
LASSY: LARGE SCALE SYNTACTIC
ANNOTATION OF WRITTEN DUTCH

Deliverable 4-2: Evaluation of Alpino on Lassy Small

1



1 Background

Lassy Small is the Lassy corpus in which the syntactic annotations have been manually
verified. This part contains one million words. The composition of the corpus is detailed
in deliverable 1.1.

Lassy Large is a much larger corpus in which syntactic annotations have been assigned
automatically. The dependency structure annotations are assigned by the Alpino parser. In
addition, postag and lemma annotations have been added by TadPole [2]. The composition
of Lassy Large is documented in deliverable 1.2.

In this deliverable we report on the accuracy of the Alpino parser on Lassy Small. The
purpose of this exercise to be able to estimate the quality of the syntactic dependency
structures assigned by Alpino in Lassy Large.

The version of Alpino that was used in the following experiments is release 19076,
October 1st, 2010. The version of Lassy Small that was used is release 19076, October 1st,
2010.

2 Results

The Lassy Small corpus is composed of a number of sub-corpora. Each sub-corpus is
composed of a number of documents. In the experiment, Alpino was applied to a single
document, using the options

user_max=190000 -test1 -veryfast

With these options, the parser delivers a single parse, which it believes is the best parse
according to a variety of heuristics. These include the disambiguation model and various
optimizations of the parser presented in [4], [1] and [3]. Furthermore, the parser cannot
spend more than 190 seconds on a single sentence. If no result is obtained within this time,
the parser is assumed to have returned an empty set of dependencies, and hence such cases
have a very bad impact on accuracy.

The same options have been used for the construction of the Lassy Large corpus.
Below we list mean accuracy in terms of named dependency accuracy, as defined in [3],

and repeated below. This metric is argued to be more appropriate than an evaluation in
terms of precision, recall and f-score of dependencies. For completeness sake, we give those
numbers also.

Let Di
p be the number of dependencies produced by the parser for sentence i, Di

g

is the number of dependencies in the treebank parse, and Di
o is the number of correct

dependencies produced by the parser. If no superscript is used, we aggregate over all
sentences of the test set, i.e.,:

Dp =
∑
i

Di
p; Do =

∑
i

Di
o; Dg =

∑
i

Di
g

Using these definitions, it is straightforward to define precision (P ) as Do/Dp. Recall (R) is
given by Do/Dg. F-score is defined in terms of precision and recall as usual: 2P ·R/(P+R).

2



An alternative similarity score is based on the observation that for a given sentence
of n words, a parser would be expected to return (about) n dependencies. In such cases,
we can simply use the percentage of correct dependencies as a measure of accuracy. To
allow for some discrepancies between the number of expected and returned dependencies,
we divide by the maximum (per sentence) of both. This leads to the following definition
of named dependency accuracy.

Acc =
Do∑

i max(Di
g, D

i
p)

In the presentation of the results, we aggregate over sub-corpora. In table 1 we show the
composition of each of these sub-corpora. The various dpc- sub-corpora are taken from
the Dutch Parallel Corpus, and meta-information should be obtained from that corpus.
The various WR- and WS corpora are obtained from D-Coi. The wiki- subcorpus contains
wikipedia articles, in many cases about topics related to Flanders.

Parsing results are listed in table 2. As can be observed from this table, parsing
accuracies are fairly stable across the various sub-corpora. An outlier is the result of the
parser on the WR-P-P-G sub-corpus (legal texts), both in terms of accuracy and in terms
of parsing times. We note that the parser performs best on the dpc-bal- subcorpus, a series
of speeches by prime-minister Balkenende.

The experiments were performed on 64bit Linux workstations with 24Gb core memory
and Six-Core AMD Opteron Processor 2435 cpu. Only a single core is used by the parser.
Finally, the experiments were run with the environment variable PROLOGMAXSIZE set
to 2000M. This implies that a single Alpino process cannot ever use more than 2 Gb of
core memory.

3



sub-corpus docs sents words
dpc-bal- 4 620 8825

dpc-bmm- 41 794 15589
dpc-cam- 11 508 9961
dpc-dns- 6 264 3833
dpc-eli- 12 603 11309

dpc-eup- 4 233 6085
dpc-fsz- 4 574 10967

dpc-gaz- 1 210 3806
dpc-ibm- 9 419 8473
dpc-ind- 22 1650 33928

dpc-kam- 1 52 1329
dpc-kok- 4 101 1846

dpc-med- 9 650 13575
dpc-qty- 9 618 13720
dpc-riz- 14 210 4217

dpc-rou- 21 1356 22640
dpc-svb- 3 478 7570
dpc-vhs- 7 461 6649
dpc-vla- 4 1915 32156

