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Abstract

We argue that grammatical analysis is a viable alternative to concept spotting for process-
ing spoken input in a practical spoken dialogue system. We discuss the structure of the
grammar, and a model for robust parsing which combines linguistic sources of information
and statistical sources of information. We discuss test results suggesting that grammatical
processing allows fast and accurate processing of spoken input.

1 Introduction

The NWO Priority Programme Language and Speech Technology is a research pro-

gramme aiming at the development of spoken language information systems. Its

immediate goal is to develop a demonstrator of a public transport information

system, which operates over ordinary telephone lines. This demonstrator is called

OVIS, Openbaar Vervoer Informatie Systeem (Public Transport Information Sys-

tem). The language of the system is Dutch.

At present, a prototype is in operation, which is a version of a German system

developed by Philips Dialogue Systems in Aachen (Aust et al.1995), adapted to

Dutch. This German system processes spoken input using “concept spotting”, which

means that the smallest information-carrying units in the input are extracted, such

as locative phrases (mostly names of train stations) and temporal expressions, and

these are translated more or less individually into updates of the internal database

representing the dialogue state. The words between the concepts thus perceived are

ignored.

The use of concept spotting is common in spoken-language information systems

(Ward1989; Jackson et al.1991; Aust et al.1995; Allen et al.1996). Arguments in

favour of this kind of shallow parsing are that it is relatively easy to develop the NLP

component, since larger sentence constructs do not have to be taken into account,

and that the robustness of the parser is enhanced, since sources of ungrammaticality

occurring between concepts are skipped and therefore do not hinder the translation

of the utterance to updates.

The prototype presently under construction (OVIS2) is based on a grammar
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which describes grammatical sentences, i.e. complete and well-formed user utter-

ances, and thus differs radically from a concept spotting approach. This article

presents a detailed account of a computational grammar for Dutch, and a robust

parsing algorithm which incorporates this grammatical knowledge as well as other

knowledge sources, such as acoustic evidence and Ngram statistics. We argue that

robust parsing can be based on sophisticated grammatical analysis. In particular,

the grammar describes full sentences, but in doing so, also describes the grammar

of temporal expressions and locative phrases which are crucial for concept spotting.

Robustness is achieved by taking these phrases into consideration, if a full parse

of an utterance is not available. We show that our approach is feasible in terms of

both accuracy and computational resources, and thus is a viable alternative to pure

concept spotting.

Whereas some (e.g. Moore, Pereira, and Murveit (1989)) argue that grammat-

ical analysis may improve recognition accuracy, our current experiments have as

yet not been able to reveal a substantial advantage in this respect. However, the

grammatical approach may become essential as soon as the application is extended

in such a way that more complicated grammatical constructions need to be recog-

nized. In that case, simple concept spotting may not be able to correctly process all

constructions, whereas the capabilities of the grammatical approach extend much

further.

The structure of this paper is as follows. In section 2 we describe the grammar for

OVIS2. We present the grammar in some detail, since we believe it constitutes an

interesting compromise between linguistic and computational considerations. Read-

ers interested in processing issues rather than the details of linguistic analysis might

prefer to skip section 2 (possibly except the first paragraph) and jump to section 3

immediately. That section describes the robust parsing algorithm. Section 4 reports

test results, showing that grammatical analysis allows fast and accurate processing

of spoken input.

2 A computational grammar for Dutch

In developing the OVIS2 grammar we have tried to combine the short-term goal of

developing a grammar which meets the requirements imposed by the application

(i.e. robust processing of the output of the speech recogniser, extensive coverage

of locative phrases and temporal expressions, and the construction of fine-grained

semantic representations) with the long-term goal of developing a general, compu-

tational, grammar which covers all the major constructions of Dutch.

The design and organisation of the grammar, as well as many aspects of the par-

ticular grammatical analyses we propose, are based on Head-driven Phrase Struc-

ture Grammar (Pollard and Sag1994). We depart from this formalism mostly for

computational reasons. As is explained below, the grammar is compiled into a re-

stricted kind of definite clause grammar for which efficient processing is feasible.

