
Standard input and standard output and Python

Gertjan van Noord

Recall: stdin, stdout, stderr

Unix commands typically take some input, and provide output.

If you don’t give any particular details, the input is taken from the
keyboard, and the output is sent to the screen

standard input: by default, the keyboard

standard output: by default, the screen

Example

$ wc

“nothing happens”?

the command is waiting for your input . . .

$ wc myfile.txt

630 2493 17550 myfile.txt

$ cat myfile.txt | wc

630 2493 17550

(how to specify that input from keyboard is finished? control-d)

Unix pipe

Combine commands: take output of a command, and use it as input for
the next command

commando1 | commando2

$ head myfile.txt | wc

10 17 264

Example

Suppose you have a word list: wlist.txt. In that file, every word is on a
single line

in

verband

met

de

gemiddeld

langere

levensduur

van

de

vrouw

Voorbeeld

Make an ordered, unique word list:

$ cat wlist.txt | sort | uniq

a

a-cultureel

a-morele

a-politieke

a.

a.d.

a.h.w.

a.r.

a.r.-fractie

a.s.

a.v.

a/b

a/d

aaien

...

Example

Make a dictionary for poets:

$ cat wlist.txt | rev | sort | uniq | rev

a

alba

ca

cachaca

yucca

logica

meta-logica

metalogica

propositielogica

kwasilogica

predikatenlogica

physico-theologica

beroepsethica

psychedelica

basilica

So . . .

I standard input, standard output, pipes

I every program can be used interactively, but also as part of a longer
sequence of commands

I if your program does something useful, you want to be able to re-use
it later as part of something else

I therefore: use standard input and standard output

Input and Output in Python3

I input() uses standard input

I print() uses standard output

I treat input line by line using sys.stdin
I can be used interactively
I can be used with input from file
I can be used with input from pipe (i.e., the output of another

command)

Example: add line length, add length.py

import sys

nr=1

for line in sys.stdin:

nr = len(line)

print(nr,"\t",line.rstrip ())

rstrip(): removes all whitespace characters at the end of the string,
including end-of-line

Use this as part of a “pipe”

Voorbeeld

$ cat wlist.txt | rev | sort | uniq | rev | python3 nrs.py

1 a

4 alba

2 ca

7 cachaca

5 yucca

6 logica

11 meta-logica

...

Extra information, debug messages, continuation messages

If your program also prints stuff such as welcoming messages, debug
information, continuation messages, then it will also be part of the input
for the next command . . .

echo "met de" | python3 query.py | wc -l

Solution: there also is standard error

print("Er zijn geen documenten gevonden",file=sys.stderr)

Just like stdout, stderr normally goes to the screen. If you use a pipe,
stdout is sent to the next command, but stderr will (normally) still go to
the screen.

Redirect

$ command < infile.txt

$ command > myoutfile.txt

$ command 2> err.txt

$ command > myout.txt 2> myerr.txt

$ command <(pipe1) <(pipe2) <(pipe3)

Interactive input

In some cases, using sys.stdin() as in the examples above is somewhat
counter-intuitive for interactive scenarios. In interactive mode, you want
to prompt the users so that they know what is expected. In Python, the
use of input() is possibly a good idea in such cases, as in the following
typical example.

while True:

line = input("Type your search term here (q to quit): ")

if line == "q":

break

search(line))

Interactive input, allow for end-of-file

In the example above, you will get an end-of-file error if there is no
further input. The following - preferred! - example catches this situation:

while True:

try:

line = input("Type your search term here (q to quit): ")

if line == "q":

break

search(line)

except EOFError:

print ()

break

