An incremental DFA minimization algorithm

Bruce W. Watson

Department of Computer Science, University of Pretoria
Pretoria 0002, South Africa
watson@OpenFIRE.org, www.OpenFIRE.oTg

Faculty of Computing Science
Technical University of Eindhoven
watson@uin. tue.nl

Ribbit Software Systems Inc. & FST Labs
watson@fst—-labs.com

Abstract

In this paper, we present a new deterministic finite automata minimization algo-
rithm. The algorithm is incremental — it may be halted at any time, yielding a
partially-minimized automaton. All of the other (known) minimization algorithms
have intermediate results which are not useable for partial minimization.

Key words: minimization, deterministic finite automata, incremental algorithms

1 Introduction

In this paper, we present a new deterministic finite automata (DFA) minimiza-
tion algorithm. The algorithm is incremental, meaning that it can be run on
a DFA at the same time as the automaton is being used to process a string
for acceptance. Furthermore, the minimization algorithm (hereafter called the
algorithm) may be halted at any time, with the intermediate result being us-
able to partially minimize the DFA. All of the other (known) minimization
algorithms have intermediate results which are not useable for partial mini-
mization [1].

It computes the equivalence of a given pair of states. It therefore draws upon
some non-automata related techniques, such as: structural equivalence of types
and memoization of functional programs.

This paper is structured as follows:

Preprint submitted to FSMNLP 2001 4 June 2001

e §1.1 gives the mathematical preliminaries required for this paper.

e §2 gives a characterization of minimality of a DFA.

e §3 gives a one-point algorithm which determines whether two states are
equivalent.

e 44 gives the incremental algorithm, making use of the one-point algorithm.

e §5 gives the closing comments for the paper.

An early version of this algorithm was presented in [1, §7.4.6].

1.1 Mathematical preliminaries

A deterministic finite automaton (DFA) is a 5-tuple (@, T, 6, qo, F') where:

@ is the finite set of states.

I is the input alphabet.

d € QxT' — QU{L} is the transition function. It is actually a partial
function, though we use 1 to designate the invalid state.

e ¢y € (Q is the start state.

o ' C (is the set of final states.

Throughout this paper, we will consider a specific DFA (Q, T, 9, qo, F).
The size of a DFA, |(Q,T, 9, qo, F')|, is defined as the number of states, |Q|.

To make some definitions simpler, we will use the shorthand I'; to refer to the
set of all alphabet symbols which appear as out-transition labels from state q.
Formally,

Ty={alacl Ad(ga)#L}

We take 6* € Q@ xI' — QU {_L} to be the transitive closure of § defined
inductively (for state ¢) as 6(¢,e) = ¢ and (for a € Ty, w € I'*) §(q, aw) =

d*(6(q, a), w).

The right language of a state ¢, written f(q), is the set of all words spelled
H

out on paths from ¢ to a final state. Formally, £ (q) = {w | §*(¢,w) € F }.

ﬁ

With the inductive definition of §*, we can give an inductive definition of L:

L(qg) = [U {a} £ (6(g, a))

a€ly

0 {e}ifqeF
O ifqg F

Phrased differently, a word z is in Z(q) if and only if

e 2 is of the form az’ where a € I' is a label of an out-transition from ¢ to
9(q,a) (ie. a € T'y) and 2’ is in the right language of 6(g, a), or
e z =¢ and ¢ is a final state.

We define predicate Fquiv to be ‘equivalence’ of states:

—

) —
Equiv(p,q) = L(p) = L(q)
With the inductive definition of Z), we can begin rewriting Fquiv as follows:

Equiv(p, q)

(definition of Equiv)

— —
L{p)= L(q9)

(the inductive definition of Z>>
(eez)(p)zsez)(q))/\l“pzl“ A
Va:ael,NT, :{a}z)(é(,a)) =

(the inductive definition of ¢ €
(peF=qeF)AT,=T, A

— —
MVa:ael,Nnl,:{a} L(5(p,a)) ={a} L((g,a)))

(for two languages Ly, L1: ({a} Ly = {a}L1) = (Lo = L1))

peF=qeF)Al,=T A
— —
Va:aelpnNTy: L(6(p,a))= L(d(g,a)))

(definition of Equiv)
peF=qeF)AT,=T, A
(Va:ael,NT,: Equiv(é(p,a),d(q,a)))

V£ (8(g,a)))
(p))

a
H
L

All of the algorithms presented in this paper are in the form of the guarded
command language — see [2,3].