The semantic component follows the approach to monotonic semantic interpretation

using quasi-logical forms presented originally in Alshawi (1992).

The grammar currently covers the majority of verbal subcategorisation types
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(intransitives, transitives, verbs selecting a pp, and modal and auxiliary verbs), np-

syntax (including pre- and post-nominal modification, with the exception of relative

clauses), pp-syntax, the distribution of vp-modifiers, various clausal types (declara-

tives, yes/no and wh-questions, and subordinate clauses), all temporal expressions

and locative phrases relevant to the domain, and various typical spoken-language

constructs. Due to restrictions imposed by the speech recogniser, the lexicon is

relatively small (3200 word forms, many of which are names of stations and cities).

In sections 2.1- 2.4 we introduce the grammar formalism from both a com-

putational and linguistic perspective. Section 2.5 describes the grammar of noun,

prepositional, and verb phrases, subordinate and main clauses, wh-questions and

topicalisation, and a number of domain specific constructions. Sections 2.6 and 2.7,

finally, are concerned with semantics and the translation of quasi-logical forms into

(application-specific) update-expressions.

2.1 Formalism

The formalism that we use for the OVIS2 Grammar is a variant of Definite Clause

Grammar (DCG) (Pereira and Warren1980). We have chosen for DCG because:

• DCG provides for a balance between computational efficiency on the one hand

and linguistic expressiveness on the other.

• DCG is a (simple) member of the class of declarative and constraint-based

grammar formalisms. Such formalisms are widely used in linguistic descrip-

tions for NLP.

• DCG is straightforwardly related to context-free grammar. Almost all parsing

technology is developed for CFG; extending this technology to DCG is usually

possible (although there are many non-trivial problems as well).

• The compilation of richer constraint-based grammar formalisms into DCG

is well investigated and forms the basis of several wide-coverage and robust

grammar systems (i.e. the Alvey-grammar (Briscoe et al.1987; Carroll1993;

Briscoe and Carroll1993) and the Core Language Engine (Alshawi1992)).

The formalism for the grammar of OVIS2 imposes the following additional require-

ments:

• External Prolog calls (in ordinary DCG these are introduced in right-hand

sides using curly brackets) are allowed, but must be resolved during grammar

compilation time.

• Rules can be mapped to their ‘context-free skeleton’ (by taking the functor

symbol of the terms appearing in the right-hand and left-hand sides of the

rule). This implies that we do not allow the under-specification of categories

in rules. This is motivated by our desire to experiment with parsing strategies

in which part of the work is achieved on the basis of the context-free skeleton

of the grammar. It also facilitates indexing techniques.

• An identifier is assigned to each rule. Such rule identifiers have a number of

possible uses (debugging, grammar filtering, grammar documentation).
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• The grammar specifies for each rule which daughter is the head. This allows

head-driven parsing strategies.

An efficient head-corner parsing strategy for this formalism is discussed in van No-

ord (1997a). The restriction that external Prolog calls must be resolved at compila-

tion time implies that we do not use delayed evaluation. More in particular, lexical

rules (deriving a lexical entry from a given ‘basic’ lexical entry) must be applied at

compile time and are not interpreted as (relational) constraints on under-specified

lexical entries, as in van Noord and Bouma (1994). Although we have experimented

with combinations of delayed evaluation and memoisation, as described in Johnson

and Dörre (1995), the resulting systems were not efficient enough to be applied in

the kind of practical system considered here.

Grammar rules. A grammar rule is defined by a ternary predicate, rule/3. The

first argument of this predicate is a ground Prolog term indicating the rule identifier.

The second argument of the rule is the mother category. Categories are non-variable

Prolog terms. The third argument of the rule is a list of categories. Note that we

require that the length of the list is given, and that none of the categories appearing

in the list is a variable. An example of a grammar rule is provided:

rule(vp_vpnp, vp(Subj,Agr,Sem),

[v(Subj,Agr,trans,l(Arg,Sem)),np(_,Arg)]).

(1)

Terminal symbols cannot be introduced in rules directly, but are introduced by

means of lexical entries.