wiki 111 7341 98107
WR-P-E-C 5 1014 12239
WR-P-E-E 3 90 1813
WR-P-E-H 13 2832 32222
WR-P-E-I 44 9785 199150
WR-P-E-J 26 699 15015
WR-P-P-B 1 275 2008
WR-P-P-C 33 5648 83590
WR-P-P-E 3 306 5808
WR-P-P-F 3 397 6499
WR-P-P-G 5 279 6468
WR-P-P-H 109 2267 37241
WR-P-P-I 263 5789 115934
WR-P-P-J 4 1264 30021
WR-P-P-K 1 351 6982
WR-P-P-L 2 1115 20662

WS 99 14032 205940
total 911 65200 1096177

Table 1: Composition of the Lassy Small corpus

4



sub-corpus prec rec f-score Acc msec/sent
dpc-bal- 92.78 92.75 92.77 92.54 1668

dpc-bmm- 88.30 87.32 87.81 87.11 4096
dpc-cam- 91.93 91.63 91.78 91.48 2913
dpc-dns- 90.56 90.40 90.48 90.26 1123
dpc-eli- 89.97 89.65 89.81 89.40 4453

dpc-eup- 90.91 88.88 89.88 88.67 8642
dpc-fsz- 86.50 84.99 85.74 84.72 4492

dpc-gaz- 89.03 87.99 88.51 87.83 3410
dpc-ibm- 90.26 90.01 90.13 89.56 4753
dpc-ind- 91.25 91.04 91.14 90.82 4010

dpc-kam- 90.51 89.14 89.82 88.95 4671
dpc-kok- 88.16 87.83 88.00 87.69 2546

dpc-med- 90.41 90.14 90.28 89.84 3906
dpc-qty- 90.05 89.68 89.86 89.50 7044
dpc-riz- 86.99 86.23 86.61 86.11 4926

dpc-rou- 91.58 91.42 91.50 91.15 2218
dpc-svb- 89.91 89.46 89.69 89.12 1839
dpc-vhs- 91.25 90.42 90.83 90.33 1819
dpc-vla- 90.75 90.38 90.57 90.07 2545

wiki 89.08 88.62 88.85 88.36 1940
WR-P-E-C 85.01 84.53 84.77 84.25 1827
WR-P-E-E 82.68 82.54 82.61 81.87 3599
WR-P-E-H 88.14 88.06 88.10 87.61 2110
WR-P-E-I 88.08 87.47 87.78 87.22 4051
WR-P-E-J 87.93 87.46 87.69 87.05 5276
WR-P-P-B 92.13 92.02 92.07 91.82 318
WR-P-P-C 88.29 87.87 88.08 87.44 2089
WR-P-P-E 89.33 88.94 89.14 88.52 3759
WR-P-P-F 84.00 82.23 83.11 81.92 4362
WR-P-P-G 81.44 79.23 80.32 78.72 10410
WR-P-P-H 91.48 91.37 91.42 91.09 2109
WR-P-P-I 90.51 90.35 90.43 90.05 3369
WR-P-P-J 87.40 86.19 86.79 85.79 6278
WR-P-P-K 89.49 89.25 89.37 88.85 3715
WR-P-P-L 89.00 88.39 88.70 88.02 3406

WS 90.48 90.31 90.40 90.12 1596
total 89.38 88.96 89.17 88.68 2819

Table 2: Parsing results of Alpino on the Lassy Small corpus

5



References

[1] Robbert Prins and Gertjan van Noord. Reinforcing parser preferences through tagging.
Traitement Automatique des Langues, 44(3):121–139, 2003.

[2] Antal van den Bosch, Bertjan Busser, Sander Canisius, and Walter Daelemans. An
efficient memory-based morphosyntactic tagger and parser for Dutch. In Peter Dirix,
Ineke Schuurman, Vincent Vandeghinste, and Frank van Eynde, editors, Computa-
tional Linguistics in the Netherlands 2006. Selected papers from the seventeenth CLIN
meeting, LOT Occassional Series, pages 99–114. LOT Netherlands Graduate School of
Linguistics, 2007.

[3] Gertjan van Noord. Learning efficient parsing. In EACL 2009, The 12th Conference of
the European Chapter of the Association for Computational Linguistics, pages 817–825,
Athens, Greece, 2009.

[4] Gertjan van Noord and Robert Malouf. Wide coverage parsing with stochastic attribute
value grammars. Draft available from the authors. A preliminary version of this paper
was published in the Proceedings of the IJCNLP workshop Beyond Shallow Analyses,
Hainan China, 2004., 2005.

6


