HDRUG ReferenceManual

Table of Contents

[1. HDRUG: A Development Environment for Loggrammars.
.1Interface .

[1.2Visualisation.
[1.3Parser and Generatblanagement.
[1.4UsefulLibraries .

[2. HdrugApplication$.

A Alel. . ..

[2.2.Alvey NL Toolg .

3.CF@
[2.4.Constraint-based Categorfalammayr .
[2.5. Definite Clausesrammalr.

.6.Chat-80.

[2.7.Tree AdjoiningGrammar.
[2.8. Semantic-head-driven Generation and Head-cd?Resing
[2.9.ExtrapositionGrammar
[2.10.Delayed Evaluation of Lexicétules .
[2.11.Stochastic Definite Clauserammayr . .
[2.12.Stochastic Head-driven Phrase StructBrammayr .

[3. Commandnterpreter
[3.1.flag Flag[Val]|
[3.2.flag Flag[Val]|

.3.% Words

4.fc Fileg .

i

N

N

I

w

Q|
o
c
3
I
3

.6.¢el Fileg .
.7.cFileg .
.8.rcFileg .
9.IdFileg. .
[3.10.libum Files.
[3.11.librc Fileg .
[3.12.libc Fileg .
[3.13.libel Fileg .
[3.14.libld Fileg .

ii

II

.16.quit|exit[halt|g[stap.

w
[EEN
o
<
(1)
=
23
o

[O9]

.19.nd .

20.p[Goal] .

[3.21.! Commang .
[3.22.alias [NamgVvalll|
[3.23.help [command]flag[predlhoddra]] .

w|[|[w)[eo
o | L
o)~
IO

OO OWOWOWOWOWWOWWOWWOWOWWOWWOoLUTULITUTUNOTUNTONUITUO AR DMDNWWWNEPR

[3.24.? [command]|flag|pred|hooldrg]|
[3.25.listhelp[command]|flag|pred]hoqk]
[3.26.spy [Module]Pred . .
.27.cd[Dir

.28.pwd

29109, . . 0.
.30.1t [tk/clig/latex] [Type]

/)

[O9]

Wl W w
@i =
= | = | RS
2a("
OA
3

Ol - .

[3.34.sourceFilef.
[3.35.s [Format] [OutputMalues .
[3.36.i/j/s/wif [Path]/T
[3.37.user/latex/tk/clig/d ot
[3.38.0bjSpec/DefSpec/ValSpec.
[3.39.type [t/x/tk/clig/dot][Type]
[3.40.ps[Keys] .

.41 .psint | .
[3.42.gs[Keys] .

.43.gsint | .
[3.44.rt [Parser/Generatgr]
[3.45.sentences.

W)

W)

w
N
o
=
wn

w
B>
Qof{

@)

w)
®)
=

.49.pc Sentende
b0.gcLH . .
[3.51.gcoObjN(d .
[3.52.* Sentenge
[3.53.parseSentende.
b54.-Termp. . .
[3.55.generatd ern) .
.56.1g [File
[3.57.rcg [File]|
.58.tkconsq|
b59.a¥. . .
[3.60.no [gm]List|
[3.61.yes [gm]List|
[3.62.only [gm]List .
[3.63.sts[Parserg]

[O9]

[98)

I

W)

ii

[4. GlobalVariables.

[4.1.generator(Generator)
[4.2.parser(Parsdgr) .
[4.3.application nanle
[4.4.batch command .
[4.5.clig tree active nodps .

10
11
11
11
11
11
11
11
11
11
12
12
12
12
13
14
14
14
14
14
14
14
14
14
15
15
15
15
15
15
15
15
15
15
16
16
16
16
16
16
16
16
17
17
17
17

4.6.blt graph lings .

.7.debug

.8.demg@

.9.nodeskip .
[4.10.0bject exists chegk
[4.11.0bject saving .
4.12.parseyr.

B
=
w
Q
(o]
o
=y
@
=
3
@D
L=
c

[4.14.print table total .
[4.15.start results within bouhd.
[4.16.end results within bouhd .
[4.17.incr results within bound .
[4.18.clig tree hspage
[4.19.clig tree vspage

4.21.tkconsq|
[4.22.top featurds

[4.23.useful try chedk
[4.24.user clause expansjon
25.cmdint. . ..
[4.26.update array max.
[4.27.hdrug statys .

i

[5. Graphical Useinterface .

[5.1. TheMenuBaf
[5.2. The ObjectBar .
[5.3.TheButtonBal .

[6. InterfacingHdrugd

[6.1.use canvas(+Mode,LeftRightTop) . . .

[6.2.help _hook(PredSymbol,UsageString,ExplanationSiring) .

[6.3. ParserModule:parse(o(Cat,Str,Sem))
[6.4.GeneratorModule:generate(o(Cat,Str,Sém)) .

[6.5. Module:count e

[6.6. Module:count .

[6.7.Module:cleah
[6.8.start_hook(parse/generate,Module,o(A,B,C), Term)
[6.9.start_hookO(parse/generate,Module,o(A,B,C),Term) .
[6.10.result _hook(parse/generate,Module,0(A,B,C), Term).
[6.11.end hook(parse/generate,Module,0(A,B,C),Term) .
[6.12.end hookO(parse/generate,Module,0(A,B,C),Term).
[6.13.top(Name,Cal). e
[6.14.semantics(Cat,Sefmn)

[6.15.phonology(Cat,Phon) .
[6.16.extern_sem(Extern,Intefn) . .
[6.17.extern_phon(Extern,Inteqn).
[6.18.sentence(Key,Sentencegntence(Key,Max,Sentengce)
[6.19.1f(Key,LF), lf(Key,Max,Lf)| .

17
17
17
17
18
18
18
18
18
18
18
18
19
19
19
19
19
19
19
19
20
20
20
21
24
24
24
28
28
28
28
28
29
29
29
29
29
30
30
30
31
31
31
31
31
32

[6.20.user _max(Length,Mak).

[6.21.gram startup hook begin .

[6.22.gram startup hook end

[6.23.user clause(Head,Bodly)
[6.24.graphic_path(Format,Obj,Term)
[6.25.graphic_label(Format,Node,Lakel) . .
[6.26.graphic_daughter(Format,No, Term,Daughter)
[6.27.show node(Format,Node) . .
[6.28.show node2(Format,Node)

[6.29.show node3(Format,Node)

[6.30.tk tree user node(Label,Framme)

[6.31.clig tree user node(Labl)

[6.32.dot tree user node(Lalel).
[6.33.latex_tree user node(Lahel)
[6.34.shorten_label(Label0,Labgl)

[6.35.call build lab(F,Fs,l) .

[6.36.call build lab(Functor/Arity)
[6.37.exceptional sentence length(Phon, Ledgth)
[6.38.exceptional If length(Sem,Length).
[6.39.hdrug initialization.

[6.40.hdrug command(Name, Goal Args)

[6.41.hdrug command help(Name,UsageString, ExplanatlonSItrmg)

[6.42.help flag(Flag,Help)
[6.43.option(Option,Argvin, Arngut)

[6.44.usage option(Option,UsageString, ExplanannSthng)

[6.45.tk_tree _show node help(TreeFormat,Atom)
[6.46.show relation(F/A). .
[6.47.display extern sem(+ExtSe|m)

[6.48.display extern phon(+ExtPhon)
[6.49.compile test suite(+File)
[6.50.reconsult_test suite(+File) .

[6.51.show _object default2(+Int).

[6.52.show_object default3(+Int).

[7. Command-lin®ption$

[7.1.-flag Att Val|
[7.2.-iflag Att Val|
[7.3.-pflag Att Vall
[7.4.-flag Att Val|

G
o
5|
3
1
@
o)
=l

ﬂ -

|~
S
=

.6.-tk| .
.7.-n0
.8.-dir D|
7.9.-helg
.10.-| F| g .
[7.11.-parser Parsern/oﬁ]
[7.12.-generator Generaton/off

I

32
32
32
32
32
33
33
33
34
34
34
34
34
34
34
35
35
35
35
35
35
35
36
36
36
36
36
36
36
37
37
37
37
37
38
38
38
38
38
38
38
38
39
39
39
39

7.13.-quit

[8. List of Predicatds

[8.1.concat(Atom,Atom Atonj)

[8.2.concat all(+ListOfAtoms,?Atom|[+Aton1])
[8.3.between(+Lower, +Upper, ?Numbet{;])] .
[8.4.atom_term(+Atom,?Ternj). .

[8.5.term _atom(+Term,?Atonj). .

[8.6.gen _sym(-Atom[,+Prefix])

[8.7.report _count edges pred(:Spec)
[8.8.report_count edges(:Gagal) .
[8.9.count_edges(:Goal,?Int).
[8.10.debug_call(+Int,:Godl) .

[8.11.debug message(+Int,+FormatStr +FormatArgs)
[8.12.initialize flag(+Flag,?Val) .
[8.13.set_flag(+Flag,?Val) .
[8.14.flag(+Flag[,?OldVall, ’7NeWVaI]])
[8.15.un_prettyvars(+Term0,?Term) .
[8.16.prettyvars(?Term) .

[8.17.prolog conjunctlon(ConJunct|orh,|stOfCon]unctsI)
[8.18.prolog disjunction(Disjunction,ListOfDisjuncis) .
[8.19.try hook(:Goall,:Goall). .
[8.20.hook(:Goal). .

|8.21.if gui(:Goall,:AltGoal]) .

L

L

|8 24 update array(+List, +ArrayNan1e)

[8.25.tk fs(+Term) .

[8.26.tk fs(List) .

[8.27.tk term(?Tern)) .

[8.28.tcl eval(+Cmdl,-Return])
[8.29.tcl(+Expr[,+Subs[,-ReturnAtom]])
[8.30.show _object no(+No,+Style,+Output) .
[8.31.show(+Style,+Medium,+Things)

[8.32.hdrug latex:latex tree(+TreeFormat, +Te|rm)

[8.33.hdrug_latex:latex tree(+TreeFormat,+ListOfTefms).

[8.34.hdrug _latex:latex fs(+Terin)
[8.35.hdrug_latex:latex fs list(+Ligt) .
[8.36.hdrug latex:latex term(+Terfn).
[8.37.hdrug_latex:latex term list(+List)
[8.38.generate(Sem). .
[8.39.parse(Phon) .

[8.40.generate obj no(lntegbr)

[8.41.availablé .
[8.42.0bject(No,Objecy) .

[8.43.reset table veset table(Paern) .
[8.44.parser comparisongpArser comparlsons(Keys)

39
39
39
40
40
40
40
41
41
41
41
41
41
42
42
42
42
42
42
42
42
43
43
43
43
43
43
43
43
44
44
44
44
45
45
45
45
45
46
46
46
46
46
46
46
46

[8.45.generator _comparisongénerator _comparisons(Keys)
[8.46. sentencets .
|8 48 parse compare(Sentence)/parse compare(Max Serhtence)
[8.49.generate _compare(Lf)/generate _compare(Max,Lf) .
[8.50.compile user _clause[(Modulg)} .
[9. hdrug call tree: Displaying LexicHierarchiep.
[9.1.Hook Predicatgs.
[9.1.1.user:call default(Functcbr)
[9.1.2.user:call clause(Head, BodJIy)
[9.1.3.user:call leaf(Leaf) .
[9.1.4.user:call build lab(F,Fs,l) .
[9.1.5.user:call ignore clause(F/A)
[9.2.Predicatds .

[9.2.1.hdrug call tree: caII tree buLtk/ cllg/ Iatex][(Functbr)] .

[10. hdrug chart: DisplayinGhart$.
[10.1.GlobalVVariable$
[10.1.1.user:chart xdigt
[10.1.2.user:chart ydigt
[10.2.Hook Predicatds
[10.2.1.user:pp chart show node heIp(Atbm)
[10.2.2.user:pp_chart_item[23](Ident) .
[10.2.3.user:pp_chart_item_b[23](Ideht)
[10.3.Predicatsgs. .
(10.3.1.pp chart(Nodes, Edges Bedges)
[11. hdrug clig: Interface tGLIG]|
[11.1.Predicatgs.
[11.1.1.clig fs(Fs).
[11.1.2.clig fs list(List)
[11.1.3.clig tree(Format,Term).
[12. hdrug feature: The Hdrug Featttrleraryi
[12.1.Hook Predicatds
[12.1.1.top(Subtypes) .
[12.1.2.type(Type,Subtypes, Attrlbut¢s)
[12.1.3.at(Type) .
[12.1.4.list type(Head, Tall)
[12.1.5.extensional(Typ¢) . .
[12.1.6.boolean type(Type,Modé¢l).
[12.1.7.intensional(Type) .
[12.2.Predicatgs. .
[12.2.1.hdrug feature: pretty type(Tyﬂ)e)
[12.2.2.hdrug feature:find type(?Term,-Types]|, Atts])
[12.2.3.hdrug _feature:unify except(T1,T2,Path)
[12.2.4.hdrug feature:unify except I(T1,T2,ListOfPaths)
[12.2.5.hdrug feature:overwrite(T1,T2,Path,Tyjpe) .
[12.2.6.hdrug feature:(ObjPath =Pype).

Vi

47
a7
a7
a7
a7
a7
a7
48
48
48
48
48
48
48
49
49
49
49
49
49
49
49
50
50
50
50
50
50
51
51
51
55
55
55
55
55
56
56
56
56
56
56
56
56
57
57

[12.2.7.hdrug feature:(ObjPath /=Pype)
[12.2.8.hdrug feature:(ObjPath ==Perm} .
[12.2.9.hdrug feature:(ObjPathA <=GbjPathB)) .
[12.2.10hdrug feature:(PathA <?=PathB) .

[12.2.11 hdrug feature:is _defined(Path,Bgol)
[12.2.12 hdrug feature:if defined(Path,Val[,Defadlt])

[12.2.13hdrug feature:type compller[(ModuIb)]

[13. hdrug showVisualization

[14. help: The Hel®system .

(14.1.List of Hook Predicatds.

[14.1.1.help info(Class,Key,Usage, Exlpl)

[14.2.List of Predicatds .

(14.2.1.help listing .

(14.2.2. heIp/help(ModuIe)/heIp(ModuIe Claiss)
(14.2.3.help module[(M)] . .
[14.2.4.help class(C[,M]) .

[14.2.5.help key(K[,C[,M]]) .
[14.2.6.help add to _menu(Menu,Interp)

Vii

57
57
57
58
58
58
58
59
63
64
64
64
64
64
64
64
64
65

1. HDRUG: A Development Environment for Logic
Grammars

Hdrug is an environment to develop grammars, parsers and generators for natural languages.
The system provides a number of visualisation tools, including visualisation of feature
structures, syntax trees, type hierarchies, lexical hierarchies, feature structure trees, definite
clause definitions, grammar rules, lexical entries, chart datastructures and graphs of statistical
information e.g. concerning cputime requirements of different parsers. Visualisation can be
requested for various output formats, including ASCII text format, TK Canvas widget, LaTeX
output, DOT output, and CLiGutput.

Extendibility and flexibility have been major concerns in the design of Hdrug. The Hdrug
system provides a small core system with a large library of auxiliary relations which can be
included upon demand. Hdrug extends a given NLP system with a command interpreter, a
graphical user interface and a number of visualisation tools. Applications using Hdrug
typically add new features on top of the functionality provided by Hdrug. The system is easily
extendible because of the use of the Tcl/Tk scripting language, and the availability of a large
set of libraries. Flexibility is obtained by a large number of global flags which can be altered
easily to change aspects of the system. Furthermore, a number of hook predicates can be
defined to adapt the system to the needs of a partigpjdication.

The flexibility is illustrated by the fact that Hdrug has been used both for the development of
grammars and parsers for practical systems but also as a tool to experiment with new
theoretical notions and alternative processing strategies. Furthermore, Hdrug has been used
extensively both for batch processing of large text corpora, and also for demonstrating
particular applications for audiencesnain-experts.

Hdrug is implemented in SICStus Prolog version 3, exploiting the built-in Tcl/Tk library. The
Hdrug sources are available free of charge under the Gnu Public Licence copyright
restrictions.