Lexical entries. The lexicon is defined by the predicate lex/2. As an example, the

lexical entry ‘sleeps’ could be encoded as:

lex(sleeps,v(np,agr(3,sg),intrans,l(X,sleep(X)))).(2)

The first argument is the terminal symbol introduced by this lexical category. The

second argument is the category (a non-variable term). In cases where a lexical

entry introduces a sequence of terminal symbols the first argument is also allowed

to be a (non-empty) list of atoms.

Top category. The top category for the grammar (or start symbol) is defined by the

unary predicate top category. Its argument is an arbitrary non-variable Prolog

term.

Feature constraints. Almost all work in computational grammar writing uses ‘feature-

structures’ of some sort. It is fairly standard to compile (descriptions of) such

features-structures into first-order terms (see Pulman (1996) for a recent overview).

We use the hdrug development platform (van Noord and Bouma1997b), which

contains a library for compiling feature constraints into Prolog terms, and various

predicates to visualise such Prolog terms as feature structures in matrix notation.
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The most important operators provided by the hdrug library are the type as-

signment operator (’=>’), the path equality operator (’<=>’), and the path operator

(’:’). A typical grammar fragment employing those operators is:

rule(1,S,[Np,Vp]) :-

S => s, np(Np), vp(Vp),

Vp:vform => finite,

subj_agreement(Vp,Np).

np(Np) :- Np => np, Np:lex => -.

vp(Vp) :- Vp => v, Vp:lex => -.

subj_agreement(Vp,Np) :- Vp:agr <=> Np:agr.

(3)

In this rule, the constraint Np:lex => - indicates that the value of the lex attribute

of Np is of type -. The constraint Vp:agr <=> Np:agr indicates that the value of the

agr attribute of Vp is identical to the value of the agr attribute of Np. Internally,

such a rule could be represented as follows (the actual result of the compilation

depends on what attributes are allowed for what types; declarations of this sort are

part of the grammar):

rule(1,s,[np(Agr,-),v(Agr,-,finite,_,_)]).(4)

We often will write such rules in matrix notation, as follows:

rule( 1, s, 〈

[

np
agr 1

lex -

]

,





v
agr 1

lex -
vform finite



〉 ).(5)

The feature library also supports boolean combinations of atomic values; these

are compiled into Prolog terms using a technique described in Mellish (1988) (who

attributes it to Colmerauer) and Pulman (1996). Thus, we may specify agr values

such as sg ∧ (sec ∨ thi), denoting an agreement value which is singular and

either second or third person.

We have also found it useful to provide the predicates unify ifdef/3, ifdef/4,

and unify except/3. The predicate unify ifdef(C1,C2,Att) can be used to re-

quire that if both C1 and C2 can have the attribute Att (i.e. C1, C2 are of a type

for which Att is a possible feature), then the values C1:Att and C2:Att must be

identical. The predicate ifdef(Att,Cat,Val,Otherwise) is used to require that

Cat:Att is identical to Val if Att is an appropriate feature for Cat. Otherwise Val

is identical to Otherwise. The predicate unify except(C1,C2,Path) unifies C1

and C2, with the exception of the value of Path, which must be defined for both

C1 and C2, but which may have incompatible values. These predicates simplify the

definition of the grammar code below.

2.2 Signs

In unification-based grammar formalisms, linguistic information is represented by

means of typed feature-structures. Each word or phrase in the grammar is asso-

ciated with such a feature-structure, in which syntactic and semantic information
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is bundled. Within Head-driven Phrase Structure Grammar (hpsg), such feature-

structures are called signs, a terminology which we will follow here.

At present, the grammar makes use of 15 different types of sign, where each type

roughly corresponds to a different category in traditional linguistic terminology. For

each type of sign, a number of features are defined. For example, for the type np,

the features agr, nform, case, and sem are defined. These features are used to en-

code the agreement properties of an np, (morphological) form, case and semantics,

respectively. A more detailed presentation of these features follows below.

There are a number of features which occur in most types of sign, and which play

a special role in the grammar. The feature sc (subcategorisation) (present on

signs of type v, sbar, det, a, n and p), for instance, is a feature whose value is a

list of signs. It represents the subcategorisation properties of a given sign. As will

be explained below, it is used to implement rules which perform functor-argument

application (as in Categorial Grammar).