2 Minimality of DFAs

The primary definition of minimality of a DFA M is:
(V M'": M’ is equivalent to M : |M| < |M'|)

where equivalence of DFAs means that they accept the same language. This
definition of minimality is difficult to manipulate (in deriving an algorithm),
and so we consider one written in terms of the right languages of states. Using
right languages (and the Myhill-Nerode theorem — see [4, §3.4]), minimality

can also be written as the following predicate:

(Vp,qe@Q:p# q:—-Equiv(p,q))

(Additionally, we require that there are no useless states — those states which
are not reachable from the start state and which cannot reach a final state;
most DFA construction algorithms do not introduce useless states, and we
ignore that issue in the rest of this paper.) Armed with Equiv we can determine
whether two states are interchangeable, in which case one can be eliminated
in favour of the other (of course, in-transitions to the eliminated state are
redirected to the equivalent remaining one). We do not detail that reduction
step in this paper, instead focusing on computing Fquiv.

From the previous section, we have an inductive definition of Equiv. Since
Equiv is an equivalence relation on states, we are actually interested in the
greatest fixed point (in terms of refinement/containment of equivalence rela-
tions) of the equation Fquiv(p,q) =

peF=qeF)AT,=T;ANa:ael,NT,: Equiv(d(p,a),d(q,a)))

All of the known DFA minimization algorithms compute this fixed point from
the top side (the unsafe side), meaning that until termination, they do not
have a usable intermediate result [1, Chapter 7]. The pointwise algorithm
presented here computes it from below (the safe side).

3 A omne-point algorithm computing Equiv(p, q)

From the problem of deciding the structural equivalence of two types, it is
known that equivalence of two states can be computed recursively by turning
the mutually recursive set of equivalences Fquiv into a functional program. If
the definition were to be used directly as a functional program, there is the
possibility of non-termination in cyclic automata. In order for the functional
program to work, it takes a third parameter along with the two states.

The following program computes relation Equiv pointwise!. An invocation
equiv(p, ¢, @) returns Equiv(p,q). During the recursion, it assumes that two
states are equivalent (by placing the pair of states in S, the third parameter)
until shown otherwise.

Algorithm 3.1:

1 Tt is similar to the one presented in [5]. The algorithm in that technical report
computes structural equivalence of types in programming languages.

func equiv(p, q,S) —
if {p,q} € S — eq := true
| {p.q} ¢S —
eg:=(peF=qeF)N([,=Ty);
eg:=eqN(Va:aecT,NT,:equiv(d(p,a),d(q,a),SU{{p,q}}))
fi;
return eq
cnuf

O
The V quantification can be implemented using a repetition
Algorithm 3.2:
func equiv(p, q,S) —
if {p,q} € S — eq:= true
| {p,a} ¢S5 —
eg:=(peF=qeF)n ([, =Ty
fora:acl',NI', —
eq := eq A equiv(3(p, a),d(g, a), S U {{p, a}})
rof
fi;
return eq
cnuf
O

The correctness of the above program can be shown by extending the correct-
ness argument given in [5]. Naturally, the guard eq can be used in the repetition
(to terminate the repetition when eq = false) in a practical implementation.
This optimization is omitted here for clarity.

There are a number of methods for making this program more efficient. From
[1, §7.3.3] and [6], it is known that the depth of recursion can be bounded by
(|Q] — 2) max 0 without affecting the result. To track the recursion depth, we
add a parameter k to function equiv such that an invocation equiv(p, ¢, 9, (|Q|—
2) max0) returns Fquiv(p, q). The new function is

Algorithm 3.3:

func equiv(p, q, S, k) —
ifk=0—eq:=(peF=qecF)
| E#£0A{p,q} €S — eq:= true
| E#0A{p,q} ¢S —

eq:=(peF=qeF)N([,=T;
fora:acI'y,Nl'y —
eq := eq A equiv(d(p,a),d(q,a), SU{{p,q}},k—1)
rof
fi;

return eq
cnuf

|

Purely for efficiency, the third parameter S is made a global variable; as a
result equiv is no longer a functional program. The correctness of this trans-
formation is shown in [5]. We assume that S is initialized to @. When S = 0,
an invocation equiv(p, ¢, (|Q| — 2) max0) returns Fquiv(p, q); after such an
invocation S = 0.