1.1Interface

Hdrug provides three ways of interacting with the underlying syd$tem:
® Using an extendible commaiderpreter.
® Using Prologqueries.
® Using an extendible graphical user interface (baserctmk).

The first two approaches are mutually exclusive: if the command interpreter is listening, then
you cannot give ordinary Prolog commands and vice versa. In contrast, the graphical user
interface (with mouse-driven menu’s and buttons) can always be used. This feature is very
important and sets Hdrug apart from competing systems. It implies that we can use at the
same time the full power of the Prolog prompt (including tracing) and the graphical user

interface. Using the command interpreter (with a history and alias mechanism) can be useful
for experienced users, as it might be somewhat faster than using the mouse (but note that
many menu options can be selected using accelerators). Furthermore, it is useful for situations
in which the graphical user interface is not available (e.g. in the absence of an X workstation).
The availability of a command-line interface in combination with mouse-driven menu’s and
buttons illustrates thiéexible nature of thenterface.

An important and interesting property of both the command interpreter and the graphical user
interface isextendibility. It is very easy to add further commands (and associated actions) to
the command interpreter (using straightforward DCG syntax). The graphical user interface
can be extended by writing Tcl/Tk scripts, possibly in combination with some Prolog code. A
number of examples will be given in the remainder of phiser.

Finally note that it is also possible to run Hdrug without the graphical user interface present
(simply give thenotk option at startup). This is sometimes useful if no X workstation is
available (e.g. if you connect to the system over a slow serial line), but also for batch
processing. At any point you can start or stop the graphical user interface by issuing a simple
command.

1.2 Visualisation

Hdrug supports the visualisation of a large collection of data-structures into a number of
differentformats.

These formats include (at the moment not all datastructures are supported for all formats. For
example, plots of two dimensional data is only availabld kr

® ASCI| art
® Tk Canvas
e LaTeX
® CLIiG
e DOT
The data-structures for which visualisation is provides

® Trees. Various tree definitions can exist in parallel. For example, the system supports the
printing of syntax trees, derivation trees, type hierarchy trees, lexical hierarchies etc.
Actions can be defined which are executed upon clicking on a node of a tree. New tree
definitions can be added to the system by sirdpldarations.

® Feature structures. Clicking on attributes of a feature-structure implode or explode the
value of that attribute. Such feature structures can be the feature structures associated
with grammar rules, lexical entries, macro definitions and pasasts.

® Trees with feature structure nodes. Again, new tree definitions can be declared. An
example iht t p: // wwv. | et . rug. nl / ~vannoor d/ Hdr ug/ Manual / dt . png|

® Graph (plots of two variable data), e.g. to display the (average) cputime or memory
requirements of differergarsers.

® Tables.
® Prologclauses.

® Definite clauses with feature structure arguments. This can be used e.g. to visualise
macro definitions, lexical entries, and grammar rules (possibly with associated
constraints).

1.3 Parser and GeneratorManagement

Hdrug provides an interface for the definition of parsers and generators. Hdrug manages the
results of a parse or generation request. You can inspect these results later. Multiple parsers
and generators can co-exist. You can compare some of these parsers with respect to speed and
memory usage on a single example sentence, or on sets of pre-defined example sentences.
Furthermore, actions can be defined which are executed right before parsing (generation)
starts, or right after the construction of each parse result (generation result), or right after
parsing iscompleted.

1.4 Useful Libraries

Most of the visualisation tools are available through libraries as well. In addition, the Hdrug
library contains mechanisms to translate Prolog terms into feature structures and vice versa
(on the basis of a number of declarations). Furthermore, a library is provided for the creation
of ‘Mellish’ Prolog terms on the basis of boolean expressions over finite domains. The
reverse translation is provided too. Such terms can be used as values of feature structures to
implement a limited form of disjunction and negatioruiyfication.

A number of smaller utilities is provided in the library as well, such as the management of
global variables, and an extendible on-line rsgigtem.

2. Hdrug Applications

This chapter shortly lists a number of example applications which are part of the Hdrug
distribution.

http://www.let.rug.nl/~vannoord/Hdrug/Manual/dt.png

2.1.Ale

The Attribute-Logic Engine by Bob Carpenter and Gerald Penn is a freeware logic
programming and grammar parsing and generation system. The following description is quote
from the Ale Homepage

[http: //ww sfs. nphil. uni-tuebi ngen. de/ ~gpenn/al e. htni |

[Ale] integrates phrase structure parsisggmantic-head-driven
generation and constraint logic programming with tyfeedure
structures as terms. This generalizes both the feature struafures
PATR-II and the terms of Prolog Il to allow type inheritanoel
appropriateness specifications for features and vafubgrary
constraints may be attached to types, and types may be dexdared
having extensional structural identity conditions. Grammarsatsgy
interleave unification steps with logic program goal callscéas

be done in DCGSs), thus allowing parsing to be interleavedotlitér
system components. ALE was developed with an eye tod@ad-Driven
Phrase Structure Grammar (HPSG), but it can also exe&dtR-I
grammars, definite clause grammars (DCGSs), Prolog, Prolagdl,
LOGIN programs, etc. With suitable coding, it can agecute
several aspects of Lexical-Functional Gramih&G).

2.2.Alvey NL Tools

Definite-clause version of the grammar of the Alvey NL Tools, and a fragment of the lexicon.
Thanks to John Carroll for making the grammar and test-set available. The accompanying
README file states:

NOTICE: these files were supplied by John Carjadhnca@ogs. susx. ac. uk, and are
derived from a version of the ALVEY Natural Language Tools. Current information about
these ALVEY NL Tools is available at

[http://ww. cl.cam ac. uk/ Research/ NL/anl t. ht n |

2.3.CFG

Tiny context-free grammar. lllustration what you need to do minimally to adapt a grammar /
parser taHdrug.

2.4.Constraint-based CategorialGrammar

Constraint-based Categorial Grammar for Dutch written by G.Bouma, slightly adopted by G.
van Noord forHdrug.

http://www.sfs.nphil.uni-tuebingen.de/~gpenn/ale.html
http://www.cl.cam.ac.uk/Research/NL/anlt.html

2.5.Definite ClauseGrammar

Tiny DCG. lllustration what you need to do minimally to adapt a grammar / parderug.

2.6.Chat-80

The classic Chat-80 system by Fernando Pereira and Déaicn

2.7.Tree Adjoining Grammar

Small Tree Adjoining Grammar with nine (related) head-corner parsing algorithms for
headedLexicalized and Feature-bas€dG's.

2.8.Semantic-head-driven Generation and Head-corner
Parsing

DCG for Dutch, originally used as illustration for semantic-head-driven generation.
Furthermore, some of the parsers were used for the timings of the paper co-authored with G.
Bouma on the potential efficiency of head-driyesing.

2.9.Extraposition Grammar

Extraposition grammars as described in Pereira’ p&jer.

2.10.Delayed Evaluation of LexicalRules

HPSG grammar for Dutch using delayed evaluation techniques to implement recursive lexical
rules.

2.11.Stochastic Definite Clausé&srammar

Experimental Stochastic Definite Clause Grammar by Robalauf.

2.12.Stochastic Head-driven Phrase Structuré&srammar

Experimental Stochastic Head-driven Phrase Structure Grammar by Robert Malouf. This
material was used by Rob’s ESSLLI course (with Miles Osborne) in HeRiKi.

3. Command Interpreter

In principle there are three ways to interact vdtirug:

® SICStus Prologop-level
e Commandnterpreter
® Graphical Usemterface

The first two items are mutually exclusive: if the command interpreter is listening, then you
cannot give ordinary SICStus Prolog commands and vice versa. The graphical user interface
can be used in combination with both the SICStus Prolog Top-level or the command
interpreter.

Prolog queries are given as ordinary Sicstus commands. This way of interacting with Hdrug
can be useful for low level debugging etc. Using the command interpreter can be useful for
experienced users, as it might be somewhat faster than using the graphicaérfsee.

The command-interpreter features a history and an alias mechanism. It includes a facility to
escape to Unix, and is easily extendible bwpplication.

The command interpreter is started by the Prolog predicate r/0 The command interpreter
commando halts the command interpreter (but Hdoagtinues).

Commands for the command interpreter always constitute one line of user input. Such a line
of input is tokenized into a number of *words using spaces and tabs as separation symbols.
The firstword is taken as the command; optional further words are taken as arguments to the
command. Each command will define certain restrictions on the number and type of
arguments iaccepts.

Each word is treated as a Prolog atomic (either atom or integer, using name/2). In order to
pass a non-atomic Prolog term as an argument to a command, you need to enclose the word in
the meta-characters { and }. For example, the flag command can be used to set a global
variable. Foexample:

16 |: flag foobar

sets the flagoo to the valudar. As an otheexample,
17 |: flag foobar(1,2,3)

sets the flagoo to the Prolog atom 'bar(1,2,3Finally,
17 |: flag foo{bar(1,2,3)}

sets the flagoo to the complex Prolog term bar(1,2,3), i.e. a term with functor bar/3 and
arguments 1, 2 arfgl

Also note that in case the {,} meta-characters are used, then the variables occurring in words
take scope over the full command-line. For instance, the parse command normally takes a
sequences afords:

18 |: parse John kisskkary

In other to apply the parser on a sequence of three variables, where the first and third variable
are identical, you give theommand:

19 |. parse {A} {B} {A}

The special meaning of the {,} meta-characters can be switched off by putting a backslash in
front of them. Foexample:

53 |: tcl set jan { piet klags
=> pietklaas

54 |: tcl putgan
jan

The following meta-devices apply: All occurences of $word are replaced by the definition of
the aliasvord. The alias command itself can be used to defiimses:

19 |: alias hallo ! cdtallo
20 |:$hallo

so command number 20 will have the same effettmsg
33 |: I cathallo

and if this command had been typed as command number 36 plan
35 |:$33

gives also the sanresult.

Moreover, if no alias has been defined, then it will apply the last command that started with
the name of thalias:

66 |: parse john kissesary
67 |:$parse

Both commands will do the santask.

It is possible to add commands to the command interpreter. The idea is that you can define
further clauses for the multifile predicate hdrug_command/3. The first argument is the first
word of the command. The second argument will be the resulting Prolog goal, whereas the
third argument is a list of the remaining words of the command (the arguments to the
command).

:- multifile hdrug_command/3.

hdrug_command(plus,(X is A+Bormat('~w~n’,[X])),[A,B]).

Relevant help information for such a command should be defined using the multifile predicate
hdrug_command_help/3. The first argument of this predicate should be the same as the first
argument of hdrug_command. The second and third arguments are strings (list of character
codes). They indicate respectively usage information, and aestpbaination.

.- multifile hdrug_command_help/3.
hdrug_command_help(plus,”plus A B","Prints the sum of ARB)d

For example, consider the case where we want the commadodestart the Tcl/Tk interface.
Furthermore, an optional argument of ‘on’ or ‘off’ indicates whether the TkConsol feature
should be used. This could be definedadisws:

hdrug_command(rx,restart_x,L):-
rxarg(L).

rxarg([on]) :-set_flag(tkconsol,on).
rxarg([off]) :- set_flag(tkconsol,off).

rxarg([]).

hdrug_command_help(rx,"fon,off]",
"(re)starts graphical user interface with/withdk€onsol").

3.1.flag Flag [Val]

without Val displays value of Flag; with Val sets Flag/td

3.2.flag Flag [Val]

without Val displays value of Flag; with Val sets Flag/td

3.3.% Words

ignores Words (comment). Note that there needs to be a spads . after

3.4.fc Files

fcompiles(Files).

3.5.um Files

use_module(Files).

3.6.el Files

ensure_loaded(Files).

3.7.c Files

compile(Files).

3.8.rc Files

reconsult(Files).

3.9.1d Files

load(Files).

3.10.libum Files

for each Filepse_module(library(File)).

3.11.librc Files

for each Filereconsult(library(File)).

3.12.libc Files

for each Filecompile(library(File)).

3.13.libel Files

for each Filegnsure_loaded(library(File)).

3.14.libld Files

for each File|oad(library(File)).

3.15.version

displays versiomnformation.

3.16.quit|exit|halt|g|stop

quitsHdrug.

3.17.b

break; enters Prolog prompt at next breaiel.

3.18.d

debug/0.

3.19.nd

nodebug/0.

3.20.p [Goal]

without Goal: quits command interpreter -- falls back to Prolog prompt with Goal: calls Goal.
Normally you will need {} around the Goal. Fexample:

p { member(X,[a,b,c]), write(X), n}

3.21.! Command

Command is executed by the shell. Note that the space between ! and Commquitad.

3.22.alias [Name[Val]]

No args: lists all aliases; one arg: displays alias Name; two args: defines an alias Name with
meaningval.

3.23.help [command]|flag|pred|hook][Arg]

displays help on command Arg or flag Arg or predicate Arg or hook Arg; without Arg prints
list of available commands, flags, predicate)aoks.

3.24.? [command]|flag|pred|hook][Arg]

displays help on command Arg or flag Arg or predicate Arg or hook Arg; without Arg prints
list of available commands, flags, predicate)aoks.

10

3.25.listhelp [command|flag|pred|hook]

displays listing of all commands, flags, predicates or hooks respectively; without Class
displays all help for altlasses.

3.26.spy [Module] Pred

set spypoint on Module:Pred; Pred can either be FéiuiaftAr.

3.27.cd [Dir]

change working directory to Dir; without argument cd to halinectory.

3.28.pwd

print workingdirectory.

3.29.1s

listing of directorycontents

3.30.1t [tk/clig/latex] [Type]

prints lexical hierarchy for Type; without Type, prints lexical hierarchydpr

3.31.X

(re)starts graphical usartterface

3.32.n0x

halts graphical usenterface

3.33.tcl Cmd

calls tcl command Cmd; what is returned by the tcl command will be printed on the screen
after the =>arrow.

75| tclexpr3*[expr5+#
=>27

Remember that { and } need to be prefixed with backlash since otherwise the Hdrug shell
treats them. Fanstance

11

63 |: tcl exp3+4
=7

3.34.sourceFile

sources Tcl sourdeile

3.35.s [Format] [Output] Values

displays Objects with specified Format and Output; cf help on s_format, s_output and s_value
respectively.

3.36.i/j/siw/f [Path]/T

Specifies the Format of thecemmand.

i write/1;

] print/(default);

S semantics (third argument of o/3 oligrchs)

w words (second argument of 0/3 oligrhs)

f Path display as a feature structure; the optional path is a sequence of attributes

separated by colons (it selects the value at that path). The prefix of the path can be a sequence
of integers seperated by / in order to select a specific node in the tree: this is only possible of
the category is a tree datastructure with functor tree/3 where tree labels are specified in the
first argument and lists of daughters are specified in the dihgnagment.

T T is a tree-format, display as a tree with that format. Tree-formats are specified
with the hook predicates graphic_path, graphic_labebaaphic_daughter.

3.37.user/latex/tk/clig/dot

Specifies the Output of thecemmand.

user as text to standard outplefault);
latex LaTeX; ghostview is used to displagult;
tk in the canvas of the graphical ustrface;

dot useBOT

12

clig use€lig

3.38.0bjSpec/DefSpec/ValSpec

Specifies the Objects to be shown form tlemmand.
ObjSpec will select a number objects (parser/generesoitts):
s 258 specifies the objects numbered 2, Band

s4+ specifies the objects number 4 anolve

s 3- specifies all objects up to numBer

s 5 to 12 specifies all objects between 5 &ad

DefSpec will select a user_clausefinition:

s | Fun/Ar specifies a listing of the Fun/gnedicate.
ValSpec will specify a goal, and select an argument ofgibait
s [Module:]Fun/ArPos]

The Module prefix is optional (user module is assumed if not specified); the optional Pos
argument selects a specific argument to be printed. If no Pos argument is specified then the
full goal is printed. For example, if you have the following predidafened:

x23(f(16),9(17),h).
then the following commands apessible:
|: sx23/3
x23(f(16),9(17),h)
|: s x23/31
h
|: s user:x23/2

gl7

13

3.39.type [t/x/tk/clig/dot] [Type]

displays type t=tree x=latex tree, tk=tk tree, clig=clig tree, dot=dot tree, none=textual
information. No Type implies that top used.