The feature slash is present on v, ques and sbar. Its value is a list of signs. It

is used to implement a (restricted) version of the account of nonlocal dependencies

proposed in Pollard and Sag (1994) and Sag (1997). The value of slash is the

list of signs which are ‘missing’ from a given constituent. Such a ‘missing’ element

is typically connected to a preposed element in a topicalisation sentence or wh-

question. The same mechanism can also be used for relative clauses.

The feature vslash is similar to slash in that it records the presence of a miss-

ing element, a verb in this case. It is used to implement an account of Dutch main

clauses, based on the idea that main clauses are structurally similar to subordinate

clauses, except for the fact that the finite verb occurs as first or second constituent

within the clause and the clause final position where finite verbs occur in subor-

dinate clauses is occupied by an empty verbal sign (i.e. an element which is not

visible in the phonological or orthographic representation of the sentence).

The feature sem is present on all signs. It is used to encode the semantics of a

word or phrase, encoded as a quasi logical form (Alshawi1992). The feature mod

is present on the types a, pp, p, adv, sbar and modifier. It is used to account for

the semantics of modifiers. Its value is a list of quasi-logical forms. In the sections

below on syntax, we only give an informal impression of the semantics. The details

of the semantic construction rules and principles are dealt with in section 2.6.

2.3 Syntax: principles, structures, and rules

An important restriction imposed by the grammar-parser interface is that each

rule must specify the category of its mother and daughters. A consequence of this

requirement is that general rule-schemata, as used in Categorial Grammar and

hpsg cannot be used in the OVIS2 grammar. A rule which specifies that a head

daughter may combine with a complement daughter, if this complement unifies with

the first element on sc of the head (i.e. a version of the categorial rule for functor-

argument application) cannot be implemented directly, as it leaves the categories

of the daughters and mother unspecified. Nevertheless, generalisations of this type

do play a role in the grammar. We adopt an architecture for grammar rules similar
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hd_comp_struct(Head,Complements,Mother) :-

hd_struct(Head,Complements,Head,Mother).

hd_mod_struct(Head,Modifier,Mother) :-

hd_struct(Head,[],Modifier,Mother),

Head:sem <=> HeadSem,

Modifier:mod <=> [HeadSem].

hd_struct(Head,Complements,SemanticHead,Mother) :-

head_feature_principle(Head,Mother),

valence_principle(Head,Complements,Mother),

filler_principle(Head,[],Mother),

SemanticHead:sem <=> Mother:sem.

head_feature_principle(Head,Mother) :-

unify_ifdef(Head,Mother,vform),

unify_ifdef(Head,Mother,agr),

unify_ifdef(Head,Mother,case),

unify_ifdef(Head,Mother,mod),

unify_ifdef(Head,Mother,pform),

unify_ifdef(Head,Mother,aform),

unify_ifdef(Head,Mother,vslash),

unify_ifdef(Head,Mother,subj).

valence_principle(Head,Complements,Mother) :-

ifdef(sc,Head,HeadSc,[]),

ifdef(sc,Mother,MotherSc,[]),

append(Complements,MotherSc,HeadSc)

Fig. 1. Structures and Principles

to that of hpsg, in which individual rules are classified in various structures, which

are in turn defined in terms of general principles.

Rules normally introduce a structure in which one of the daughters can be identi-

fied as the head. The head daughter either subcategorises for the other (complement)

daughters or else is modified by the other (modifier) daughters.

The two most common structures are the head-complement and head-modifier

structure.1 In figure 1 we list the definitions for these structures and the principles

they refer to, except for the filler principle, which is presented in the section on

topicalisation.

Head-complement and head-modifier structures are instances of headed structures.

The definition of headed structure refers to the head-feature, valence, and

filler principles, and furthermore fixes the semantic head of a phrase. Note that

the definition of hd-struct has a number of parameters. The idea is that a headed

structure will generally consist of a head daughter, and furthermore of zero or more

complement daughters and possibly a modifier. Head-complement and head-modifier

1 Other structures are the main-clause and head-filler structure. These are discussed in
the sections on main-clause syntax and topicalisation.
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structures differ from each other only in that the first introduces complements, but

no modifiers, whereas the second introduces no complements, but a modifier. More-

over, the syntactic head is also the semantic head in head-complement structures,

but not in a head-modifier structure. In head-modifier structures, the semantic con-

tribution of the head to the meaning of the phrase as a whole is handled by unifying

the head semantics with the value of (the first element of) mod on the modifier.

