
Error Mining for Wide-Coverage Grammar Engineering

Gertjan van Noord
Alfa-informatica University of Groningen

POBox 716
9700 AS Groningen

The Netherlands
vannoord@let.rug.nl

Abstract

Parsing systems which rely on hand-coded linguis-
tic descriptions can only perform adequately in as
far as these descriptions are correct and complete.

The paper describes anerror miningtechnique to
discover problems in hand-coded linguistic descrip-
tions for parsing such as grammars and lexicons. By
analysing parse results for very large unannotated
corpora, the technique discovers missing, incorrect
or incomplete linguistic descriptions.

The technique uses the frequency ofn-grams of
words for arbitrary values ofn. It is shown how a
new combination of suffix arrays and perfect hash
finite automata allows an efficient implementation.

1 Introduction

As we all know, hand-crafted linguistic descriptions
such as wide-coverage grammars and large scale
dictionaries contain mistakes, and are incomplete.
In the context of parsing, people often construct sets
of example sentences that the system should be able
to parse correctly. If a sentence cannot be parsed,
it is a clear sign that something is wrong. This
technique only works in as far as the problems that
might occur have been anticipated. More recently,
tree-banks have become available, and we can apply
the parser to the sentences of the tree-bank and com-
pare the resulting parse trees with the gold standard.
Such techniques are limited, however, because tree-
banks are relatively small. This is a serious prob-
lem, because the distribution of words is Zipfian
(there are very many words that occur very infre-
quently), and the same appears to hold for syntactic
constructions.

In this paper, anerror mining technique is de-
scribed which is very effective at automatically dis-
covering systematic mistakes in a parser by using
very large (but unannotated) corpora. The idea is
very simple. We run the parser on a large set of sen-
tences, and then analyze those sentences the parser
cannot parse successfully. Depending on the na-
ture of the parser, we define the notion ‘success-

ful parse’ in different ways. In the experiments
described here, we use the Alpino wide-coverage
parser for Dutch (Bouma et al., 2001; van der Beek
et al., 2002b). This parser is based on a large con-
structionalist HPSG for Dutch as well as a very large
electronic dictionary (partly derived from CELEX,
Parole, and CGN). The parser is robust in the sense
that it essentially always produces a parse. If a full
parse is not possible for a given sentence, then the
parser returns a (minimal) number of parsed non-
overlapping sentence parts. In the context of the
present paper, a parse is called successful only if the
parser finds an analysis spanning the full sentence.

The basic idea is to compare the frequency of
words and word sequences in sentences that can-
not be parsed successfully with the frequency of the
same words and word sequences in unproblematic
sentences. As we illustrate in section 3, this tech-
nique obtains very good results if it is applied to
large sets of sentences.

To compute the frequency of word sequences of
arbitrary length for very large corpora, we use a new
combination of suffix arrays and perfect hash finite
automata. This implementation is described in sec-
tion 4.

The error mining technique is able to discover
systematic problems which lead to parsing failure.
This includes missing, incomplete and incorrect lex-
ical entries and grammar rules. Problems which
cause the parser to assign complete but incorrect
parses cannot be discovered. Therefore, tree-banks
and hand-crafted sets of example sentences remain
important to discover problems of the latter type.

2 A parsability metric for word sequences
Theerror miningtechnique assumes we have avail-
able a large corpus of sentences. Each sentence is a
sequence of words (of course, words might include
tokens such as punctuation marks, etc.). We run
the parser on all sentences, and we note for which
sentences the parser is successful. We define the
parsability of a wordR(w) as the ratio of the num-
ber of times the word occurs in a sentence with a



successful parse (C(w|OK)) and the total number
of sentences that this word occurs in (C(w)):

R(w) =
C(w|OK)
C(w)

Thus, if a word only occurs in sentences that can-
not be parsed successfully, the parsability of that
word is 0. On the other hand, if a word only occurs
in sentences with a successful parse, its parsabil-
ity is 1. If we have no reason to believe that a
word is particularly easy or difficult, then we ex-
pect its parsability to be equal to the coverage of the
parser (the proportion of sentences with a successful
parse). If its parsability is (much) lower, then this
indicates that something is wrong. For the experi-
ments described below, the coverage of the parser
lies between 91% and 95%. Yet, formanywords
we found parsability values that were much lower
than that, including quite a number of words with
parsability 0. Below we show some typical exam-
ples, and discuss the types of problem that are dis-
covered in this way.