Algorithm 3.4 (Pointwise computation of E):

func equiv(p, ¢, k) —

ifk=0—eq:=(peF=qecF)

| k#0A{p,q} €S — eq:=true

[E#0A{p,q} &5 —
eq:=(peF=qeF)N([,=T));
S:=Su{{p.q}t};
fora:acI',NI'y —

eq := eq A equiv(d(p,a),0(q,a), k —1)

rof;
S:=5\{{p,a}}
fi;
return eq

cnuf

|

The procedure equiv can be memoized ? to further improve the running time
in practice. This algorithm does not appear in the literature.

2 Memoizing a functional program means that the parameters and the result of each
invocation are tabulated in memory; if the function is invoked again with the same
parameters, the tabulated return value is fetched and returned without recomputing
the result.

3.1 Running time

Despite the fact that the depth of recursion in Algorithm 3.4 is (|Q|—2) max0,
each invocation of function equiv potentially makes |I'| calls to itself. This gives
a worst-case running time of

O(F(|Q|—2) maxO)

(exponential in the number of states) if we assume that (p € F = ¢ € F) A
(I, =T,) and set updates (of S) can be done in constant time.

This worst-case is difficult to achieve — though such an automaton is given
in [1].

4 The incremental algorithm

This latest version of function equiv can be used to compute Fquiv. In variable
G, we maintain the pairs of states known to be inequivalent (distinguished),
while in H, we accumulate our computation of Fquiv. To initialize G and H,
we note that final states are never equivalent to nonfinal ones, and that a state
is always equivalent to itself. Since Fquiv is an equivalence relation, we ensure
that H is transitive at each step®. Finally, we have global variable S used in
Algorithm 3.4):

Algorithm 4.1 (Computing Equiv):

8,G,H:=0,(Q\ F) x F)U(F x (Q\ F)),{(6,0) | 4 € @}
{ invariant: G C —Equiv A H C Equiv }
do (GUH)#QxQ —
let p,q: (p,q) € (Q x Q) \ (GUH));
if equiv(p, ¢, (|Q| — 2) max0) —
H:=HU{(p,9),(¢p)};
H:=HT
| —equiv(p,q, (|Q| — 2) max0) — G := GU{(p,q), (¢,p)}
fi
od; { H = Equiv }
merge states according to H
{(@,T,9,q, F) is minimal }

3 Since H is initially the identity relation on states, it is already reflexive.

The repetition in this algorithm can be interrupted and the partially computed
H can be safely used to merge states.

Although this algorithm has far worse running time (it is exponential) than
the O(|Q|log|Q|) of Hopcroft’s algorithm [7,8], in practice the incremental
algorithm performs acceptably — see [1] where a non-memoizing version of
equiv was benchmarked. Presently, it is the only known general incremental
minimization algorithm.

5 Closing comments

This algorithm has a significant advantage over all of the known algorithms:
although function equiv computes only equivalence of pairs of states, the main
program computes the entire equivalence relation in such a way that any
intermediate result H is usable in (at least partially) reducing the size of an
automaton. All of the other known algorithms have unusable intermediate
results. This property can be used to reduce the size of automata when the
running time of the minimization algorithm is restricted for some reason (for
example, in real-time applications).

Acknowledgements: I would like to thank Nanette Y. Saes for proofread-
ing this paper. The two anonymous referees also provided valuable feedback.

References

[1] B. W. Watson, Taxonomies and toolkits of regular language algorithms, Ph.D.
thesis, Division of Computer Science, Eindhoven University of Technology, the
Netherlands (Sep. 1995).

[2] E. W. Dijkstra, A Discipline of Programming, Prentice Hall, 1976.

[3] D. Gries, The Science of Computer Programming, 2nd Edition, Springer-Verlag,
1980.

[4] J. E. Hopcroft, J. D. Ullman, Introduction to Automata Theory, Languages, and
Computation, Addison-Wesley, 1979.

[5] H. M. M. ten Eikelder, Some algorithms to decide the equivalence of recursive
types, Tech. Rep. 31, Division of Computer Science, Eindhoven University of
Technology, the Netherlands (1991).

[6] D. Wood, Theory of Computation, Harper & Row, 1987.

[7] J. E. Hopcroft, An nlogn algorithm for minimizing the states in a finite
automaton, Academic Press, 1971, pp. 189-196.

[8] D. Gries, Describing an algorithm by Hopcroft, Acta Informatica 2 (1973) 97-
109.