The head feature principle states for a number of features (the head-features)

that their value on the head daughter and mother must be unified. As this prin-

ciple generalises over various types of sign, its definition requires the predicate

unify ifdef.

The valence principle determines the value of the valence feature sc. The

value of sc on the head daughter of a rule is the concatenation (append) of the list

of complement daughters and the value of sc on the mother. Another way to put

this is that the value of sc on the mother is the value of sc on the head daughter

minus the elements on sc that correspond to the complement daughters. Note that

the formulation of the valence principle is complicated by the fact that sc (or

subj) may sometimes not be defined on the mother. In that case, it is assumed

that the value of sc on the head daughter must correspond exactly to the list

of complement daughters. The constraint ifdef(sc,Mother,MotherSc,[]) states

that the value of sc on Mother unifies with MotherSc, if sc is defined for the type

of Mother. Otherwise, MotherSc is assigned the value [] (i.e. the empty list).

The structures defined in figure 1 are used in the definition of grammar rules.

The np-det-n rule introduces a head-complement structure in which (following

the traditional semantic analysis) the determiner is the head, and the noun the

complement:

rule(np_det_n, NP, [Det, N]) :-

NP => np, Det => det, N => n,

NP:nform => norm, hd_comp_struct(Det,[N],NP).

(6)

The n-adj-n rules introduces a head-modifier structure where the adjective is the

modifier:

rule(n_adj_n, N1, [AdjP, N0]) :-

N1 => n, AdjP => a, N0 => n,

AdjP:agr <=> N0:agr, hd_mod_struct(N0,AdjP,N1).

(7)

Note that for a given rule, the types of the mother and daughters must be speci-

fied, and furthermore, the number of complements is always specified. This implies

that the constraints in the principles in figure 1 can be reduced to a number of ba-

sic constraints on the values of particular features defined for the signs in the rule.

The previous two rules can be depicted in matrix notation as (where 〈〉 denotes the

empty list):

np det n:







np
agr 1

nform norm
sem 2







→







det

sc 〈 3 〉
agr 1

sem 2







3 n(8)
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np_det_n
pp_p_np
vp_arg_v
vp_v_arg
v_part_v

v_v_v
sbar1
sbar2

n_adj_n
n_n_pp

vp_mod_v
vp_v_mod
mod_topic

topicalization vfirst subject_firstmod_adv mod_pp hd_mod hd_comp

hd hd_filler main_clause

head_feature fillervalence mod_np vgap

Fig. 2. The Rule Hierarchy (with Principles shown in boxes, structures in ovals, and
rules without frame). Note that the mod np rule (a unary rule which transforms

temporal nps into verbal modifiers) and the vgap rule (a rule which introduces verbal
gaps) are exceptional in that they do not inherit from general principles.

n adj n:







n
sc 1

agr 2

sem 3







→









a
sc 〈〉
agr 2

sem 3

mod 〈 4 〉















n
sc 1

agr 2

sem 4







(9)

An overview of all grammar rules defined in the fragment at the moment, together

with the structures and principles from which they inherit, is given in figure 2.

The classification of rules into structures, which are in turn defined in terms of

principles, allows us to state complicated rules succinctly and to express a number

of generalizations. Nevertheless, it is also clear that the rules could have been more

general, if rule schemata (in which the type of the daughters, or even the number of

daughters is not necessarily specified) had been allowed. Given this restriction, one

may even wonder whether the valence principle (and the feature sc that comes

with it) cannot be eliminated in favour of more specific rules. Valence features are

particularly important for grammars employing rule schemata, but they are much

less crucial for more traditional types of grammar. Although eliminating valence

features is not impossible in principle, we believe that the present set-up still has

advantages, although these are less apparent than in grammars which make use

of rule schemata. Expressing valence information lexically, instead of using more

detailed syntactic rules, has the advantage that idiosyncratic subcategorization re-

quirements (such as the restriction that denken (to think) requires a pp-complement

headed by aan (about), or the fact that komen (to come) may combine with the

particle aan (the combination of which means to arrive)) need not be stated in

the rules. Similarly, all constraints having to do with case marking and agreement
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intransitive(Pred,Sign) :- iv(Sign), iv_sem(Sign,Pred).