If a word has a parsability of 0, but its frequency
is very low (say 1 or 2) then this might easily be
due to chance. We therefore use a frequency cut-off
(e.g. 5), and we ignore words which occur less often
in sentences without a successful parse.

In many cases, the parsability of a word depends
on its context. For instance, the Dutch wordvia
is a preposition. Its parsability in a certain exper-
iment was more than 90%. Yet, the parser was
unable to parse sentences with the phrasevia via
which is an adverbial expression which meansvia
some complicated route. For this reason, we gener-
alize the parsability of a word to word sequences
in a straightforward way. We writeC(wi . . . wj)
for the number of sentences in which the sequence
wi . . . wj occurs. Furthermore,C(wi . . . wj |OK),
is the number of sentences with a successful parse
which contain the sequencewi . . . wj . The parsabil-
ity of a sequence is defined as:

R(wi . . . wj) =
C(wi . . . wj |OK)
C(wi . . . wj)

If a word sequencewi . . . wj has a low parsabil-
ity, then this might be because it is part of a dif-
ficult phrase. It might also be that part of the se-
quence is the culprit. In order that we focus on
the relevant sequence, we consider a longer se-
quencewh . . . wi . . . wj . . . wk only if its parsabil-
ity is lower than the parsability of each of its sub-
strings:

R(wh . . . wi . . . wj . . . wk) < R(wi . . . wj)

This is computed efficiently by considering the
parsability of sequences in order of length (shorter
sequences before longer ones).

We construct a parsability table, which is a list of
n-grams sorted with respect to parsability. Ann-
gram is included in the parsability table, provided:

• its frequency in problematic parses is larger
than the frequency cut-off

• its parsability is lower than the parsability of
all of its sub-strings

The claim in this paper is that a parsability table
provides a wealth of information about systematic
problems in the grammar and lexicon, which is oth-
erwise hard to obtain.

3 Experiments and results
3.1 First experiment
Data. For our experiments, we used the Twente
Nieuws Corpus, version pre-release 0.1.1 This cor-
pus contains among others a large collection of
news articles from various Dutch newspapers in the
period 1994-2001. In addition, we used all news
articles from the Volkskrant 1997 (available on CD-
ROM). In order that this material can be parsed rel-
atively quickly, we discarded all sentences of more
than 20 words. Furthermore, a time-out per sen-
tence of twenty CPU-seconds was enforced. The
Alpino parser normally exploits a part-of-speech tag
filter for efficient parsing (Prins and van Noord,
2003) which was switched off, to ensure that the
results were not influenced by mistakes due to this
filter. In table 1 we list some basic quantitative facts
about this material.

We exploited a cluster of Linux PCs for parsing.
If only a single PC had been available, it would have
taken in the order of 100 CPU days, to construct the
material described in table 1.

These experiments were performed in the autumn
of 2002, with the Alpino parser available then. Be-
low, we report on more recent experiments with the
latest version of the Alpino parser, which has been
improved quite a lot on the basis of the results of the
experiments described here.

Results. For the data described above, we com-
puted the parsability table, using a frequency cut-
off of 5. In figure 1 the frequencies of parsability
scores in the parsability table are presented. From
the figure, it is immediately clear that the relatively
high number of word sequences with a parsability of
(almost) zero cannot be due to chance. Indeed, the

1http://wwwhome.cs.utwente.nl/˜druid/
TwNC/TwNC-main.html



newspaper sents coverage %
NRC 1994 582K 91.2
NRC 1995 588K 91.5

Volkskrant 1997 596K 91.6
AD 2000 631K 91.5

PAROOL 2001 529K 91.3
total 2,927K 91.4

Table 1: Overview of corpus material; first experi-
ment (Autumn 2002).