3.40.ps[Keys]

compares parsers on each sentence with key in Keys; without Keys, compares parsers on all
availablessentences;

3.41.psint | J
compares parsers on each sentence with key betweed | and
3.42.gs[Keys]

compares generators on each If with key in Keys; without Keys, compares generators on all
availablelfs;

3.43.gsint | J

compares generators on each If with key between Jand

3.44.rt [Parser/Generator]

reset tables for parser/generator comparison for parser Parser or generator Generator; without
argument reset tables for all parsers gederators

3.45.sentences

lists all sentences

3.46.Ifs

lists all logicalforms

3.47.pt

print parser comparisamverview

14

3.48.ptt

print parser comparison tablesdatail

3.49.pc Sentence

compares parsers @entences

3.50.gcLF

compares generators bf

3.51.gcoObjNo

compares generators on LF of objéttjNo

3.52.* Sentence

parsesSentence

3.53.parse Sentence

parsesSentence

3.54.- Term

if Term is an integer ObjNo, then generate from LF of object ObjNo; otherwise Term is a
semantic representation that is generéieah

3.55.generateTerm

if Term is an integer ObjNo, then generate from LF of object ObjNo; otherwise Term is a
semantic representation that is generéieah

3.56.1g [File]

with File, compile_grammar_file(File); without Filepmpile_grammar.

3.57.rcg [File]

with File, reconsult_grammar_file(File); without Fikeconsult_grammar.

15

3.58.tkconsol

(re)starts graphical user interface with TkCorfeature

3.59.av

shows activity status of parsers ageherator

3.60.no [gm] List

with gm, List is a list of generators which are set to inactive status; without gm, List is a list
of parsers which are set to inactstatus

3.61.yes [gm]List

with gm, List is a list of generators which are set to inactive status; without gm, List is a list
of parsers which are set to inactstatus

3.62.only [gm] List

with gm, List is a list of the only remaining active generators; without gm, List is a list of the
only remaining activparsers;

3.63.sts[Parsers]

graphically displays statistics for Parsers; without Parsers displays statisticptosalis

4. Global Variables

Hdrug manages a number of ‘global’ variables. A flag consists of a ground key (the ‘global
variable”) and a value (arbitrary Prolog term). Flags can be set by means of command-line
options, command-interpreter commands, the Options menu, and directly by Prolog
predicates.

Global variables are passed on to Tcl/Tk. For this purpose there exists a Tcl/Tk array variable,
called ‘flag’. If the graphical user interface is running, then this Tcl/Tk variable is
automatically updated when the Prolog flag is altered. The predicate tk_flag/1 can be used to
explicitly send the value of a flag Tal/Tk.

4.1.generator(Generator)

on/off. determines whether Generator is currently active or not, i.e. whether it will take part in
generator comparison runsrust.

16

4.2.parser(Parser)

on/off. Determines whether Parser is currently active or not, i.e. whether it will take part in
parser comparison runs oot.

4.3.application_name

Used by the graphical user interface. Determines which application default file is loaded, and
the title of thewidget.

4.4.batch_command

This flag can be used to run a commafigr ‘hdrug’ is initialized andafter the application
is initialized by hdrug_initialization/0. The value of the flag is called as a goal and all
solutions are found using a failure-driven loop, after which the programnates.

4.5.clig_tree_active_nodes

Boolean flag which determines whether nodes of clig_trees should be clickable. This is nice,
but for large treeslow.

4.6.blt_graph_lines

on/off. Should we connect dots in a blt_graph widget? Defaiilt:

4.7.debug

0/1/2. Determines the number and detail of continuation messages. Defauttifium)

4.8.demo

on/off. If demo=on then the system provides somewhat more information. A short
representation of the semantic form of a parse will be shown. Note that during test-suite runs
this value i9ff.

4.9.nodeskip

Integer. This flag determines for LaTeX-based tree output the value of nodeskip that is passed
on to pstree. If you don't like the tree that is produced then you might try to increase or
decrease this value. If the tree is ugly because nodes are too far apart, decrease this value; if
the tree is a mess, increase

17

4.10.0bject_exists_check

on/off. If parse and generation results are saved as objects (flag object_saving) then the

system normally checks whether an equivalent object has already been constructed on the
basis of the same parse / generation request. This flag determines wether such a check should
bemade

4.11.0bject_saving

This value determines whether parse/generation results should be kept as objects for later
inspection. If the value is off, no objects are asserted. If it is semi then for each new parse
request older objects are removed. If it is on ojbjects are newvaved.

4.12.parser

Atom. Determines which parser is currently the parser to use forqarseands.

4.13.add _help_menu
on/off. determines whether on-line help info must be available through the graphical user

interface. Should be switched off if you run Hdrug on the display of a different machine and
the connection with that machine is slow (like ove@hane-line).

4.14.print_table_total

on/off. determines whether during a parse comparison totals should be displayed after each
sentence.

4.15.start_results_within_bound

Integer. Determines for the results_within_bound command (hdrug_stats) at which number of
millisecond reporting should start. Defadl@0.

4.16.end_results_within_bound

Integer. Determines for the results_within_bound command (hdrug_stats) at which number of
millisecond reporting should end. Defaldf00.

4.17.incr_results_within_bound

Integer. Determines for the results_within_bound command (hdrug_stats) with which number
of millisecond increment percentages should be shown. Def@lt:

18

4.18.clig_tree hspace

Integer. Determines the horizontal width between nodes in GEKs.

4.19.clig_tree_vspace

Integer. Determines the vertical width between nodes in Gldé&s.

4.20.tcltk

on/off. Determines whether the graphical user interface starts. Defiault:

4.21.tkconsol

on/off. Determines whether or not the tkconsol feature (cf. library(tkconsol) should be used.
Default: off.

4.22.top_features

Atom. Determines top category used by the parsers. If the value is ‘vp’, then the predicate
user:top(vp,Cat) determines the top category (syamiool)

4.23.useful_try check

on/off. This flag determines during a test-suite run whether a sentence should be parsed even
if a shorter sentence has already been timed-out for the current parser. If the value is on, then
the sentence is skipped for the curngsutser.

4.24.user_clause_expansion

on/off. This flag determines whether term_expansion should be used to expand each clause
into a user:user_clause/2 predicate. Default: off. Note that you need a multifile declaration for
user:user_clause/2 in each file that you load with this flag on. It is often better to load your
grammar files with ‘assertall’ and then explicitly construct the user_clause definitions using
the ‘compile_user_clause/[0,Idredicate.

4.25.cmdint

on/off. This flag determines whether the command-interpreter should be switched on upon
startup. Defaultoff.~n

19

4.26.update_array _max

Integer. Indicates how many items are passed on in update_array/2 (this predicate is used to
inform the gui about the available predicates, types, lexical entries, test sentences, etc.). The
default is1000.

4.27.hdrug_status

This flag is not meant to be set by an application, but is set by Hdrug to communicate the
status of the latest parse/generation attempt. The flag has three possible values: success,
out_of memory, time_out. Every parse/generation starts out with te value ’success’. The
latter two values are set in the case of a time out exception and a resourerospdon.

5. Graphical User Interface

The Hdrug widget
(http://ww | et.rug. nl / ~vannoor d/ Hdr ug/ Manual / al el. png) contains the
following sub-widgets (frontop-to-bottom).

® MenuBar. The MenuBar contains a number of menubuttons. Each of these menu’s is
describedelow.

® ObjectBar. The ObjectBar is initially invisible. Once ‘objects’ are produced by a parser
or generator these objects will be placed onlhis

® Two scrollable canvases. Each canvas is initially left blank but is used for graphical
output such as parse-trees, etc. You can scroll the canvas using the scrollbars, but also
using the middle mouse button. The relative size of the canvases can be adapted by
dragging the border with the left mouse button, or with the file-enlarge left canvas resp.
enlarge right canvasommands.

e TkConsol. If the global variable tkconsol is on, then the TkConsol widget treats standard
input, standard output and erastput.

e ButtonBar. The ButtonBar contains three buttons that can be used to change the value of
the top category, the parser and the generator. The current values of these are also listed
next to the corresponding buttons. The checkbox ‘new canvas’ can be switched on in
order for the next graphical output to be directed to a seperate window. Finally the
rightmost button is a button that is added by manu applications, and which functions as
an ‘About’ button.

20

http://www.let.rug.nl/~vannoord/Hdrug/Manual/ale1.png

5.1.The MenuBar

® The File Menu. The file menu contains buttons of which the meaning is rather
straightforward. The first items can be used to (re)compile grammar files. The detailed
meaning is dependent on thgplication.

The ‘compile prolog file’ button lets you choose a Prolog file which will be compiled. The
‘reconsult prolog file’ button behaves similarly but reconsults the file. The ‘source tk/tcl file’
button can be used to source a Tcl/Tk file. The *halt’ button halts the appli¢aadiy!).

The ‘enlarge left canvas’ and ‘enlarge right canvas’ buttons adapt the relative size of the two
canvases.

It is also possible to restart the application. This implies that the graphical environment is
restarted, but the application files are not reconsulted. This is useful if you are
adding/debugging parts of the graphical interface. Use ‘restart X’ to restart. ‘quit x - keep
prolog alive’ allows you to stop the interface, but continue the Psadssgion.

® The Debug Menu. The debug menu contains a few buttons that are straightforward
interfaces to the corresponding Prolog predicates. It containgptions

® nodebug

e debug

® removespypoints

® spypredicate

® unspypredicate

® statistics

® The Options Menu. The options menu provides an interface to the gtotzdles.

® The Parse Menu. The parse menu is a more interesting menu, although it consists of only
a single button. Pressing this button will present a dialog widget asking you for a
sentence. You can either type in a new sentence, or select one of the available test
sentences. The available sentences are the sentences that were previously parsed during
the current session, or that were listed in the test-suite, or that were the result of
generation in the current session. The sentence you type or select will be parsed using
the current parser, and the current top category. Some statistical output will be presented
on standard output. For each parse result a numbered object is created. Each object is
visible as a button on the ObjectBar, allowing you to inspect each object. The maximum
number of objects that is built is limited by the max_objdats

21

The option ‘compare parsers’ allows you to parse a single test sentence for each of the active
parsers.

Use the option ‘parser selection’ to activate or de-active a partjzaiser.
® The Generat®enu

generate If. This option is the inverse of the parse option. Now you are prompted for a logical
form, which is subsequently input to the current generator. Again, you can either specify a
logical form ‘by hand’ or select a pre-existing logical form. Note that there is (yet) no concept
of a test-suite for logicdbrms.

generate object. This option takes the logical form from the object that you select, and
generates from this logical form. Note that other information ofthis object is not taken into
account in the generatigmocess.

generator selection. Use this option to activate or de-activate a parjenkxator.

compare generators on If. Generate from a given logical form for each of the active
generators.

compare generators on object. Generate from the logical form of a given object for each of the
activegenerators.

® The Test-suitdMenu

The test-suite menu contains a number of options in order to test the application for a
(pre-defined) set of sentences. This set of sentences is defined in a file called {suite.pl} in the
application directory, and consists of a number of Prolog clauses for the predicate sentence/2,
where the first argument is a unique identifier of that sentence, and the second argument is a
list of atoms. Note that there is (yet) no concept of a test-suite for |bginas.

The following options arprovided.

run test-suite. If this option is chosen then all sentences are parsed in turn, for each of the
parsers that are ‘active’}. Use the ‘parser selection’ option to select the parsers you want to
include/exclude for theun.

run test-suite and view. This option behaves similar to the previous option, but in addition
statistical information comparing the different parsers is shown in a separate TK widget. The
statistical information is updated after a sentence has been parsed by apastkvrs.

reload test-suite. Choosing this option reloads the test-suite. Note that ihatodsstroy
existingtest-results.

view test-results. This option contains a number of sub-options that allow you to view the
test-results in variousays.

22

individual tk. Presents a graph in which the length of the sentence is plotted against the parse
time, for each of the different parsers aettences.

totals per #words tk. Similarly, but now averages per sentence lengtbeare

totals per #words latex. This produces an Xdvi window containing a table of the parse results,
again averaged over sentence-length. Note that all :atex files are placed in a temporary
directory, given by the environment variable $TMPDIR. If this variable is not set, the
directory /tmp is used. The predicate latex:files/5 can be used to get the actual file names that
areused.

totals per #readings latex. This produces a table of the parse results, averaged over the number
of readings.

individual prolog. This simply gives a Prolog listing of the table_enfyéglicate.

totals per #words prolog. Prolog output of the average cputimes per parser per #words. This is
given as a list of terms t(Length,Time,Parser) with the obvidesgpretation.

destroy test results. Removes the test-results, i.e. retracts all clauses of the table_ entry/6
predicate.

® The View Menu. The ‘view menu’ contains several sub-menus indicating the type of
things you can view. Typically, you can view ‘objects’ (the result of parsing and
generation) ‘predicates’ (Prolog predicates) and ‘types’ (if your application uses
library(hdrug_feature). For each of the sub-menus you can choose between different
output widgets: Tk, CLIiG, Prolog, DOT and LaTeX. Finally, for each combination of
‘thing’ and ‘output widget’ you can choose between a number of different output filters.
The choice of filter determines whether the output is printed as a tree, a feature structure
or the internal Prologncoding.

Note that not all view options will produce results. Sometimes these options are only defined
for particular inputs. For example, in the Tree Adjoining Grammar application there are
parsers that build derivation trees, and there are parsers that build derived trees. Hdrug is not
always able to tell in advance whether e.g. the Tree(dt) filter (for derivation trees) is defined
for a particulaobject.

® The Help Menu. The help menu contains an interface to the various on-line help
resources. The About button produces a rather ugly picture of the author of Hdrug. The
Version button produces some information concerning the version of SICStus, Hdrug
and application. Finally some applications add an extra ‘About the Grammar’ option that
mentions the authors of tla@plication.

23

5.2.The ObjectBar

® ObjectBar. The results of parsing and generation are asserted in the database as ‘objects’.

The existence of objects is indicated in the ObjectBar. For example, if we have parsed
the sentence ‘jan kust marie’ in an application, then the ObjectBar contains two buttons,
labeled ‘1’ and ‘2’, indicating the first and second parse result. Pressing the button gives
rise to a submenu containing three options. The first option allows inspection of the
object. The possibilities are essentially those described above under the ‘view menu’.
The second and third option allow the generation from the logical form representation of
the object (if the application in fact defines a generator), either for the current generator,
or for all activegenerators.

5.3.The ButtonBar

e ButtonBar. The ButtonBar contains maximally three buttons that can be used to change
the value of the top category, the parser and the generator. The current values of these
are also listed next to the corresponding buttons. Note that there is only a ‘generator’
button if there are generators defined; similarly the ‘parser button might not exist in
someapplications.

6. Interfacing Hdrug

For an application to work with the Hdrug system, there are a number of predicates you have
to supply. Furthermore, you can extend the Hdrug system with application-specific options.
Finally, you can always overwrite existing Hdrug definitions. In this chapter | discuss the
variouspossibilities.

Parsers anenerators

In Hdrug you can define any number of parsers and generators. A parser and generator is
identified by an atomic identifier. A parser is declared by the followirective:

.- flag(parser(ldentifier),on/off).
Similarly, a generator is declarbg:
.- flag(generator(ldentifier),on/off).

This defines a parser of generator and moreover tells Hdrug whether this parser is active (on)
or not (off). Only if a parser is active, it will be used in parser-comparison runs. Not only
should the application define which parsers and generators exist, but usually it will also define
the ‘current’ parser and generator. This is achieved by initializingdhger andgenerator

flag.

24

.- initialize_flag(parser,ldentifier).
- initialize_flag(generator,ldentifier).

Summarizing, there exist a number of parsers. A subset of those parsers are active. One of the
parsers is the curreparser.

