_1 = (1/6, 2/3, 1/6)$
- $\mathbf{x}_2 = (1/3, 1/3, 1/3)$

• $\mathbf{x}_3 =$

• Suppose

$$\mathbf{P} = \begin{pmatrix} 1/6 & 2/3 & 1/6 \\ 5/12 & 1/6 & 5/12 \\ 1/6 & 2/3 & 1/6 \end{pmatrix}$$

- and $\mathbf{x}_0 = (1, 0, 0)$
- $\mathbf{x}_1 = (1/6, 2/3, 1/6)$
- $\mathbf{x}_2 = (1/3, 1/3, 1/3)$
- $\mathbf{x}_3 = (1/4, 1/2, 1/4)$
- $\mathbf{x}_n =$

• Suppose

$$\mathbf{P} = \begin{pmatrix} 1/6 & 2/3 & 1/6 \\ 5/12 & 1/6 & 5/12 \\ 1/6 & 2/3 & 1/6 \end{pmatrix}$$

- and $\mathbf{x}_0 = (1, 0, 0)$
- $\mathbf{x}_1 = (1/6, 2/3, 1/6)$
- $\mathbf{x}_2 = (1/3, 1/3, 1/3)$
- $\mathbf{x}_3 = (1/4, 1/2, 1/4)$
- $\mathbf{x}_n = (5/18, 4/9, 5/18)$

- At some point, $\mathbf{x_{n+1}} = \mathbf{x_n}$. "Fixed point"
- This fixed point is the "principal left eigenvector of **P**", and is called the "PageRank" in this context.
- It does not matter in which web page you start!

- It does not matter in which web page you start!
- Exercise: do the previous example with $\mathbf{x}_0 = (0, 0, 1)$

Another example

There are four web pages a, b, c and d.

Web-page a links to b and c. Web-page b links to c. Web-page c links to a and b. Web-page d links to a, b and c.

- 1. What is the probability matrix if teleport rate = 0?
- 2. What is the probability matrix if teleport rate = 0.85 ?
- 3. In that case, what is the pagerank vector?

What to do with the pagerank vector

- higher score indicates better page
- combine this pagerank score with e.g. tfidf using some weighting scheme

How to fool Google?

... or: how to do "search engine optimization"?

Innocent extension: weighted links

- If a web page has multiple links to the same web page, we can take this into account as well
- Example:

Web-page a links to b twice and c Web-page b links to c Web-page c links to a and b

• initial matrix:

$$\mathbf{P} = \left(\begin{array}{rrr} 0 & 2/3 & 1/3 \\ 0 & 0 & 1 \\ 1/2 & 1/2 & 0 \end{array}\right)$$

• After that, business as usual

Other applications of pagerank

Lots. Check Wikipedia.

Other applications of pagerank

- What are the most prominent tech companies? Check linkedin to find people moving from company A to company B...
- Predict football standings based on results of matches of the last few years