Parsability

Fr
eq

ue
nc

y

0.0 0.2 0.4 0.6 0.8 1.0

0
50

00
15

00
0

Figure 1: Histogram of the frequencies of parsabil-
ity scores occurring in parsability table. Frequency
cut-off=5; first experiment (Autumn 2002).

parsability table starts with word sequences which
constitute systematic problems for the parser. In
quite a lot of cases, these word sequences origi-
nate from particular types of newspaper text with
idiosyncratic syntax, such as announcements of new
books, movies, events, television programs etc.; as
well as checkers, bridge and chess diagrams. An-
other category consists of (parts of) English, French
and German phrases.

We also find frequent spelling mistakes such as
de dewhere only a singlede (the definite article)
is expected, andhebenfor hebben(to have),inden-
tiek for identiek(identical),koningingfor koningin
(queen), etc. Other examples includewordt ik (be-
comes I), vindt ik (finds I), vind hij (find he)etc.

We now describe a number of categories of ex-
amples which have been used to improve the parser.

Tokenization. A number of n-grams with low
parsability scores point towards systematic mistakes
during tokenization. Here are a number of exam-
ples:2

2The @ symbol indicates a sentence boundary.

R C n-gram

0.00 1884 @ . @ .
0.00 385 @ ! @ !
0.00 22 ’s advocaat ’s lawyer
0.11 8 H. ’s H. ’s
0.00 98 @ , roept @ , yells
0.00 20 @ , schreeuwt @ , screams
0.00 469 @ , vraagt @ , asks

The first and secondn-gram indicate sentences
which start with a full stop or an exclamation mark,
due to a mistake in the tokenizer. The third and
fourthn-grams indicate a problem the tokenizer had
with a sequence of a single capital letter with a dot,
followed by the genitive marker. The grammar as-
sumes that the genitive marking is attached to the
proper name. Such phrases occur frequently in re-
ports on criminals, which are indicated in news pa-
per only with their initials. Another systematic mis-
take is reflected by the lastn-grams. In reported
speech such as

(1) Je
You

bent
are

gek!,
crazy!,

roept
yells

Franca.
Franca.

Franca yells: You are crazy!

the tokenizer mistakenly introduced a sentence
boundary between the exclamation mark and the
comma. On the basis of examples such as these,
the tokenizer has been improved.

Mistakes in the lexicon. Another reason ann-
gram receives a low parsability score is a mistake
in the lexicon. The following table lists two typical
examples:

R C n-gram

0.27 18 de kaft the cover
0.30 7 heeft opgetredenhas performed

In Dutch, there is a distinction between neuter and
non-neuter common nouns. The definite articlede
combines with non-neuter nouns, whereas neuter
nouns selecthet. The common nounkaft, for exam-
ple, combines with the definite articlede. However,
according to the dictionary, it is a neuter common
noun (and thus would be expected to combine only
with the definite articlehet). Many similar errors
were discovered.

Another syntactic distinction that is listed in the
dictionary is the distinction between verbs which
take the auxiliaryhebben (to have)to construct a
perfect tense clause vs. those that take the auxiliary
zijn (to be). Some verbs allow both possibilities.
The last example illustrates an error in the dictio-
nary with respect to this syntactic feature.



Incomplete lexical descriptions. The majority of
problems that the parsability scores indicate reflect
incomplete lexical entries. A number of examples
is provided in the following table:

R C n-gram

0.00 11 begunstigden favoured (N/V)
0.23 10 zich eraan dat self there-on that
0.08 12 aan te klikken on to click
0.08 12 doodzonde datmortal sin that
0.15 11 zwarts black’s
0.00 16 dupe van victim of
0.00 13 het Turks . the Turkish

The wordbegunstigdenis ambiguous between on
the one hand the past tense of the verbbegunstigen
(to favour)and on the other hand the plural nominal-
izationbegunstigden (beneficiaries). The dictionary
contained only the first reading.