If a parser (generator) is defined, then there should be a module with the same name which
provides the following predicates. Note that only the first one of these predicates, parse/l or
generate/l, is obligatory. The others iaog

® parse/l;generate/l. This predicate is the predicate that does the actual parsing
(generation). At the time of calling, the argument of the parse/1 (generate/1) predicate is
a term o(Obj,Str,Sem) where Obj is a term in which the top-category is already
instantiated. Furthermore, part of the term might be instantiated to some representation
of the input string (in case of parsing if the predicate phonology/2 is defined) or some
representation of the input logical form (in case of generation if the predicate
semantics/2 is defined). But note that the string and logical form are also available (if
instantiated) in the second and third argument of thécon3.

® count/0.This optional predicate is thought of as a predicate that might produce some
statistical information e.g. on the number of chart edges built. Note that
library(hdrug_util) contains predicates to count the number of clauses for a given
predicate.

e count/1. Similarly, but this time the argument should get bound to some integer. The
argument of this predicate determines the final argument of the table _entry/6 predicate in
testruns.

e clean/0. If the parser adds items, chart edges etc. to the database, then this predicate
defines the way to remove thesgain.

Top categories

Usually a grammar comes with a notion of a ‘start symbol’ or ‘top category’. In Hdrug there
can be any number of different top categories. These top categories are Prolog terms. Each
one of them is associated with an atomic identifier for reference purposes. Each top category
is defined by a clause for the predicate top/2, where the first argument is the atomic identifier
and the second argument is the top-category ternexamnple:

top(s,node(s,)).
top(np,node(np,_)).

The flag ‘top_features’ is used to indicate what the current choice of top-category is. Usually
an application defines a default value for this flag bydihective:

- initialize_flag(top_features,ldentifier).

25

The identifier relates to the first argument of a taggfinition.
Strings andsemantics

The predicate semantics/2 defines which part of an object contains the semantics (if any). For
example, in an application categories are generally of the form node(Syn,Sem). Therefore, the
following definition of semantics/2 issed:

semantics(node(_,Sem),Sem).

The predicate is mainly used for generation. By default, the predicate is defined as
semantics(_,).

In a similar way, the predicate phonology(Node,Phon) can be defined. This is only useful for
‘sign-based’ grammars in which the string to be parsed is considered a part of the category.
The default definition iphonology(_,).

The predicate extern_sem/2 can be used to define a mapping between ‘internal’ and ‘external’
formats of the semantic representation. This predicate is used in two ways: if a semantic
representation is read in, and if a semantic representation is written out. The first argument is
the external representation, the second argument the internal one. The default definition is
extern_sem(X,X).

Grammarcompilation

Currently, the grammar menu contains four distinct options to recompile (parts of) the
grammar. It is assumed that if an application is started, the grammars are already compiled.
These options will thus be chosen if the grammar has to be recompiled (e.g. because part of
the grammar has beehanged).

The following four predicates have to be provided by the application. If these predicates do
not fulfill your needs, you can always extend the grammar menu (cf. below), or even
overwrite it (as in the Alapplication).

® compile_grammar/0 should recompile the whglammar.

® reconsult_grammar/0 should recompile the whole grammar. If files are to be loaded, then
‘reconsult’ is used rather than ‘compile’. This allows eadebugging.

e compile_grammar_file/1 should recompile the grammar file that &sgisment.
® reconsult_grammar_file/1 idem, but usesonsult
Test-suites

A test suite consists of a number of Prolog clauses for the predicate sentence/2, where the first
argument is a unique identifier of that sentence, and the second argument is a list of atoms;
and clauses for the predicate If/2. legample:

26

sentence(a,[john,kisses,mary]).
sentence(b,[john,will kiss,mary]).
If(1,fut(kiss(john,mary))).
If(2,past(kiss(mary,john))).

The test suite might also contain a definition of the predicate user_max/2. This predicate is
used to define an upper time limit, possibly based on the length of the test sentence (the first
argument), for parsing that sentence in a test-suite run. By default, Hdrug behaves as if this
predicate is defined dsllows:

user_max(L,Max)-
Max is 10000 + (IL 300).

Statistical information for each parse is preserved by the dynamic predicate table_entry/6. The
arguments of this predicaitedicate:

® an atom (the unique identifier of tsentence)

® an integer (the length of tleentence)

® an integer (the number of parses of the sentence, i.e. the degrabigtity)
® an atom (the name of tiparser)

® an integer (the amount of milliseconds it took to parse the sentence. In case of time-out
the atonftime_out’).

® a term (often used to indicate the number of chart-edges built). It is determined by the
count/1.

Extending the Graphical Usbrterface

It is easy to extend the Graphical User Interface for a specific application. There are two
predicates that you can define. The first predicate, gram_startup_hook begin/0 is called
before loading of hdrug.tcl, whereas the predicate gram_startup_hook end/0O is called at the
end of the loading of thifile.

Viewing PrologClauses

If you want to use Hdrug’s built-in facilities to view Prolog clauses, then it is neccessary that
these clauses are accessible via the predicate user_clause/2. The arguments of this predicate
are the head and the body of the clause respectively. The reason that Hdrug does not use the
built-in clause/3 predicate, is that this predicate is only available for dymtamises.

The easiest way to obtain user_clause/2 definitions is to turn on a term_expansion definition
with the appropriate effect. This is done by setting the user_clause_expansiorofiag to

27

6.1.use_canvas(+Mode,LeftRightTop)

Mode is a term indicating the type of data-structure to be displayed. It is one of
tree(TreeMode), fs, text, chart, stat. The predicate should instantiate the second argument as
one of the atoms left, right or top (for a nexdget).

6.2.help_hook(PredSymbol,UsageString,ExplanationString)

This predicate can be defined to provide help on a hook predicate with predicate symbol
PredSymbol. The UsageString is a list of character codes which shortly shows the usage of
the predicate. The help_hook predicate which is defined for the help_hook predicate itself has
as its UsageString "help_hook(PredSymbol, UsageString, ExplanationString)". The
ExplanationString is a list of charactercodes containing fuetkgianation.

6.3.ParserModule:parse(o(Cat,Str,Sem))

If ParserModule is the current parser, then this predicate is called to do the actual parsing. At
the time of calling, the argument of the parse/1 predicate is a term o(Obj,Str,Sem) where Cat
is a term in which the top-category is already instantiated. Furthermore, part of the term may
have been instantiated to some representation of the input string (if the hook predicate
phonology/2 was defined to do so). The input string is also available in the second argument
of the 0/3 term. The third argument is not usedpfsing.

6.4.GeneratorModule:generate(o(Cat,Str,Sem))

If GeneratorModule is the current generator, then this predicate is called to do the actual
generation. At the time of calling, the argument of the generate/1 predicate is a term
o(Obj,Str,Sem) where Cat is a term in which the top-category is already instantiated.
Furthermore, part of the term may have been instantiated to some representation of the input
semantics (if the hook predicate {semantics/2} was defined to do so). The input semantics is
also available in the third argument of the 0/3 term. The second argument is not used for
generation.

6.5.Module:count

This optional predicate is thought of as a predicate that might display some statistical
information e.g. on the number of chart edges built. The predicate Module:count is called in
module Parser after parsing has been completed for parser Parser or it is called in module
Generator after generation has been completed for generator Generator. Note that
library(hdrug_util) contains predicates to count the number of clauses for gogadkcate.

28

6.6.Module:count

This optional predicate is thought of as a predicate that might display some statistical
information e.g. on the number of chart edges built. The predicate Module:count is called in
module Parser after parsing has been completed for parser Parser or it is called in module
Generator after generation has been completed for generator Generator. Note that
library(hdrug_util) contains predicates to count the number of clauses for gpgackcate.

6.7.Module:clean

This optional predicate is thought of as a predicate that might remove e.g. chart edges added
dynamically to the database once parsing has been completed. The predicate Module:clean is
called in module Parser after parsing has been completed for parser Parser or it is called in
module Generator after generation has been completed for geri@eatmator.

6.8.start_hook(parse/generate,Module,o(A,B,C),Term)

This predicate is a hook that is called before the parser starts. Its first argument is either the
atom parse or the atom generate; the second argument is the current parser or generator
(hence the name of the module); the third argument is an object. The fourth argument can be
anything. It wis provided to pass on arbitrary information to the result_hook and end_hook
hook predicates. For example, the predicate could pass on information concerning the current
memory usage of Sicstus. This information could then be used by end_hook to compute the
amount of memory that the parser has consumed. The time required by the start_hook
predicate is NOT considered to be part of parsing time; cf start_hook0/4 for a similar hook
predicate of which timing IS considered part of parsimg

6.9.start_hookO(parse/generate,Module,0(A,B,C),Term)

This predicate is a hook that is called before the parser starts. Its first argument is either the
atom parse or the atom generate; the second argument is the current parser or generator
(hence the name of the module); the third argument is an object. The fourth argument can be
anything. It is provided to pass on arbitrary information to the result_hook and end_hook
hook predicates. For example, the predicate could pass on information concerning the current
memory usage of Sicstus. This information could then be used by end_hook to compute the
amount of memory that the parser has consumed. The time required by the start _hookO
predicate IS considered to be part of parsing time; cf start_hook/4 for a similar hook predicate
of which timing is NOT considered part of parstimge

6.10.result_hook(parse/generate,Module,o(A,B,C),Term)

This predicate is a hook that is called for each time the parser or generator succeeds. Its first
argument is either the atom parse or the atom generate; the second argument is the current
parser or generator (hence the name of the module); the third argument is an object. The
fourth argument can be anything. It is provided to pass on arbitrary information from the

29

start_hook hook predicate. Warning: the time taken by result_hook will always be considered
as part of the time required for parsing. Consider using the demo flag to ensure that expensive
result_hooks are not fired for parsing comparisors.

6.11.end_hook(parse/generate,Module,o(A,B,C),Term)

This predicate is a hook that is called if the parser / generator can not wfind any results
anymore. Its first argument is either the atom parse or the atom generate; the second argument
is the current parser or generator (hence the name of the module); the third argument is an
object. The fourth argument can be anything. It is provided to pass on arbitrary information
from the start_hook hook predicate. Note that at the moment of calling this predicate the
object will typically NOT be instantiated. The time required by end_hook is NOT considered

to be part of parsing time; sead_hookO.

6.12.end_hookO(parse/generate,Module,o(A,B,C),Term)

This predicate is a hook that is called if the parser / generator can not find any results
anymore. Its first argument is either the atom parse or the atom generate; the second argument
is the current parser or generator (hence the name of the module); the third argument is an
object. The fourth argument can be anything. It is provided to pass on arbitrary information
from the start_hook hook predicate. Note that at the moment of calling this predicate the
object will typically NOT be instantiated. The time required by end_hookO IS considered to
be part of parsing time; sead_hookO.

6.13.top(Name,Cat)

Usually a grammar comes with a notion of a ‘start symbol’ or ‘top category’. In Hdrug there
can be any number of different top categories, of which one is the currently used top category.
These top categories are Prolog terms. Each one of them is associated with an atomic
identifier for reference purposes. Each top category is defined by a clause for the predicate
top/2, where the first argument is the atomic identifier and the second argument is the
top-category term. The latter term will be unified with the first argument of the o/3 terms
passed on to parsers ageherators.

top(s,node(s,)).
top(np,node(np,_)).

The flag ‘top_features’ is used to indicate what the current choice of top-category is. Usually
an application defines a default value for this flag. The identifier relates to the first argument
of a top/2definition.

30

6.14.semantics(Cat,Sem)

The predicate semantics/2 defines which part of an object contains the semantics (if any). For
example, if in an application categories are generally of the form node(Syn,Sem), then the
following definition of semantics/2 issed:

semantics(node(_,Sem),Sem).

The predicate is mainly used fgeneration.

6.15.phonology(Cat,Phon)

This predicate is useful for ‘sign-based’ grammars in which the string to be parsed is
considered a part of the category. This predicate is called before parsing so that in such cases
the current string Phon can be unified with some part obbiet.

6.16.extern_sem(Extern,Intern)

This predicate can be defined in order to distinguish internal and external semantic
representations. This predicate is used in two ways: if a semantic representation is read in, and
if a semantic representation is written out. The first argument is the external representation,
the second argument the internal one. The default definition is extern_sem(X,X). A typical
usage of this predicate could be a situation in which an external format such as
kisses(john,mary) is to be translated into a feature structure format such as [pred=kisses,
argl=john, arg2=mary]. NB, the external format is read in as a single Realog

6.17.extern_phon(Extern,Intern)

This predicate can be defined in order to distinguish internal and external phonological

representations. This predicate is used in two ways: if a phonological representation is read in,
and if a phonological representation is written out. The first argument is the external

representation, the second argument the internal one. The default definition is

extern_phon(X,X). NB, the external format is read in as a list of Ptelogs.

6.18.sentence(Key,Sentence3entence(Key,Max,Sentence)

Applications can define a number of test sentences by defining clauses for this predicate. For
ease of reference, Key is some atomic identifier (typically an integer). Sentence is typically a
list of atoms. The parser comparison predicates refer to this atomic identifier. Example
sentences are also listed in the listbox available through the parse menu-button. Max can be
an integer indicating the maximum amount of milliseconds allowed for this sentence in parser
comparisorruns.

31

6.19.If(Key,LF), If(Key,Max,Lf)

Applications can define a number of test logical forms by defining clauses for this predicate.
For ease of reference, Key is some atomic identifier (typically an integer). LF is a term
(external format of a logical form). The generator comparison predicates refer to this atomic
identifier. Example logical forms are also listed in the listbox available through the generate
menu-button. Max can be an integer indicating the maximum amount of milliseconds allowed
for this If in generator comparisaans.

6.20.user_max(Length,Max)

This predicate is used to define an upper time limit, possibly based on the length of the test
sentence (the first argument), for parsing that sentence in a test-suite run. By default, Hdrug
behaves as if this predicate is defined as follows: user_max(L,Max) :- Max is 10000 + (L
300). If you don’t want a time out at all, then define this predicatsas max(_,0).

6.21.gram_startup _hook begin

This predicate is meant to be used to extend the graphical user interface. It is called right
before Hdrug's own graphical user interface definitions are loaded (i.e., right before hdrug.tcl
is sourced).

6.22.gram_startup _hook end

This predicate is meant to be used to extend the graphical user interface. It is called right after
Hdrug’'s own graphical user interface definitions are loaded (i.e., right after hdrug.tcl is
sourced). A typical use is to add application specific menu-bugtns,

6.23.user_clause(Head,Body)

If you want to use Hdrug’s built-in facilities to view Prolog clauses, then it is neccessary that
these clauses are accessible via the predicate user_clause/2. The arguments of this predicate
are the head and the body of the clause respectively. Note that the body of the clause should
be provided as a list of goals, rather than a conjunction. The reason that Hdrug does not use
the built-in clause/3 predicate, is that this predicate is only available for dynamic clauses. The
easiest way to obtain user_clause/2 definitions is to turn on a term_expansion definition with
the appropriate effect; éfag(user_clause_expansion).

6.24.graphic_path(Format,Obj, Term)

One of the three hook predicates which together define tree formats. The others are
graphic_label/3 and graphic_daughter/4. The Hdrug libraries contain extensive possibilities to
produce output in the form of trees. Only a few declarations are needed to define what things
you want to see in the tree. In effect, such declarations define a ‘tree format’. In Hdrug, there
can be any number of tree formats. These tree formats are named by a ground identifier. A

32

tree format consists of three parts: the path definition indicates what part of the object you
want to view as a tree; the label definition indicates how you want to print the node of a tree;
and the daughter definition indicates what you consider the daughters of a node. The
graphic_path definition is the first part. For instance if the parser creates an object of the form
node(Syn,Sem,DerivTree) where DerivTree is a derivation tree, then we can define a tree
format ‘dt’ where the graphic_path definition extracts the third argument of this term:
graphic_path(dt,node(_, ,Tree),Tree).

6.25.graphic_label(Format,Node,Label)

One of the three hook predicates which together define tree formats. The others are
graphic_path/3 and graphic_daughter/4. The Hdrug libraries contain extensive possibilities to
produce output in the form of trees. Only a few declarations are needed to define what things
you want to see in the tree. In effect, such declarations define a ‘tree format’. In Hdrug, there
can be any number of tree formats. These tree formats are nhamed by a ground identifier. A
tree format consists of three parts: the path definition indicates what part of the object you
want to view as a tree; the label definition indicates how you want to print the node of a tree;
and the daughter definition indicates what you consider the daughters of a node. The
graphic_label definition is the second part. For instance, if subtrees are of the form
tree(Node,Ds), where Node are terms representing syntactic objects such as np(Agr,Case) and
vp(Agr,Subcat,Sem) then a tree format could be defined which only displays the functor
symbol: graphic_label(syn,tree(Term,_),Labefunctor(Term,Label,).

6.26.graphic_daughter(Format,No,Term,Daughter)

One of the three hook predicates which together define tree formats. The others are
graphic_label/3 and graphic_daughter/4. The Hdrug libraries contain extensive possibilities to
produce output in the form of trees. Only a few declarations are needed to define what things
you want to see in the tree. In effect, such declarations define a ‘tree format’. In Hdrug, there
can be any number of tree formats. These tree formats are named by a ground identifier. A
tree format consists of three parts: the path definition indicates what part of the object you
want to view as a tree; the label definition indicates how you want to print the node of a tree;
and the daughter definition indicates what you consider the daughters of a node. The
graphic_daughter definition is the third part. For instance if subtrees are of the form
tree(Label,Daughters), where Daughters is a list of daughters, then you could simply define:
graphic_daughter(syn,No,tree(_,Ds),Dists:nth(No,Ds,D).

6.27.show_node(Format,Node)

If trees are displayed on the canvas widget, then it is possible to define an action for clicking
the left-most mouse button on the node of the tree. This action is defined by this predicate.
Format is the identifier of a tree format, and Node is the full sub-tree (that was used as input
to the graphic_labelefinition).

33

6.28.show_node2(Format,Node)

If trees are displayed on the canvas widget, then it is possible to define an action for clicking
the middle mouse button on the node of the tree. This action is defined by this predicate.
Format is the identifier of a tree format, and Node is the full sub-tree (that was used as input
to the graphic_labelefinition).

6.29.show_node3(Format,Node)

If trees are displayed on the canvas widget, then it is possible to define an action for clicking
the rightmost mouse button on the node of the tree. This action is defined by this predicate.
Format is the identifier of a tree format, and Node is the full sub-tree (that was used as input
to the graphic_labelefinition).

6.30.tk_tree_user node(Label,Frame)

If a tree-format is defined which matches user(_), then if a tree is to be displayed on the

Canvas widget this predicate is responsible for creating the actual nodes of the tree. Label is
the current label, and Frame is the identifier of a Tcl/Tk frame which should be further used

for this label. The frame is alreaggcked.

6.31.clig_tree_user_node(Label)

If a tree-format is defined which matches user(), then if a tree is to be displayed using Clig
output, then this predicate is responsible for creating the actual nodes of the tree. Label is the
currentlabel.

6.32.dot_tree_user _node(Label)

If a tree-format is defined which matches user(), then if a tree is to be displayed using DOT
output, then this predicate is responsible for creating the actual label of the nodes of the tree.
Label is the currerabel.

6.33.latex_tree user_node(Label)
If a tree-format is defined which matches user(_), then if a tree is to be displayed using

LaTeX output, then this predicate is responsible for creating the actual nodes of the tree.
Label is the curreriabel.

6.34.shorten_label(LabelO,Label)

This predicate can be defined for feature-structure display of tree nodes; its intended use is to
reduce the information of a giverode.

34

6.35.call_build_lab(F,Fs,L)

for library(hdrug_call_tree)

6.36.call_build_lab(Functor/Arity)

for library(hdrug_call_tree)

6.37.exceptional_sentence_length(Phon,Length)

For (internal) phonological representations this predicate can be defined to return the length
of the representation. If the predicate is not defined, then the representation is assumed to be a
list, and the length is assumed to be the number of elements of the list. The length of
phonological representations is used by the display of the results of parser compasson

6.38.exceptional_If length(Sem,Length)

For (internal) semantic representations this predicate can be defined to return the length of the
representation. If the predicate is not defined, then the representation is assumed to be a term,
and the length is assumed to be the number of characters required to print the term. The
length of semantic representations is used by the display of the results of generator
comparisorruns.

6.39.hdrug_initialization

If hdrug is started, then three things happen. First, hdrug treats its command line options.
After that, the predicate hdrug_initialization is called. Finally, the graphical user interface is

started (if flag(tcltk) is on). This predicate can thus be used to define application-specific

initialization.

6.40.hdrug_command(Name,Goal,Args)

This predicate can be used to define further commands for the command interpreter. Name is
the first word of the command, Goal is the resulting Prolog goal, and Args is a possibly empty
list of arguments to theommand.

6.41.

hdrug_command_help(Name,UsageString,ExplanationString)
This predicate can be used to provide help information on commands for the command
interpreter. Name is the first word of the command, The second argument displays usage

information in a short form (list of character codes); the third argument is a list of character
codes containing an explanation of teenmand.

35

6.42.help_flag(Flag,Help)

This predicate can be used to provide help information on global variable Flag. Help is a list
of character codes containing the hialjfo.

6.43.0ption(Option,Argvin,ArgvOut)

This predicate can be used to define application-specific command-line options to the hdrug
command. Option is the option minus the minus sign; moreover Option relates to the first

argument of a corresponding usage_option/3 definition. The second and third argument is a
difference list of the list of options in case the option takes fuaifggrments.

6.44.usage_option(Option,UsageString,ExplanationString)

This predicate is defined to provide help information on the Option startup option (cf.
option/3). The UsageString is a list of character codes presenting short usage information;
ExplanationString is a list of character codes containing the explanationagtibe.

6.45.tk_tree_show_node_help(TreeFormat,Atom)

If a tree according to TreeFormat is displayed on the canvas, then this predicate can be
defined in order that below the widget a short message appears indicating what actions are
bound to clicking on the tree nodes. Atom isiiessage.

6.46.show_relation(F/A)

you can define the relation show_relation/1 to define an action for pressing the first
mouse-button on a relation name, when viewing predicate definitions in the Tk Canvas. The
argument is a Functor/Arity pair. Fekample,

show_relation(F/A)-
show_predicate(F/A,fs,tk).

will show the predicatdefinition.

6.47.display _extern_sem(+ExtSem)

Predicate to print a given external formasefantics.

6.48.display_extern_phon(+ExtPhon)

Predicate to print a given external formapbbnology.

36

6.49.compile_test_suite(+File)

Predicate to compile the test suite in friée.

6.50.reconsult_test_suite(+File)

Predicate to reconsult the test suite in Filke.

6.51.show_object_default2(+Int)

Predicate which is called if the user presses mouse button <2> on the object button number
Int. A typical definition could be, fanstance:

show_object_default2(No):-
show_object_no(No,tree(syn),clig).

6.52.show_object_default3(+Int)

Predicate which is called if the user presses mouse button <2> on the object button number
Int.

7. Command-line Options

When Hdrug is started, it first interprets the command-line options. Command-line options
are interpreted from left to right. The following section lists the command-line options which
are standard. Each application possibly extends this list: this is dbiieeal.

Note that command-line options are interprelbedore application-specific initialization is
performed. This is to allow command-line options to have an effect on this initialization.
Refer to the hook predicakelrug_initialization for application-specifiinitialization.

Hdrug applications can extend the list of possible startup options by adding definitions to the
multifile predicate option/3. Short usage information for such options can be defined with
further definitions for the multifile predicate usage_option/3. An an example, the following
definitions ensure that an option -rc File will reconsult theFile:

.- multifile option/3,usage_option/3.

option(rc) --> [File], { reconsult(File).
usage_option(rc,"rc File","File i®consulted.").

37

7.1.-flag Att Val

Sets global variable Att to Val; Val is read as an atom. Consider using the Flag=Val option if
you want to assign arbitrary Prolog termg\ta

7.2.-iflag Att Val

Sets global variable Att to Val; Val is read as an integer. Equivalent to Flag=Val where Val is
aninteger.

7.3.-pflag Att Val

Sets prolog_flag(Att) to Val; Val is read as an atom. This is an interface to the SICStus Prolog
built-in predicateprolog_flag/3.

7.4.-flag Att Val

Sets global variable Att to Val; Val is read as an atom. Consider using the Flag=Val option if
you want to assign arbitrary Prolog termg\ta

7.5.-cmd Goal

evaluates Prolog Goal; Goal is parsed as Prolog texample:

hdrug -notk -cmd ’listing(library_directory}quit

7.6.-tk

Indicates that the graphical user interface should be started when hdrug starts. Equivalent to
tcltk=on. This is thelefault.

7.7.-notk

Indicates that the graphical user interface should not be started when hdrug starts. Equivalent
to tcltk=off. The default is to start the graphical uségrface.

7.8.-dir Dir

This options ensures that Dir is added to the list of libdéngctories.

38

7.9.-help

This display usage information atetminates.

7.10.-1 File

Loads the file File (containing Prolog), using the gosd_module(File).

7.11.-parser Parseron/off

This option indicates that the parser Parser is set to on (off). Parsers which are on will take
part in parser comparisgans.

7.12.-generator Generatoron/off

This option indicates that the generator Generator is set to on (off). Generators which are on
will take part in generator comparisams.

7.13.-quit

Terminates Hdrug. Useful in combination with the -cmd Gqaion.

8. List of Predicates

This chapter lists the important predicates usddidrug.

8.1.concat(Atom,Atom,Atom)

Two of the three arguments must be Prolog atoms. The print-name of the third atom is the
concatenation of the print names of the first two atdmamples:

| ?-concat(foo,bar,X).
X = foobar?

yes
| ?-concat(X,bar,foobar).

X =foo?

yes
| ?-concat(foo,X,foobar).

39

X =bar?

8.2.concat_all(+ListOfAtoms,?Atom[,+Atom])

concetenates the print names of all the atoms in ListOfAtoms together; possibly using the
optional third argument as a seperakxample:

?-concat_all([foo,bar,foo,bar],L,'+’).

L = 'foo+bar+foo+bar’?

8.3.between(+Lower, +Upper, ?Number[;+/-])

Is true when Lower, Upper, and Number are integers, and Lower =< Number =< Upper. If
Lower and Upper are given, Number can be tested or enumerated. If either Lower or Upper is
absent, there is not enough information to find it, hence failure. Numbers are generated in
ascending order. If you want descending order, use between/4. The optional fourth argument
is the atom + to indicate ascending oraer,

® to indicate descending ordé&xample:
?- findall(X,between(1,10,X)Xs).

Xs =[1,2,3,4,5,6,7,8,9,1

?- findall(X,between(1,10,X,-Xs).

Xs =[10,9,8,7,6,5,4,3,2, T

8.4.atom_term(+Atom,?Term).
Atom is read-in as if it where a Prolog tefaxample:
| ?-atom_term(’f(A,B,A)’,L).

L=fCA,_B,_A)?

8.5.term_atom(+Term,?Atom).

The Prolog term Term is turned into an atom, as if quotes were placed ardixaiiple:
| ?-term_atom(f(f(f(f))),L).
L ="f(f(f())" 2

40

As is clear from the following example, the result is arbitrary in case Term cowsaiakles:
?-term_atom(f(_A,_B,_A),L).

L =’f(_83, 105, 83)7?

8.6.gen_sym(-Atom[,+Prefix])

A new atom Atom is generated. If Prefix is specified, then the print name of Atom will start
with Prefix.

8.7.report_count_edges_pred(:Spec)
Writes to standard output the number of times :Spec sucdeamisple:
| ?-report_count_edges_pred(library_directory/1).

library_directory/12

8.8.report_count_edges(:Goal)
Writes to standard output the number of times :Goal succeégdsiple:
| ?-report_count_edges(lists:member(_,[a,b,c,d])).

lists:member(_95,[a,b,c,d]}:

8.9.count_edges(:Goal,?Int)

Int is an integer indicating the number of times Galceeds.

8.10.debug_call(+Int,:Goal)
If Int is smaller or equal to the current value of flag(debug), then Goal is called. Used to wrap

around debugging and continuation calls. Larger values for Int indicate that the goal is
executed lessften.

8.11.debug_message(+Int,+FormatStr,+FormatArgs)

If Int is smaller or equal to the current value of flag(debug), then the goal
format(user_error,FormatStr,FormatArgsgisecuted.

41

8.12.initialize_flag(+Flag,?Val)

Hdrug manages a number of global variables, called flags. This predicate sets flag Flag to Val
only if Flag is currenthundefined.

8.13.set_flag(+Flag,?Val)

Hdrug manages a number of global variables, called flags. This predicate sets flag Flag to
Val.

8.14.flag(+Flag[,?OldVal[,?NewVal]])

Hdrug manages a number of global variables, called flags. This predicate sets flag Flag to
NewVal, unifying the old value with OldVal. If only two arguments are given, then the flag is
unchanged. If only a single argument is given, then Flag is allowed to be uninstantiated. It
will be bound to all existing flags updracktracking.

8.15.un_prettyvars(+TermO,?Term)

Reverses the effect of prettyvars; i.e. all '$VAR’/1 terms are replaced by corresponding
variables.

8.16.prettyvars(?Term)

Similar to the built-in numbervars, except that all variables which only occur once in Term
are replaced b$VAR'(_").

8.17.prolog_conjunction(Conjunction, ListOfConjuncts)

handles the syntax of conjuncts. This code wraps call(_) around variables, flattens
conjunctions to (A;(B;(C;(D;E)))) form, and drops 'trumdnjuncts.

8.18.prolog_disjunction(Disjunction,ListOfDisjuncts)

handles the syntax of disjuncts. This code wraps call(_) around variables, flattens disjunctions
to (A,(B,(C,(D,E)))) form, and drops 'falsdisjuncts.

8.19.try _hook(:Goall[,:Goal])

Tries to call Goal, but only if the predicate is known to exist. If the first Goal fails, or if it
does not exist, then the second goal is called. If no second goal is given then the predicate
succeeds.

42

8.20.hook(:Goal).

hook/1 calls its argument, but only if it is defined; if it is not defined the precate fails. Useful
to call optional hook predicates for which no undefined predicate warnings should be
produced.

8.21.if_gui(:Goal[,:AltGoal])

calls Goal only if graphical user interface is currently running; if not the predicate calls
AltGoal, if it is specified, osucceeds

8.22.r

Starts the commandterpreter.

8.23.start_x

Attempts to start the graphical user interface, but will not start it if flag(tcltk) is switifhed

8.24.update_array(+List,+ArrayName)

a Tcl array named ArrayName is constructed where the values in List are to be the values in
the array, i.e. ArrayName(1), ArrayName(2), etc.; the special value ArrayName(max) is set to
the last index of the array (counting starts at 0). The flag update_array_max can be used to
pass to Tcl only the first N items. If that value is 0 then all items are passed on
(default=1000).

8.25.tk_fs(+Term)

Term is displayed as a feature-structure on the canvas widget of the graphicgkusee

8.26.tk_fs(List)

Each Term in List is displayed as a feature-structure on the canvas widget of the graphical
userinterface

8.27.tk_term(?Term)

Term is displayed on the canvas of the graphicalingenface

43

8.28.tcl_eval(+Cmd[,-Return])

Abbrevation for the tcltk library predicate tcl_eval/3. The current TclTk interpreter, accessible
through the tcl_interp flag, is added as the frglument.

8.29.tcl(+Expr[,+Subs[,-ReturnAtom]])

Expr is a string as accepted as the second argument of format/3; the optional Subs is
equivalent to the third argument of format/3. After evaluating the meta-charcters in Expr, the
string is sent as a tcl command using the current tcl interpreter (flag tcl_interp). The return
string is turned into an atom and available in the optional #igdment.

8.30.show_object _no(+No,+Style,+Output)

Displays the object numbered No using the Style and Output. These latter two arguments are
of the type accepted by the first and second argument of the generic phedwtate.