The sequencezich eraan datillustrates a missing
valency frame for verbs such asergeren(to irritate).
In Dutch, verbs which take a prepositional comple-
ment sometimes also allow the object of the prepo-
sitional complement to be realized by a subordinate
(finite or infinite) clause. In that case, the preposi-
tional complement is R-pronominalized. Examples:

(2) a. Hij
He

ergert
is-irritated

zich
self

aan
on

zijn
his

aanwezigheid
presence

He is irritated by his presence
b. Hij

He
ergert
is-irritated

zich
self

er
there

niet
not

aan
on

dat
that

. . .

. . .
He is not irritated by the fact that . . .

The sequenceaan te klikkenis an example of a
verb-particle combination which is not licensed in
the dictionary. This is a relatively new verb which
is used forclick in the context of buttons and hyper-
links.

The sequencedoodzonde datillustrates a syn-
tactic construction where a copula combines with
a predicative complement and a sentential subject,
if that predicative complement is of the appropriate
type. This type is specified in the dictionary, but was
missing in the case ofdoodzonde. Example:

(3) Het
It

is
is

doodzonde
mortal-sin

dat
that

hij
he

slaapt
sleeps

That he is sleeping is a pity

The wordzwartsshould have been analyzed as a
genitive noun, as in (typically sentences about chess
or checkers):

(4) Hij
He

keek
looked

naar
at

zwarts
black’s

toren
rook

whereas the dictionary only assigned the inflected
adjectival reading.

The sequencedupe vanillustrates an example of
an R-pronominalization of a PP modifier. This is
generally not possible, except for (quite a large)
number of contexts which are determined by the
verb and the object:

(5) a. Hij
He

is
is

de
the

dupe
victim

van
of

jouw
your

vergissing
mistake

He has to suffer for your mistake
b. Hij

He
is
is

daar
there

nu
now

de
the

dupe
victim

van
of

He has to suffer for it

The wordTurkscan be both an adjective (Turkish)
or a nounthe Turkish language. The dictionary con-
tained only the first reading.

Very many other examples of incomplete lexical
entries were found.

Frozen expressions with idiosyncratic syntax.
Dutch has many frozen expressions and idioms with
archaic inflection and/or word order which breaks
the parser. Examples include:

R C n-gram

0.00 13 dan schaadt hetthen harms it
0.00 13 @ God zij @ God be[I]
0.22 25 God zij God be[I]
0.00 19 Het zij zo It be[I] so
0.45 12 goeden huize good house[I]
0.09 11 berge mountain[I]
0.00 10 hele gedwaald whole[I] dwelled
0.00 14 te weeg

The sequencedan schaadt hetis part of the id-
iom Baat het niet, dan schaadt het niet(meaning: it
might be unsure whether something is helpful, but
in any case it won’t do any harm). The sequence
God zijis part of a number of archaic formulas such
as God zij dank(Thank God). In such examples,
the formzij is the (archaic) subjunctive form of the
Dutch verbzijn (to be). The sequenceHet zij zois
another fixed formula (English:So be it), contain-
ing the same subjunctive. The phrasevan goeden
huize(of good family) is a frozen expression with
archaic inflection. The wordbergeexhibits archaic
inflection on the wordberg(mountain), which only
occurs in the idiomatic expressionde haren rijzen
mij te berge(my hair rises to the mountain) which
expresses a great deal of surprise. Then-gramhele
gedwaaldonly occurs in the idiomBeter ten halve
gekeerd dan ten hele gedwaald: it is better to turn
halfway, then to go all the way in the wrong direc-



tion. Many other (parts of) idiomatic expressions
were found in the parsability table.

The sequencete weegonly occurs as part of the
phrasal verbte weeg brengen(to cause).

Incomplete grammatical descriptions. Al-
though the technique strictly operates at the level
of words and word sequences, it is capable of
indicating grammatical constructions that are not
treated, or not properly treated, in the grammar.

R C n-gram

0.06 34 Wij Nederlanders We Dutch
0.08 23 Geeft niet Matters not
0.00 15 de alles the everything
0.10 17 Het laten The letting
0.00 10 tenzij . unless .