8.31.show(+Style,+Medium,+Things)
Generic interface to the Hdrug visualization tools. Style isadne

words (only defined for object/2 things; displays the phonological representation of an object,
i.e. Phon irobject(ldent,o(Cat,Phon,Sem))

sem (only defined for object/2 things; displays the semantic representation of an object, i.e.
Sem inobject(ldent,o(Cat,Phon,Sem))

fs(+Path) (extracts the feature structure at path Path; and displays the result as a feature
structure in matrix notation. In such a Path the prefix might consist of integers to refer to
daughters in a tree/3 tree structure; 0 is the root node of areeal

fs (feature structure in matrnotation)

term(print) output as a Prolog term, using print where appropriate (in order that any
application-specific portray/1 hook predicates willdmpplicable)

term(write) same as term(print), but not usomnt.

tree(Format) displays as a tree using Format as the relevant tree-format. Such a tree-format is
defined by clauses for the hook predicates graphic_path, graphic_dauglgeand label.

Medium is oneof:

user (normal text to SICStus Prolog standartput).

44

tk (on a canvas of the graphical usgerface).

latex (latex code is input to latex and either xdvi or dvips followeghmstview).
clig (using the CLiGsystem).

dot

and Things is a list where each element isafne
object(ldent,o(Cat,Words,Sem))

value(Term)

clause(Head,Body), Bodyliat of goals.

8.32.hdrug_latex:latex_tree(+TreeFormat,+Term)

Displays Term as a tree according to the TreeFormat specifications, in Ghostview. This
predicate produces LaTeX code (with PsTricks extensions); it runs LaTeX and dvips on the
result. The TreeFormat should be specified by means of clauses for the hook predicates
graphic_path, graphic_daughter agrdphic_label.

8.33.hdrug_latex:latex_tree(+TreeFormat,+ListOfTerms)

Displays each Term in ListOfTerms as a tree according to the TreeFormat specifications, in
Ghostview. This predicate produces LaTeX code (with PsTricks extensions); it runs LaTeX
and dvips on the result. The TreeFormat should be specified by means of clauses for the hook
predicates graphic_path, graphic_daughtergaaghic_label.

8.34.hdrug_latex:latex_fs(+Term)

Displays Term as a feature structure in Xdvi. The predicate produces LaTeX code (using
Chris Manning’s avm macro’s); it runs LaTeX and xdvi onréwsult.

8.35.hdrug_latex:latex_fs_list(+List)

Displays each Term in List as a feature structure in Xdvi. The predicate produces LaTeX code
(using Chris Manning’s avm macro’s); it runs LaTeX and xdvi orrélsalt.

8.36.hdrug_latex:latex_term(+Term)

Displays Term in Xdvi. The predicate produces LaTeX code; it runs LaTeX and xdvi on the
result.

45

8.37.hdrug_latex:latex_term_list(+List)

Displays each Term in List in Xdvi. The predicate produces LaTeX code; it runs LaTeX and
xdvi on theresult.

8.38.generate(Sem)

generates from the semantic representation Sem. Sem is first filtered through the hook
predicateextern_sem.

8.39.parse(Phon)

parses from the phonological representation Phon; typically Phon is a list of atoms, refer to
the extern_phon hook predicate for more complessibilities.

8.40.generate_obj_no(Integer)

generated from the semantic representation of object Integer. Only the semantic
representation of that object is passed tqytheerator.

8.41.available

Lists all available parsers and generators, and their associated activity status. During parser
comparison and generator comparison, only those parsers and generators are compared which
are currenhactive.

8.42.0bject(No,Object)

Results of parsing and generation are normally added to the database. This predicate can be
used to fetch such an object. The first argument is an integer used as the key of the object, the
second argument is a trippéCat,Phon,Sem).

8.43.reset_table /freset_table(ParGen)

Without an argument, removes all results of parser comparison and generator comparison
runs. With an argument, only remove information concerning that particular parser or
generator.

8.44.parser_comparisons fparser_comparisons(Keys)

Without arguments, compares active parsers on all sentences in test suite. With an argument,
Keys is a list of keys which relate to the first argument of the sentence hook predicate. The
active parsers will be compared on sentences with a matioéyng

46

8.45.generator_comparisons generator _comparisons(Keys)

Without arguments, compares active generators for all logical forms of test suite. With an
argument, Keys is a list of keys which relate to the first argument of the If hook predicate.
Only the logical forms with a matching key ax@mpared.

8.46.sentences

lists all sentences itest-suite

8.47.Ifs

lists all logical forms irtest-suite

8.48.
parse_compare(Sentence)/parse_compare(Max,Sentence)

Compares active parsers on Sentence. In the binary format, Max is an integer indicating the
maximum amount ofsec.

8.49.generate_compare(Lf)/generate_compare(Max,Lf)

Compares active generators on Lf. In the binary format, Max is an integer indicating the
maximum amount afnsec.

8.50.compile _user_clause[(Module)]

This predicate will construct Module:user_clause/2 definitions based on the available
Module:clause/2 clauses (if no Module is specified, user is assumed). In the body of these
clauses feature constraints are expanded out. The user_clause predicate is used for graphical
display of predicates defined in the grammar. So you have to add a (typically multifile)
predicate user:user_clause(A,B) :- Module:user_clause(A,B) for\dadhle.

9. hdrug_call_tree: Displaying LexicalHierarchies

This library is intended to be used to display lexical hierarchies in tree format. The relevant
predicates all take a unary predicate Pred. The predicates then pretty print in a tree format the
hierarchy related to the predicate Fuctor/1 as follows. Pred dominates all predicates that call
Pred in theitbody.

If the optional Functor argument is absent, then the user:call_default/1 hook predicate is used
to obtainFunctor.

47

transitive(X) :-verb(X).
verb(X) :-lex(X).
noun(X) :-lex(X).
gives the tredex(verb(transitive),noun)

Other calls in the body are attached to the label, as a poor man’s way to illustrate multiple
inheritance:

transitive(X) :-verb(X).

verb(X) :-lex(X).

noun(X) :-lex(X),other(X).
gives:lex(verb(transitive),noun[other])

Leaves of the tree can be defined by the user (e.g. to stop the tree at interesting point, and to
give interesting info in the label, use the hook predicate user:call_leaf(Call,Label). And yes,
don’t forget the obvious: it is assumed that the predicates arequosive.

9.1.Hook Predicates
This section lists the hook predicates for the hdrug_calllineey.

9.1.1.user:call_default(Functor)

Indicates that Functor is the default predicate for the various calpredeates.
9.1.2.user:call_clause(Head,Body)
9.1.3.user:call_leaf(Leaf)

9.1.4.user:call_build_lab(F,Fs,L)
9.1.5.user:call_ignore_clause(F/A)

9.2.Predicates

This section lists the predicates exported by the hdrug_callikiragy.

48

9.2.1. hdrug_call_tree:call_tree_bu[_tk/_clig/_latex][(Functor)]

pretty prints in a tree format the hierarchy related to the predicate Fuctor/1. If the optional
Functor argument is absent, then the user:call_default/1 hook predicate is used to obtain
Functor. The _tk clig and _latex suffices indicate that a different output medium should be
chosen (instead of tlewnsole).

10. hdrug_chart: Displaying Charts

The module hdrug_chart is intended to be used to display chart-like data-structures (on a
Tcl/Tk canvas).

10.1.Global Variables

This section lists the global variables maintained by the hdrug lidvary.
10.1.1.user:chart_xdist

This flag determines the horizontal distance between nodes dfidine

10.1.2.user:chart_ydist

This flag determines the distance between edges over tha sagee

10.2.Hook Predicates

This section lists the hook predicates for the hdrug_ tbaaty.

10.2.1.user:pp_chart_show_node_help(Atom)

Short atom to be displayed in the help-line upon entering nodes of the chart. This is typically
used to indicate the corresponding actions of mouse clicks ooties.

10.2.2.user:pp_chart_item[23](Ident)

Used by hdrug_chart. This predicate can be used to define an action to be executed upon
clicking the label of an edge of the chart. This variant is for edges above the horizontal axis.
The argument Ident refers to the fourth argument of the relevant edge that was one of the
elements in the list passed on as the second argument of the pp_chart/3 predicate. The
variants with a 2 or 3 suffix are used to define an action for the second or third botiose

49

10.2.3.user:pp_chart_item_b[23](Ident)

Used by hdrug_chart. This predicate can be used to define an action to be executed upon
clicking the label of an edge of the chart. This variant is for edges below the horizontal axis.
The argument Ident refers to the fourth argument of the relevant edge that was one of the
elements in the list passed on as the third argument of the pp_chart/3 predicate. The variants
with a 2 or 3 suffix are used to define an action for the second or third inotise.

10.3.Predicates

This section lists the predicates exported by the hdrug_|dbrarty.

10.3.1.pp_chart(Nodes,Edges,Bedges)

Pretty-printing routine (on the Tk widget) for chart-like datastructures. Nodes is a list of
integers, indicating the nodes of the chart (the string positions). Edges is a list of edges. Each
edge is a term edge(P,Q,Cat,ldent) where P and Q are chart nodes, Cat is some atom used as
the label of the edge, and Ident is some atom used to identify the edge. This identifier is
passed on to the hook predicates pp_chart_item and pp_chart_item_b which can be used to
define an action for clicking the label of a chart item. Bedges is also a list of edges; these
edges are placed on and below the nodes of the chart (this can be used, for instance, to display
the words of the chartlexample:

?-pp_chart([0,1,2],[edge(0,1,np,1),edge(1,2,vp,2),edge(0,2,s,3)],
[edge(0,1,jan,£dge(1,2,slaapt,5)]).

11. hdrug_clig: Interface to CLIG

This module provides an interface to Karsten Konrad's CLiG system for visualization of
feature-structures artees.

11.1.Predicates
This section lists the predicates exported by the hdruglitmiayy.

11.1.1.clig_fs(Fs)

displays a feature structure in CLiG. Assumes that hdrug(hdrug_feature) is loaded and that
feature declarations have been compiecample:

X:cat => npclig_fs(value(X)).

50

11.1.2.clig_fs_list(List)

displays each feature structure in List in CLIG. Assumes that hdrug(hdrug_feature) is loaded
and that feature declarations have been comgeample:

X:cat => np, Y:cat => vpclig_fs_list([X,Y]).

11.1.3.clig_tree(Format,Term)

displays a feature structure in CLIG. Format is a tree-format; Term is an arbitrary term. The
hook-predicates graphic_path, graphic_label and graphic_daughter are used to obtain the tree
structure forrerm.

12.hdrug_feature: The Hdrug FeatureLibrary

The feature library provides extensive possibilities to compile feature equations into Prolog
terms, and to view such compiled Prolog terms as feature-structures. The motivation for such
an approach might be that you want feature structures for readability on the one hand, but
Prolog terms and Prolog unification of such terms for effiency reasons internally. The
package is heavily influenced by the work of CiMisllish.

Types

Before feature structures can be compiled into terms, a number of type declarations need to be
specified. The declarations that need to be defined are top/l, type/3 and at/1. These three
definitions define a type hierarchy. This hierarchy has the shape of a tree. The top/1 definition
defines the daughter nodes of the root of the tree. This root is always‘tcgdled

Attributes can be attached to a single type in the type hierarchy. If a type is associated with an
attribute then this attribute is inherited by all of its subtypes. The top node of the type
hierarchy can be seen as a variable. You can not specify any attributes for this type. The
type/3 predicate defines for a given type (first argument) a list of subtypes (second argument)
and a list of attributes (thirargument).

The at/1 definitions define terminals of the tree that do not introduce attributes. It is an
abbreviation of a type/3 definition in which the second and third argument are both the empty
list.

As an example, consider the following type tdednition:

top([boolean,sign,cat]).
type(boolean,[+,-],[]).

at(+).

at(-).
type(sign,[],[cat,phon,sem]).
type(cat,[noun,verb],[agr]).
type(noun,[],[pro]).

51

type(verb,[],[aux,inv,subj]).
If this type definition is consulted by Hdrug, and if thieective:
.- type_compiler.

is called, then it is possible to view the type definition by choosing the ‘view type tk’ menu.
This gives rise to a tree on the canvas as
[http://ww. | et.rug. nl /~vannoor d/ Hdr ug/ Manual / t ype. png|

The meaning of such a type tree can be understood as follows. The class of objects is divided
in three mutually exclusive subclasses, called boolean, sign and cat. Objects of type boolean
can be further subdivided into classes + or -. Objects of type sign can be further specified for
a cat, phon or seattribute.

The meaning of this type tree can also be understood by looking at the way in which objects
of a certain type are represented as Prolog terms. This s illustrated as
[http://ww | et.rug. nl / ~vannoor d/ Hdr ug/ Manual / t r ee. png|

Equationalkonstraints

If the type definition is compiled, then the following predicates can be used: <=>/2, =>/2,
==>/2. The first predicate equates tywaths, the second predicate assigns a type to a path,
and the third predicate assigns an arbitrary Prolog ternpatha

A path is a Prolog term followed by a sequence of attributes, seperated by a colon (:).
Therefore, given the previous example of a type tree, we can have the following equational
constraint:

X:cat =>noun.
X =sign(_H,cat(houn(_G, F), E, D), C, B, A)
Y:cat:agr <=>Y:cat:subj:cat:agr.
Y =sign(_O,cat(verb(_N, M, L,sign(_K,cat(_J, E, 1),
_H,_G, F)), E,_D), C, B,_A
Z:phon ==>[jan,kust,marie].
sign(_D,_C,[jan,kust,marie], B, A)

Lists
You can add (ordinary Prolog) lists to your type tree by the sidgdlaition:
list_type(HeadAtt, TailAtt).

This will allow the use of attributes HeadAtt and TailAtt for referring to parts of lists.
Furthermore, lists of typed objects will be shown appropriatelyekample:

52

http://www.let.rug.nl/~vannoord/Hdrug/Manual/type.png
http://www.let.rug.nl/~vannoord/Hdrug/Manual/tree.png

[-user].

[list_type(h,t).

| {user consulted, 20 msec #gtes}
"D

yes

| ?- X:t:h:cat =>verb.

X =[_A,sign(_K,cat(verb(_J, I, H, G), F, E), D, C,_ B)|?L]

yes
| ?- X:t:h:cat => verlbshow(fs,latex,[value(X)]).

X =[_A;sign(_K,cat(verb(_J, I, H, G), F, E), D, C,_ B)|?L]
Extensionality

Direct subtypes of type ‘top’ are represented using an extra variable position. This is to make
sure that objects are only identical if they have been unified. For some types this does not
make much sense. Types that you want to consider as ‘extensional’ in this way are to be
declared with the predicate extensional/l. Boolean types (cf. below) are extensional by
default. Providing an intentional/1 definition makes a booleanitypasional.

The following example illustrates the difference. Without the extensional predic&izvere

Xinv => -, X:aux => - tty_fs(X).
{verb}

|aux {-}

[inv.

After declaring that boolean and ‘-’ be extensional types (and recompiling the type tree), we
get:

Xinv => -, X:aux => - tty_fs(X).
{verb}

|aux{-}

[inv {-}.

The difference is that Hdrug does not show explicitly that the values of aux and inv are the
same in the second example. This is redundant information because objects of extensional
types always are the same if they have the same inforntatrdeant.

Unify_except

The library provides the predicates unify_except/3, unify_except |/3 and overwrite/4. The
first argument takes two feature terms and a path. The first and second argument are unified
exceptfor the value at thpath}.

53

As an example (assuming the simple type system given above), wehanght
| ?-unify_except(X,Y,cat:agr).

X =sign(_G,cat(F, E, D), C, B, A),
Y =sign(_G,cat(F, H, D), C, B, A

The predicate unify_except | is similar, except it takes a list of paths rather than a single path
as its third argument. Finally, the predicate overwrite/4 can be understood by looking at its
definition:

overwrite(FS,FS2,Path, Type)
unify_except(FS2,FS,Path),
FS2:Path =Fype.

Find_type

The meta-logical predicates find_type/2 and find_type/3 can be used to get the most specific
type of a feature term. The first argument is the feature term, the second argument is a list of
most specific types (for simple usage just consider the first element of this list). The optional
third argument is a list of attributes that are appropriate for this typexioiple:

| ?- X:agr <=> X:subj:agfind_type(X,[Y|_]).

X = cat(verb(_G,_F, E,cat(D, B, C)), B, A),
Y = verb?

It is clear that find_type/2,3 are meta-logical predicates by looking at the following example,
where the conjuncts assvapped:

| ?- find_type(X,[Y|_]), X:agr <=3X:subj:agr.

X = cat(verb(_G,_F, E,cat(D, B, C)), B, A),
Y =top ?;

Disjunction and Negation over Atomialues

A special mechanism is provided for atomic values to allow for disjunction and negation over
such atomic values. These atomic values are not declared in the type-system as shown above,
but rather they are introduced by the predicate boolean_type/2. The first argument of this
predicate is an identifier, the second argument of this predicate is a list of lists that is
understood as a set product. For example, agreement features could beadefined

boolean_type(agr,[[1,2,3],[sg,pl],[mas,fem,neut]])

So valid and fully specified values for agreement consist of an element from each of the three
lists. The syntax for type-assignment is extended to include disjunction (’;’), conjunction
(‘&) and negation ('~") of types. For example, to express that X has either singular masculine
or not-second person agreement, we sirstaye:

54

X=>(sg &mas; ~23.

The following example illustrates the use of thaxkage:
| ?-[-user].
| boolean_type(agr,[[1,2,3],[sg,pl],[mas,fem,neut]]).

| {user consulted, 10 msec 3b$tes}

yes
| ?-type_compiler.

yes
| ?-X=>(sg &mas;~p

X =agr(0, L,K, J, I, _H,_G, G,_G, G, G,_F,_F,_E, D, C,B,_21)

The example shows how complex terms are created for such boolean types. This is useful
because disjunction and negation can be handled by ordinary unification in this way. Luckily
the pretty printing routines will turn such complex turns back into somethingresmidle:

| ?- X: agr => (sg & mas ; ~2 & neushow(fs,latex,[value(X)]).
12.1.Hook Predicates
This section lists the hook predicates used by the hdrug_ fdinany.

12.1.1.top(Subtypes)

Defines all sub-types of top as a listaddms.

12.1.2.type(Type,Subtypes,Attributes)

Defines a Type with Subtypes and Attributes. In general, Subtypes is a list of list of types. If a
list of types [T0..Tn] is given, then this is automatically convertdfilta.Tn]].

12.1.3.at(Type)

Type is an atomic type, i.e. without any sub-types and withouatnlgutes.

12.1.4.list_type(Head,Tail)

Declares Head and Tail to be the attributes to refer to the head and the tail of objects of type
‘list’.

55

12.1.5.extensional(Type)

Declares Type to be an extensional type, i.e. no extra variable is added to objects of this type;
extensional objects are identical if they have the same value for each of their attributes.
Intensional objects are identical only if they have hashed.

12.1.6.boolean_type(Type,Model)

Declares Type to be a boolean type with Model as its model (list of list of atoms). For
instance, boolean_type(agr, [[1,2,3], [sg,pl], [mas,fem,neut]]) defines that agr is such a
booleantype.

12.1.7.intensional(Type)

Type must be a boolean type. Boolean types are extensional by default, unless this predicate
is defined forthem.

12.2.Predicates

This section lists the predicates exported by the hdrug_fdddraey.

12.2.1.hdrug_feature:pretty type(Type)

pretty prints information on Type. Types should have been compiled with
hdrug_feature:type_compiler.

12.2.2.hdrug_feature:find_type(?Term,-Types][,-Atts])

Types will be bound to the list of most informatives sub-types of Term; Atts will be bound to
the list of all attributes of Term. Meta-logical. Types should have been compiled with
hdrug_feature:type_compiler.

12.2.3.hdrug_feature:unify_except(T1,T2,Path)

T1 and T2 are Prolog terms. Path is a sequence of attributes separated by colons. The
predicate evaluates T1:Path and T2:Path (in order to ensure that Path is consistent with both
objects. Furthermore, T1 and T2 are unified except for the values at T1:Path and T2:Path.
Types should have been compiled wittrug_feature:type _compiler.

12.2.4.hdrug_feature:unify_except I(T1,T2,ListOfPaths)

Similar to unify_except, except that the third argument now is a list of paths. T1 and T2 are
Prolog terms. Each path in ListOfPaths is a sequence of attributes separated by colons. The
predicate evaluates for each Path, T1l:Path and T2:Path (in order to ensure that Path is
consistent with both objects. Furthermore, T1 and T2 are unified except for all values at
T1:Path and T2:Path for Path in ListOfPaths. Types should have been compiled with

56

hdrug_feature:type compiler.

12.2.5.hdrug_feature:overwrite(T1,T2,Path,Type)

Abbreviation for unify_except(T1,T2,Path), T2:Path => Type; i.e. T1 and T2 are identical,
except that T2:Path is of type Type. Types should have been compiled with
hdrug_feature:type compiler.

12.2.6.hdrug_feature:(ObjPath => Type)

This predicate evaluates ObjPath, and assigns Type to the result (i.e. the result is unified with
the Prolog term representation of Type). ObjPath is a Prolog term followed by a (possibly

empty) list of attributes separated by the colon :. A path such as X:syn:head:cat refers to the
cat attribute of the head attribute of the syn attribute of X. Type must be a type (Prolog atom)
or a boolean expression of boolean types. Types should have been compiled with
hdrug_feature:type compiler.

12.2.7.hdrug_feature:(ObjPath /=> Type)

This predicate evaluates ObjPath, and ensures that it is not of type Type (i.e. the result is not
allowed to subsume the Prolog term representation of Type). ObjPath is a Prolog term
followed by a (possibly empty) list of attributes separated by the colon :. A path such as
X:syn:head:cat refers to the cat attribute of the head attribute of the syn attribute of X. Type
must be a type (Prolog atom) or a boolean expression of boolean types. Types should have
been compiled with hdrug_feature:type_compiler. The implementation of this construct uses
delayedevaluation.

12.2.8.hdrug_feature:(ObjPath ==> Term)

This predicate evaluates ObjPath, and unifies Term with the result. ObjPath is a Prolog term
followed by a (possibly empty) list of attributes separated by the colon :. A path such as
X:syn:head:cat refers to the cat attribute of the head attribute of the syn attribute of X. Term is
an arbitrary Prolog term. This predicate is often used to include arbitrary Prolog terms inside
feature structures. You can define a hook predicate catch_print_error/3 in order to define
pretty printing for such terms. Types should have been compiled with
hdrug_feature:type compiler.

12.2.9.hdrug_feature:(ObjPathA <=> ObjPathB)

This predicate evaluates PathA and PathB, and unifies the results. ObjPathA and ObjPathB
each is a Prolog term followed by a (possibly empty) list of attributes separated by the colon :.
A path such as X:syn:head:cat refers to the cat attribute of the head attribute of the syn
attribute of X. Types should have been compiled Wdhug_feature:type compiler.

57

12.2.10.hdrug_feature:(PathA <?=?>PathB)

This predicate uses the if _defined/2 construct in order to unify two paths, provided each of
the two paths is defined. It is definbg:

A <?=7?>B:-
if defined(A,Vval),
if defined(B,Val).

12.2.11 hdrug_feature:is_defined(Path,Bool)

This predicate evaluates Path. If this is possible (i.e. the attributes are all appropriate) then
Bool=yes. Otherwis&ool=no.

12.2.12 hdrug_feature:if _defined(Path,Val[,Default])

This predicate evaluates Path, and unifies the result with Val. If the path cannot be evaluated
(for instance because a feature is used which is not appropriate for the given type) then the
predicate succeeds (in the binary case) or unifies Val with Default (in the ternary case). For
example:

if _defined(X:head:subcat,List,[]),

could be used as part of the definition of a valence principle, in order to obtain the list value
of the subcat attribute. However, for categories which have no subcat attribute, List is
instantiated td).

12.2.13hdrug_feature:type compiler[(Module)]

Compiles type declarations (loaded in Module or user) into definitions for the predicates
=>/2, <=>/2, ==>/2, unify_except/3, overwrite/4. The type declarations consist of definitions
for the hook predicates top/l, at/l, type/3, list_type/2, extensional/l, boolean_type/2,
intensional/1. The top/1 declaratiorrégjuired.

top(Subtypes) is an abbreviation fgpe(top,[Subtypes],[]).
at(Type) is an abbreviation foype(Type,[].[]).

type(Type,[TO,..,Tn],Atts), where each Ti is atomic, is an abbrevation for
type(Type,[[TO,.., Tn]],Atts).

Each type is specified by a list (conjunction) of lists (exclusive disjunctions) of subtypes and a
list of attributes.

Objects of type type(Type,[[Al..An],[B1..Bn],...,[Z1..Zn]],[Attl..Attn]) will be represented
by the Prolog terntype(Ai’,Br’,..,Z1" Attl’,.. Attn’,)

58

For example, theeclaration
type(sign,[[basic,complex],[nominal,verbal]],[mor,sem))

implies that everything of type sign is represented with a term sign(BorC,NorV,Mor,Sem,)
where the first argument represents the first sub-type (basic or complex and any associated
information with these subtypes), the second argument represents the second subtype
(nominal or verbal), the third argument represents the value of the ‘mor’ attribute, and the
fourth argument represents the value of the ‘sem’ attribute. The fifth argument is introduced
in order that such objects are ‘intensional’: objects are identical only if they have been
unified.

Assumptions:

‘top’ has no appropriate features, will always be denoted with Variable bottom has no
appropriate features, will not be denoted -> failure hence top is only specified along one
‘dimension’ (useop/1).

Other types can be further specified along several dimensions, hence can have more than one
subtype, at the same time. Subtypes of a type are mutually exclusive (in the example above,
you cannot be both nominal andrbal).

All types describe intensional objects (as in PATR Il). For this purpose, during compilation
an extra argument position is added to which you cannot refer. You can use extensional/l for
a specific type in order that this extra position isaudted.

Booleantypes.

The technique discussed in Chris Mellish’ paper in Computational Linguistics is available to
be able to express boolean combinations of simple types. First, boolean types are declared
using the hook predicate boolean_type(Type,ListOfLists). For exampléedheration

boolean_type(agr,[[1,2,3],[sg,pl],[mas,fem,neut]])

declares that objects of type ‘agr’ are elements of the cross-product of {1,2,3} x {sg,pl} X
{mas,fem,neut}. Instead of simple types, boolean combinations are now allows, using the
operators & for conjunction, ~ for negation and ;djunction.

?- X =>(sg & ~fem pl).

X=agr(0,_A,_B,_ C,_C, D,_E,_F,_G,_H, H_1_J, K, L, M, M, N1)

13. hdrug_show: Visualization

The libraries contain predicates to visualize trees, feature-structures and Prolog terms
(including Prolog clauses). A number of different output media are available: LaTeX, Tcl/Tk,
CLiG, DOT, and ordinary text output. The visualization tools are all available by means of a
single generic predicathow/3.

59

Viewing Prolog Terms representing Feat8teuctures

Note that a couple of predicates are available to view Prolog terms as feature structures.
Again, the predicate show/3 is available as an interface to this functionality. For example, you
might try theconjunction:

Y:cat:agr <=> Y:cat:subj:cat:agshow(fs,tk,[value(Y)]).

Instead ottk, any of the identifieréatex, user, clig, dot can be used to direct the output to a
different medium. For instance, thaery

Y:cat:agr <=> Y:cat:subj:cat:agshow(fs,latex,[value(Y)]).
But if you insist on ordinary outputy:
show(fs,user,[value(X)]).

This produces:

{sign}

|cat{verb}

| |agA>

| |subfsign}

| | |cafcat}
||| lagrA>.

Not only can you view feature structures this way, but also clauses; cf. dhelovd
TreeFormats

The libraries contain extensive possibilities to produce output in the form of trees. Only a few
declarations are needed to define what things you want to see in the tree. In effect, such
declarations define a ‘trdermat’.

In Hdrug, there can be any number of tree formats. These tree formats are named by a ground
identifier. A tree format consists of three parts: plagh definition indicates what part of the

object you want to view as a tree; tladel definition indicates how you want to print the

node of a tree; and thalaughter definition indicates what you consider the daughters of a
node.

Because we want to be able to have multiple tree formats around, we must declare the
corresponding predicates ‘multifile’, as otherwise existing tree formats wowchbed.

For example, the following predicates define a tree-format called ‘s’ (this example is taken
from the ‘Dcg’application).

60

:- multifile graphic_path/3.
graphic_path(s,node(_,S),S).

:- multifile graphic_label/3.
graphic_label(s,Term,Labeb
functor(Term,Label,).

:- multifile graphic_daughter/4.
graphic_daughter(s,1,Term,D)
arg(1,Term,D).

graphic_daughter(s,2,Term,D)
arg(2,Term,D).

The first predicate defines that we want to take the semantics part of a node as the term that
we want to view as a tree. The second predicate defines that for a given tree Term we want to
print its functor as the node label. Finally the third predicate defines that for a given tree Term
the first daughter is to be the first argument of the term, and the second daughter is to be the
secondargument.

As another example of a tree format definition, consider the constraint-based Categorial
Grammar application. application. Here fared:

:- multifile graphic_path/3.
graphic_path(syn,Obj,0bj).

:- multifile graphic_label/3.
graphic_label(syn,tree(Sign,_,[|_]),Label)
cat_symbol(Sign,Label).

graphic_label(syn,tree(W,_,[]),W).

:- multifile graphic_daughter/4.
graphic_daughter(syn,No,tree(_, ,[H|T]),B)
nth(No,[H|T],D).

Here, objects generally are of the form tree(Node, ,ListOfDs). Therefore, the path part of the
tree format definition simply unifies the object and the tree part. The label part of the tree
format definition distinguishes two cases. If there are no more daughters, then the node is a
terminal, and this terminal is simply taken to be the node label. In the other case the node
label is defined by a seperate predicate ‘cat_ symbol’. This predicate changes the internal
representation into some more readable format. Finally, the daughter part of the tree format
definition uses the Sicstus library predicate ‘nth’. The effect of the definition is that the first
daughter is the first element of the daughter dist,

Tk Output

61

The library defines the predicate show/3 index{show (predicate)} as a generic interface to the
visualization tools. If a tree is to be displayed on the Tcl/Tk Canvas widget, then we can use
this predicate by taking the desired tree format as the first argument, the atom { t tk} as the
second argument, and a list of objects we want to be displayed as the third and final argument.
Forinstance:

?- findall(object(A,B), object(A,B)Dbjects),
show(syn,tk,Objects).

If the tree is output thru the Tk/Tcl canvas, then the nodes of the trees are buttons. For each
tree format we can define what action should be undertaken if a button is pressed. This is
defined by the predicate show_node/2. The first argument is the identifier of the tree format,

the second argument is the current node (note: this is not the label as defined by
graphic_label, but the term on the basis of which graphic_labefiised).

The following definition, from the Constraint-based Categorial Grammar application, prints
the node as a feature structure in a separat@idow.

show_node(syn,tree(Sign,[_|_],:9)
show(fs,tk,[value(Sign)]).

If this predicate is not defined then the label will simply be written out as a Prolog term to
standardutput.

Similarly, the predicates show_node2/2 and show_node3/2 can be used to define an action for
pressing the second and third mouse-button respectively. Generally these predicates should be
definedmultifile.

LaTeXoutput

The predicate show/3 is also used to produce LaTeX output of trees. A variant of the previous
example producdsaTeX:

?- findall(object(A,B), object(A,B)Dbjects),
show(syn,latex,Objects).

This ensures that a LaTeX file is created and the appropriate shell commands are called to get
ghostview to display the tree. The first argument is the naméreé-dormat.

CLIiG Output

A further possibility concerns is to use the CLIG system for displaying output. In that case the
examplebecomes;

?- findall(object(A,B), object(A,B)Dbjects),
show(syn,latex,Objects).

62

Dot Output

For trees, you can also use the DOT graph visualizptogramme.