The sequenceWij Nederlandersconstitutes an ex-
ample of a pronoun modified by means of an appo-
sition (not allowed in the grammar) as in

(6) Wij
We

Nederlanders
Dutch

eten
eat

vaak
often

aardappels
potatoes

We, the Dutch, often eat potatoes

The sequenceGeeft nietillustrates the syntac-
tic phenomenon of topic-drop (not treated in the
grammar): verb initial sentences in which the topic
(typically the subject) is not spelled out. The se-
quencede allesoccurs with present participles (used
as prenominal modifiers) such asoverheersendeas
in de alles overheersende paniek(literally: the all
dominating panic, i.e., the panic that dominated ev-
erything). The grammar did not allow prenominal
modifiers to select an NP complement. The se-
quenceHet latenoften occurs in nominalizations
with multiple verbs. These were not treated in the
grammar. Example:

(7) Het
The

laten
letting

zien
see

van
of

problemen
problems

Showing problems

The word sequencetenzij . is due to sentences in
which a subordinate coordinator occurs without a
complement clause:

(8) Gij
Thou

zult
shallt

niet
not

doden,
kill,

tenzij.
unless.

A large number ofn-grams also indicate elliptical
structures, not treated in that version of the gram-
mar. Another fairly large source of errors are ir-
regular named entities (Gil y Gil, Osama bin Laden
. . .).

newspaper # sentences coverage %
NRC 1994 552,833 95.0

Volkskrant 1997 569,314 95,2
AD 2000 662,380 95,7

Trouw 1999 406,339 95,5
Volkskrant 2001 782,645 95,1

Table 2: Overview of corpus material used for the
experiments; second experiment (January 2004).

3.2 Later experiment
Many of the errors and omissions that were found
on the basis of the parsability table have been cor-
rected. As can be seen in table 2, the coverage
obtained by the improved parser increased substan-
tially. In this experiment, we also measured the cov-
erage on additional sets of sentences (all sentences
from the Trouw 1999 and Volkskrant 2001 news-
paper, available in the TwNC corpus). The results
show that coverage is similar on these unseen test-
sets.

Obviously, coverage only indicates how often the
parser found a full parse, but it does not indicate
whether that parse actually was the correct parse.
For this reason, we also closely monitored the per-
formance of the parser on the Alpino tree-bank3

(van der Beek et al., 2002a), both in terms of parsing
accuracy and in terms of average number of parses
per sentence. The average number of parses in-
creased, which is to be expected if the grammar and
lexicon are extended. Accuracy has been steadily
increasing on the Alpino tree-bank. Accuracy is
defined as the proportion of correct named depen-
dency relations of the first parse returned by Alpino.

Alpino employs a maximum entropy disambigua-
tion component; the first parse is the most promising
parse according to this statistical model. The maxi-
mum entropy disambiguation component of Alpino
assigns a scoreS(x) to each parsex:

S(x) =
∑
i

θifi(x) (1)

wherefi(x) is the frequency of a particular featurei
in parsex andθi is the corresponding weight of that
feature. The probability of a parsex for sentencew
is then defined as follows, whereY (w) are all the
parses ofw:

p(x|w) =
exp (S(x))∑

y∈Y (w) exp (S(y))
(2)

The disambiguation component is described in de-
tail in Malouf and van Noord (2004).

3http://www.let.rug.nl/˜vannoord/trees/



Time (days)

A
cc

ur
ac

y

0 50 100 150 200 250 300 350

84
.5

85
.5

86
.5

Figure 2: Development of Accuracy of the Alpino
parser on the Alpino Tree-bank

Figure 2 displays the accuracy from May 2003-
May 2004. During this period many of the prob-
lems described earlier were solved, but other parts
of the system were improved too (in particular, the
disambiguation component was improved consider-
ably). The point of the graph is that apparently the
increase in coverage has not been obtained at the
cost of decreasing accuracy.

4 A note on the implementation

The most demanding part of the implementation
consists of the computation of the frequency ofn-
grams. If the corpus is large, orn increases, simple
techniques break down. For example, an approach
in which a hash data-structure is used to maintain
the counts of eachn-gram, and which increments
the counts of eachn-gram that is encountered, re-
quires excessive amounts of memory for largen
and/or for large corpora. On the other hand, if a
more compact data-structure is used, speed becomes
an issue. Church (1995) shows thatsuffix arrays
can be used for efficiently computing the frequency
of n-grams, in particular for largern. If the cor-
pus size increases, the memory required for the suf-
fix array may become problematic. We propose a
new combination of suffix arrays with perfect hash
finite automata, which reduces typical memory re-
quirements by a factor of five, in combination with
a modest increase in processing efficiency.

4.1 Suffix arrays

Suffix arrays (Manber and Myers, 1990; Yamamoto
and Church, 2001) are a simple, but useful data-
structure for various text-processing tasks. A corpus
is a sequence of characters. A suffix arrays is an ar-
ray consisting of all suffixes of the corpus, sorted al-
phabetically. For example, if the corpus is the string
abba , the suffix array is〈a,abba,ba,bba 〉.
Rather than writing out each suffix, we use integers
i to refer to the suffix starting at positioni in the

corpus. Thus, in this case the suffix array consists
of the integers〈3, 0, 2, 1〉.

It is straightforward to compute the suffix array.
For a corpus ofk + 1 characters, we initialize the
suffix array by the integers0 . . . k. The suffix ar-
ray is sorted, using a specialized comparison rou-
tine which takes integersi andj, and alphabetically
compares the strings starting ati andj in the cor-
pus.4

Once we have the suffix array, it is simple to com-
pute the frequency ofn-grams. Suppose we are in-
terested in the frequency of alln-grams forn = 10.
We simply iterate over the elements of the suffix ar-
ray: for each element, we print the first ten words
of the corresponding suffix. This gives us all oc-
currences of all 10-grams in the corpus, sorted al-
phabetically. We now count each 10-gram, e.g. by
piping the result to the Unixuniq -c command.

4.2 Perfect hash finite automata

Suffix arrays can be used more efficiently to com-
pute frequencies ofn-grams for largern, with
the help of an additional data-structure, known as
the perfect hashfinite automaton (Lucchiesi and
Kowaltowski, 1993; Roche, 1995; Revuz, 1991).
The perfect hash automaton for an alphabetically
sorted finite set of wordsw0 . . . wn is a weighted
minimal deterministic finite automaton which maps
wi → i for eachw0≤i≤n. We call i theword code
of wi. An example is given in figure 3.

Note that perfect hash automata implement an or-
der preserving, minimal perfect hash function. The
function is minimal, in the sense thatn keys are
mapped into the range0 . . . n − 1, and the function
is order preserving, in the sense that the alphabetic
order of words is reflected in the numeric order of
word codes.

4.3 Suffix arrays with words

In the approach of Church (1995), the corpus is
a sequence of characters (represented by integers
reflecting the alphabetic order). A more space-
efficient approach takes the corpus as a sequence of
words, represented by word codes reflecting the al-
phabetic order.

To compute frequencies ofn-grams for largern,
we first compute the perfect hash finite automaton
for all words which occur in the corpus,5 and map

4The suffix sort algorithm of Peter M. McIlroy and M.
Douglas McIlroy is used, available ashttp://www.cs.
dartmouth.edu/˜doug/ssort.c ; This algorithm is ro-
bust against long repeated substrings in the corpus.

5We use an implementation by Jan Daciuk freely avail-
able from http://www.eti.pg.gda.pl/˜jandac/
fsa.html .



d::1

c

r::5

s::7

e::1

r

g::1

c
k

o

u::2

c

s::1

l

o

t

t

kc

co

Figure 3: Example of a perfect hash finite automa-
ton for the wordsclock, dock, dog, duck, dust, rock,
rocker, stock. Summing the weights along an ac-
cepting path in the automaton yields the rank of the
word in alphabetic ordering.

the corpus to a sequence of integers, by mapping
each word to its word code. Suffix array construc-
tion then proceeds on the basis of word codes, rather
than character codes.