ASCII Art Output

Ordinary text (to standard output) is available as well; in that case the idard#ias used:

?- findall(object(A,B), object(A,B)Dbjects),
show(syn,user,Objects).

Trees of featurstructures

Trees in which each of the nodes is a feature-structure are supported for Tk output and LaTeX
output. Nodes are interpreted as a description of a feature-structure if the tree format identifier
matchesnatrix().

User defined action for a given node can be obtained using a tree format which matches
user(_). In such a case you are responsible for displaying a given node by defining the
predicate tk_tree_user_node/2 where the first argument is the label of the current node, and
the second argument is a Tcl/Tk frame identifier already packed as part of the tree, which can
be further workedipon.

Visualization ofclauses

The third argument of the predicate show can be a clause. An is example is
[http://ww. | et.rug. nl / ~vannoor d/ Hdr ug/ Manual / cl ause. png|

Visualization of the typéeclarations

Refer to the predicates pretty typgitetty type/l.

14. help: The Help System

The help module provides support to create both on-line and off-line documentation on
Prolog programs. Documentation must be defined by the hook predicate help_info/4.
Documentation on a per module basis is provided if a

help_info(module,Module, TitleString,DescriptionString) definition is given for Module. In
that case the system also checks for Module:help_iatfeitaitions.

The module supports production of the help information on standard output, (which can be
converted into html format), and there also is an interface to a graphical user interface based
on library(tcltk).

63

http://www.let.rug.nl/~vannoord/Hdrug/Manual/clause.png

14.1.List of Hook Predicates

This section lists the hook predicates which an application can define for thadukife.

14.1.1.help_info(Class,Key,Usage,Expl)

Provides help information for Class and Key (both must be atoms). Usage and Expl are
Prolog strings. Typically the Usage string is a short summary, and Expl is a longer
explanation. Class is typically pred, hook, flag, command, option, etc. Note that each module
can have its own help_info predicates. You can also define user:help_info/4 declarations on
the special class module. In that case, if a full documentation on a module is requested the
Usage string is used as the title and the Expl string as an introduction to the module. There
can also be Module:help_info/4 declarations on the special class ‘class’. If a full listing on a
class in Module is requested, then Usage and Expl are used as the title and introduction to that
section.

14.2.List of Predicates

This section lists the predicates defined by the tregule.

14.2.1.help_listing

Lists all helpinformation.

14.2.2.help/help(Module)/help(Module,Class)

Use help/0 to see for which modules help is available. Use help/1 for an overview which
classes are available for a given module. Use help(Module,Class) to see for which keys help
is available.

14.2.3.help_module[(M)]

Use help_module(M) for a full listing of the help information available on module M.
Without M uses modulaser.

14.2.4.help_class(C[,M])

Use help_class(C,M) for a full listing of the help information available for class C in module
M. Without M module user iassumed.

14.2.5.help_key(K[,C[,M]])

Use help_key(K,C,M) for a full listing of the help information available for key K in class C
in module M. If C (and M) are not given, then use variable for C &nd

64

14.2.6.help_add_to_menu(Menu,Interp)

Interface of the help system and a graphical user interface based on library(tcltk). Menu must
be a menu already existing for Tcl/Tk interpreter Interp. The various help messages are added
as cascaded menu entries in Menu. Cf. also the help/1 predicate and the help_info/4 hook

predicate.

65

	1. HDRUG: A Development Environment for Logic Grammars
	1.1 Interface
	1.2 Visualisation
	1.3 Parser and Generator Management
	1.4 Useful Libraries

	2. Hdrug Applications
	2.1. Ale
	2.2. Alvey NL Tools
	2.3. CFG
	2.4. Constraint-based Categorial Grammar
	2.5. Definite Clause Grammar
	2.6. Chat-80
	2.7. Tree Adjoining Grammar
	2.8. Semantic-head-driven Generation and Head-corner Parsing
	2.9. Extraposition Grammar
	2.10. Delayed Evaluation of Lexical Rules
	2.11. Stochastic Definite Clause Grammar
	2.12. Stochastic Head-driven Phrase Structure Grammar

	3. Command Interpreter
	3.1. flag Flag [Val]
	3.2. flag Flag [Val]
	3.3. % Words
	3.4. fc Files
	3.5. um Files
	3.6. el Files
	3.7. c Files
	3.8. rc Files
	3.9. ld Files
	3.10. libum Files
	3.11. librc Files
	3.12. libc Files
	3.13. libel Files
	3.14. libld Files
	3.15. version
	3.16. quit|exit|halt|q|stop
	3.17. b
	3.18. d
	3.19. nd
	3.20. p [Goal]
	3.21. ! Command
	3.22. alias [Name [Val]]
	3.23. help [command|flag|pred|hook] [Arg]
	3.24. ? [command|flag|pred|hook] [Arg]
	3.25. listhelp [command|flag|pred|hook]
	3.26. spy [Module] Pred
	3.27. cd [Dir]
	3.28. pwd
	3.29. ls
	3.30. lt [tk/clig/latex] [Type]
	3.31. x
	3.32. nox
	3.33. tcl Cmd
	3.34. source File
	3.35. s [Format] [Output] Values
	3.36. i/j/s/w/f [Path]/T
	3.37. user/latex/tk/clig/dot
	3.38. ObjSpec/DefSpec/ValSpec
	3.39. type [t/x/tk/clig/dot] [Type]
	3.40. ps [Keys]
	3.41. psint I J
	3.42. gs [Keys]
	3.43. gsint I J
	3.44. rt [Parser/Generator]
	3.45. sentences
	3.46. lfs
	3.47. pt
	3.48. ptt
	3.49. pc Sentence
	3.50. gc LF
	3.51. gco ObjNo
	3.52. * Sentence
	3.53. parse Sentence
	3.54. - Term
	3.55. generate Term
	3.56. lg [File]
	3.57. rcg [File]
	3.58. tkconsol
	3.59. av
	3.60. no [gm] List
	3.61. yes [gm] List
	3.62. only [gm] List
	3.63. sts [Parsers]

	4. Global Variables
	4.1. generator†Generator‡
	4.2. parser†Parser‡
	4.3. application_name
	4.4. batch_command
	4.5. clig_tree_active_nodes
	4.6. blt_graph_lines
	4.7. debug
	4.8. demo
	4.9. nodeskip
	4.10. object_exists_check
	4.11. object_saving
	4.12. parser
	4.13. add_help_menu
	4.14. print_table_total
	4.15. start_results_within_bound
	4.16. end_results_within_bound
	4.17. incr_results_within_bound
	4.18. clig_tree_hspace
	4.19. clig_tree_vspace
	4.20. tcltk
	4.21. tkconsol
	4.22. top_features
	4.23. useful_try_check
	4.24. user_clause_expansion
	4.25. cmdint
	4.26. update_array_max
	4.27. hdrug_status

	5. Graphical User Interface
	5.1. The MenuBar
	5.2. The ObjectBar
	5.3. The ButtonBar

	6. Interfacing Hdrug
	6.1. use_canvas†+Mode,LeftRightTop‡
	6.2. help_hook†PredSymbol,UsageString,ExplanationString‡
	6.3. ParserModule:parse†o†Cat,Str,Sem‡‡
	6.4. GeneratorModule:generate†o†Cat,Str,Sem‡‡
	6.5. Module:count
	6.6. Module:count
	6.7. Module:clean
	6.8. start_hook†parse/generate,Module,o†A,B,C‡,Term‡
	6.9. start_hook0†parse/generate,Module,o†A,B,C‡,Term‡
	6.10. result_hook†parse/generate,Module,o†A,B,C‡,Term‡
	6.11. end_hook†parse/generate,Module,o†A,B,C‡,Term‡
	6.12. end_hook0†parse/generate,Module,o†A,B,C‡,Term‡
	6.13. top†Name,Cat‡
	6.14. semantics†Cat,Sem‡
	6.15. phonology†Cat,Phon‡
	6.16. extern_sem†Extern,Intern‡
	6.17. extern_phon†Extern,Intern‡
	6.18. sentence†Key,Sentence‡, sentence†Key,Max,Sentence‡
	6.19. lf†Key,LF‡, lf†Key,Max,Lf‡
	6.20. user_max†Length,Max‡
	6.21. gram_startup_hook_begin
	6.22. gram_startup_hook_end
	6.23. user_clause†Head,Body‡
	6.24. graphic_path†Format,Obj,Term‡
	6.25. graphic_label†Format,Node,Label‡
	6.26. graphic_daughter†Format,No,Term,Daughter‡
	6.27. show_node†Format,Node‡
	6.28. show_node2†Format,Node‡
	6.29. show_node3†Format,Node‡
	6.30. tk_tree_user_node†Label,Frame‡
	6.31. clig_tree_user_node†Label‡
	6.32. dot_tree_user_node†Label‡
	6.33. latex_tree_user_node†Label‡
	6.34. shorten_label†Label0,Label‡
	6.35. call_build_lab†F,Fs,L‡
	6.36. call_build_lab†Functor/Arity‡
	6.37. exceptional_sentence_length†Phon,Length‡
	6.38. exceptional_lf_length†Sem,Length‡
	6.39. hdrug_initialization
	6.40. hdrug_command†Name,Goal,Args‡
	6.41. hdrug_command_help†Name,UsageString,ExplanationString‡
	6.42. help_flag†Flag,Help‡
	6.43. option†Option,ArgvIn,ArgvOut‡
	6.44. usage_option†Option,UsageString,ExplanationString‡
	6.45. tk_tree_show_node_help†TreeFormat,Atom‡
	6.46. show_relation†F/A‡
	6.47. display_extern_sem†+ExtSem‡
	6.48. display_extern_phon†+ExtPhon‡
	6.49. compile_test_suite†+File‡
	6.50. reconsult_test_suite†+File‡
	6.51. show_object_default2†+Int‡
	6.52. show_object_default3†+Int‡

	7. Command-line Options
	7.1. -flag Att Val
	7.2. -iflag Att Val
	7.3. -pflag Att Val
	7.4. -flag Att Val
	7.5. -cmd Goal
	7.6. -tk
	7.7. -notk
	7.8. -dir Dir
	7.9. -help
	7.10. -l File
	7.11. -parser Parser on/off
	7.12. -generator Generator on/off
	7.13. -quit

	8. List of Predicates
	8.1. concat†Atom,Atom,Atom‡
	8.2. concat_all†+ListOfAtoms,?Atom[,+Atom]‡
	8.3. between†+Lower, +Upper, ?Number[, +/-]‡
	8.4. atom_term†+Atom,?Term‡.
	8.5. term_atom†+Term,?Atom‡.
	8.6. gen_sym†-Atom[,+Prefix]‡
	8.7. report_count_edges_pred†:Spec‡
	8.8. report_count_edges†:Goal‡
	8.9. count_edges†:Goal,?Int‡
	8.10. debug_call†+Int,:Goal‡
	8.11. debug_message†+Int,+FormatStr,+FormatArgs‡
	8.12. initialize_flag†+Flag,?Val‡
	8.13. set_flag†+Flag,?Val‡
	8.14. flag†+Flag[,?OldVal[,?NewVal]]‡
	8.15. un_prettyvars†+Term0,?Term‡
	8.16. prettyvars†?Term‡
	8.17. prolog_conjunction†Conjunction, ListOfConjuncts‡
	8.18. prolog_disjunction†Disjunction,ListOfDisjuncts‡
	8.19. try_hook†:Goal[,:Goal]‡
	8.20. hook†:Goal‡.
	8.21. if_gui†:Goal[,:AltGoal]‡
	8.22. r
	8.23. start_x
	8.24. update_array†+List,+ArrayName‡
	8.25. tk_fs†+Term‡
	8.26. tk_fs†List‡
	8.27. tk_term†?Term‡
	8.28. tcl_eval†+Cmd[,-Return]‡
	8.29. tcl†+Expr[,+Subs[,-ReturnAtom]]‡
	8.30. show_object_no†+No,+Style,+Output‡
	8.31. show†+Style,+Medium,+Things‡
	8.32. hdrug_latex:latex_tree†+TreeFormat,+Term‡
	8.33. hdrug_latex:latex_tree†+TreeFormat,+ListOfTerms‡
	8.34. hdrug_latex:latex_fs†+Term‡
	8.35. hdrug_latex:latex_fs_list†+List‡
	8.36. hdrug_latex:latex_term†+Term‡
	8.37. hdrug_latex:latex_term_list†+List‡
	8.38. generate†Sem‡
	8.39. parse†Phon‡
	8.40. generate_obj_no†Integer‡
	8.41. available
	8.42. object†No,Object‡
	8.43. reset_table / reset_table†ParGen‡
	8.44. parser_comparisons / parser_comparisons†Keys‡
	8.45. generator_comparisons / generator_comparisons†Keys‡
	8.46. sentences
	8.47. lfs
	8.48. parse_compare†Sentence‡/parse_compare†Max,Sentence‡
	8.49. generate_compare†Lf‡/generate_compare†Max,Lf‡
	8.50. compile_user_clause[†Module‡]

	9. hdrug_call_tree: Displaying Lexical Hierarchies
	9.1. Hook Predicates
	9.1.1. user:call_default†Functor‡
	9.1.2. user:call_clause†Head,Body‡
	9.1.3. user:call_leaf†Leaf‡
	9.1.4. user:call_build_lab†F,Fs,L‡
	9.1.5. user:call_ignore_clause†F/A‡

	9.2. Predicates
	9.2.1. hdrug_call_tree:call_tree_bu[_tk/_clig/_latex][†Functor‡]

	10. hdrug_chart: Displaying Charts
	10.1. Global Variables
	10.1.1. user:chart_xdist
	10.1.2. user:chart_ydist

	10.2. Hook Predicates
	10.2.1. user:pp_chart_show_node_help†Atom‡
	10.2.2. user:pp_chart_item[23]†Ident‡
	10.2.3. user:pp_chart_item_b[23]†Ident‡

	10.3. Predicates
	10.3.1. pp_chart†Nodes,Edges,Bedges‡

	11. hdrug_clig: Interface to CLiG
	11.1. Predicates
	11.1.1. clig_fs†Fs‡
	11.1.2. clig_fs_list†List‡
	11.1.3. clig_tree†Format,Term‡

	12. hdrug_feature: The Hdrug Feature Library
	12.1. Hook Predicates
	12.1.1. top†Subtypes‡
	12.1.2. type†Type,Subtypes,Attributes‡
	12.1.3. at†Type‡
	12.1.4. list_type†Head,Tail‡
	12.1.5. extensional†Type‡
	12.1.6. boolean_type†Type,Model‡
	12.1.7. intensional†Type‡

	12.2. Predicates
	12.2.1. hdrug_feature:pretty_type†Type‡
	12.2.2. hdrug_feature:find_type†?Term,-Types[,-Atts]‡
	12.2.3. hdrug_feature:unify_except†T1,T2,Path‡
	12.2.4. hdrug_feature:unify_except_l†T1,T2,ListOfPaths‡
	12.2.5. hdrug_feature:overwrite†T1,T2,Path,Type‡
	12.2.6. hdrug_feature:†ObjPath => Type‡
	12.2.7. hdrug_feature:†ObjPath /=> Type‡
	12.2.8. hdrug_feature:†ObjPath ==> Term‡
	12.2.9. hdrug_feature:†ObjPathA <=> ObjPathB‡
	12.2.10. hdrug_feature:†PathA <?=?> PathB‡
	12.2.11. hdrug_feature:is_defined†Path,Bool‡
	12.2.12. hdrug_feature:if_defined†Path,Val[,Default]‡
	12.2.13. hdrug_feature:type_compiler[†Module‡]

	13. hdrug_show: Visualization
	14. help: The Help System
	14.1. List of Hook Predicates
	14.1.1. help_info†Class,Key,Usage,Expl‡

	14.2. List of Predicates
	14.2.1. help_listing
	14.2.2. help/help†Module‡/help†Module,Class‡
	14.2.3. help_module[†M‡]
	14.2.4. help_class†C[,M]‡
	14.2.5. help_key†K[,C[,M]]‡
	14.2.6. help_add_to_menu†Menu,Interp‡