This approach has several advantages. The rep-
resentation of both the corpus and the suffix array
is more compact. If the average word length isk,
then the corresponding arrays arek times smaller
(but we need some additional space for the perfect
hash automaton). In Dutch, the average word length
k is about 5, and we obtained space savings in that
order.

If the suffix array is shorter, sorting should be
faster too (but we need some additional time to com-
pute the perfect hash automaton). In our experience,
sorting is about twice as fast for word codes.

4.4 Computing parsability table

To compute parsability scores, we assume there are
two corporacm and ca, where the first is a sub-
corpus of the second.cm contains all sentences
for which parsing was not successful.ca contains
all sentences overall. For both corpora, we com-
pute the frequency of alln-grams for alln; n-grams
with a frequency below a specified frequency cut-
off are ignored. Note that we need not impose an
a priori maximum value forn; since there is a fre-
quency cut-off, for somen there simply aren’t any
sequences which occur more frequently than this
cut-off. The twon-gram frequency files are orga-
nized in such a way that shortern-grams precede
longern-grams.

The two frequency files are then combined as
follows. Since the frequency file corresponding to
cm is (much) smaller than the file corresponding
to ca, we read the first file into memory (into a
hash data structure). We then iteratively read an
n-gram frequency from the second file, and com-

pute the parsability of thatn-gram. In doing so,
we keep track of the parsability scores assigned to
previous (hence shorter)n-grams, in order to en-
sure that largern-grams are only reported in case
the parsability scores decrease. The final step con-
sists in sorting all remainingn-grams with respect
to their parsability.

To give an idea of the practicality of the ap-
proach, consider the following data for one of the
experiments described above. For a corpus of
2,927,016 sentences (38,846,604 words, 209Mb),
it takes about 150 seconds to construct the per-
fect hash automaton (mostly sorting). The automa-
ton is about 5Mb in size, to represent 677,488 dis-
tinct words. To compute the suffix array and fre-
quencies of alln-grams (cut-off=5), about 15 min-
utes of CPU-time are required. Maximum runtime
memory requirements are about 400Mb. The re-
sult contains frequencies for 1,641,608 distinctn-
grams. Constructing the parsability scores on the
basis of then-gram files only takes 10 seconds
CPU-time, resulting in parsability scores for 64,998
n-grams (since there are much fewern-grams which
actually occur in problematic sentences). The ex-
periment was performed on a Intel Pentium III,
1266MHz machine running Linux. The software is
freely available fromhttp://www.let.rug.
nl/˜vannoord/software.html .

5 Discussion

An error mining technique has been presented
which is very helpful in identifying problems in
hand-coded grammars and lexicons for parsing. An
important ingredient of the technique consists of the
computation of the frequency ofn-grams of words
for arbitrary values ofn. It was shown how a new
combination of suffix arrays and perfect hash fi-
nite automata allows an efficient implementation.
A number of potential improvements can be envi-
sioned.

In the definition ofR(w), the absolute frequency
of w is ignored. Yet, ifw is very frequent,R(w)
is more reliable than ifw is not frequent. There-
fore, as an alternative, we also experimented with
a set-up in which an exact binomial test is applied
to compute a confidence interval forR(w). Results
can then be ordered with respect to the maximum of
these confidence intervals. This procedure seemed
to improve results somewhat, but is computation-
ally much more expensive. For the first experiment
described above, this alternative set-up results in a
parsability table of 42K word tuples, whereas the
original method produces a table of 65K word tu-
ples.



R C n-gram

0.00 8 Beter ten
0.20 12 ten halve
0.15 11 halve gekeerd
0.00 8 gekeerd dan
0.09 10 dan ten hele
0.69 15 dan ten
0.17 10 ten hele
0.00 10 hele gedwaald
0.00 8 gedwaald .
0.20 10 gedwaald

Table 3: Multiplen-grams indicating same error

The parsability table only contains longern-
grams if these have a lower parsability than the cor-
responding shortern-grams. Although this heuristic
appears to be useful, it is still possible that a single
problem is reflected multiple times in the parsabil-
ity table. For longer problematic sequences, the
parsability table typically contains partially over-
lapping parts of that sequence. This phenomenon
is illustrated in table 3 for the idiomBeter ten
halve gekeerd dan ten hele gedwaalddiscussed ear-
lier. This suggests that it would be useful to con-
sider other heuristics to eliminate such redundancy,
perhaps by considering statistical feature selection
methods.

The definition used in this paper to identify a suc-
cessful parse is a rather crude one. Given that gram-
mars of the type assumed here typically assign very
many analyses to a given sentence, it is often the
case that a specific problem in the grammar or lex-
icon rules out the intended parse for a given sen-
tence, but alternative (wrong) parses are still pos-
sible. What appears to be required is a (statistical)
model which is capable of judging the plausibility
of a parse. We investigated whether the maximum
entropy scoreS(x) (equation 1) can be used to indi-
cate parse plausibility. In this set-up, we considered
a parse successful only ifS(x) of the best parse is
above a certain threshold. However, the resulting
parsability table did not appear to indicate problem-
atic word sequences, but rather word sequences typ-
ically found in elliptical sentences were returned.
Apparently, the grammatical rules used for ellip-
sis are heavily punished by the maximum entropy
model in order that these rules are used only if other
rules are not applicable.

Acknowledgments

This research was supported by the PIONIER
projectAlgorithms for Linguistic Processingfunded

by NWO.

References
Gosse Bouma, Gertjan van Noord, and Robert Mal-

ouf. 2001. Wide coverage computational anal-
ysis of Dutch. In W. Daelemans, K. Sima’an,
J. Veenstra, and J. Zavrel, editors,Computational
Linguistics in the Netherlands 2000.

Kenneth Ward Church. 1995. Ngrams. ACL 1995,
MIT Cambridge MA, June 16. ACL Tutorial.

Claudio Lucchiesi and Tomasz Kowaltowski. 1993.
Applications of finite automata representing large
vocabularies.Software Practice and Experience,
23(1):15–30, Jan.

Robert Malouf and Gertjan van Noord. 2004. Wide
coverage parsing with stochastic attribute value
grammars. InBeyond shallow analyses. For-
malisms and statistical modeling for deep anal-
ysis, Sanya City, Hainan, China. IJCNLP-04
Workshop.

Udi Manber and Gene Myers. 1990. Suf-
fix arrays: A new method for on-line string
searching. InProceedings of the First An-
nual AC-SIAM Symposium on Discrete Algo-
rithms, pages 319–327.http://manber.
com/publications.html .

Robbert Prins and Gertjan van Noord. 2003. Re-
inforcing parser preferences through tagging.
Traitement Automatique des Langues, 44(3):121–
139. in press.

Dominique Revuz. 1991.Dictionnaires et lexiques:
méthodes et algorithmes. Ph.D. thesis, Institut
Blaise Pascal, Paris, France. LITP 91.44.

Emmanuel Roche. 1995. Finite-state tools for lan-
guage processing. ACL 1995, MIT Cambridge
MA, June 16. ACL Tutorial.

Leonoor van der Beek, Gosse Bouma, Robert Mal-
ouf, and Gertjan van Noord. 2002a. The Alpino
dependency treebank. In Mariët Theune, Anton
Nijholt, and Hendri Hondorp, editors,Computa-
tional Linguistics in the Netherlands 2001. Se-
lected Papers from the Twelfth CLIN Meeting,
pages 8–22. Rodopi.

Leonoor van der Beek, Gosse Bouma, and Gertjan
van Noord. 2002b. Een brede computationele
grammatica voor het Nederlands.Nederlandse
Taalkunde, 7(4):353–374. in Dutch.

Mikio Yamamoto and Kenneth W. Church. 2001.
Using suffix arrays to compute term frequency
and document frequency for all substrings in a
corpus.Computational Linguistics, 27(1):1–30.