transitive(Pred,Sign) :- tv(Sign), tv_sem(Sign,Pred).

v(V) :- V => v, V:lex => basic,

V:vslash => [], V:subj <=> [Subj],

Subj => np, Subj:nform => norm.

iv(V) :- v(V), V:sc <=> [].

tv(V) :- v(V), V:sc <=> [Obj],

Obj => np, Obj:nform => norm, Obj:case => acc.

weather_v(V) :- iv(IV), unify_except(IV,V,subj:h:nform),

V:subj:h:nform => it.

Fig. 3. Fragment of the lexical hierarchy

can be expressed lexically, as well as the semantic relation between a head and its

dependents.

2.4 The lexicon

The lexicon is a list of clauses lex(Word,Sign), associating a word (or sequence of

words) with a specific sign.

Constraint-based grammars in general, and lexicalist constraint-based grammars

in particular, tend to store lots of grammatical information in the lexicon. This

is also true for the OVIS2 grammar. A lexical entry for a transitive verb, for in-

stance, not only contains information about the morphological form of this verb,

but also contains the features sc and subj for which quite detailed constraints may

be defined. Furthermore, for all lexical signs it is the case that their semantics is

represented by means of a feature-structure. This structure can also be quite com-

plex. To avoid massive reduplication of identical information in the lexicon, the use

of inheritance is therefore essential.

In figure 3, we illustrate the use of inheritance in the lexicon. All lexical entries for

verbs have a number of properties in common, such as the fact that they are of type

v, and take a normal (non-locative and non-temporal) np as subject. This is ex-

pressed by the template v(V). Intransitive verbs (iv(V)) can now be characterised

syntactically as verbs which do not subcategorise for any (non-subject) comple-

ments. Transitive verbs (tv(V)) subcategorise for an np with accusative case. The

templates intransitive(Pred,Sign) and transitive(Pred,Sign), finally, com-

bine the syntactic and semantic properties of intransitive and transitive verbs. The

variable Pred is used in the semantics to fix the value of the predicate defined by

a particular verb. A limited form of non-monotonic inheritance is supported (see

Carpenter (1992) and Bouma (1992) for more general approaches). For instance,

‘weather’ verbs require the dummy pronoun het (it) as subject, but behave oth-

erwise as intransitive verbs. This can be expressed by letting weather v inherit
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from iv, with the exception of the value of the nform attribute of (head of the list

containing) the subject, which is assigned an exceptional value. The attribute-value

matrices for the templates iv(V) and tv(V) are:

iv(















v
lex basic
sc 〈〉

subj

〈[

np
nform norm

]〉

vslash 〈〉















). tv(























v
lex basic

sc

〈[

np
nform norm
case acc

]〉

subj

〈[

np
nform norm

]〉

vslash 〈〉























).(10)

The lexicon itself (i.e. the predicate lex/2) is defined in terms of the predicates

entry, inflection and lexical rules:

lex(Word,Sign) :-

entry(Root,Sign0),

inflection(Root,Word,Sign0,Sign1),

lexical_rules(Sign1,Sign).

(11)

The definition of entry(Root, Sign) defines for each root form what its associated

sign is. For instance, for verbs we must typically distinguish a first person singular

form, a second and third person singular form, and a plural form (which is also the

form of the infinitive). The predicate inflection defines how inflected forms are

derived. For example, there is an inflection rule which adds a t to the base form of

a verb, and specifies that its agreement features are third person singular, and its

vform value is fin. Lexical rules can be used to transform the sign associated with

a lexical entry. For instance, the account of nonlocal dependencies sketched below

makes use of a lexical rule which removes a sign from sc and places it on slash.

A more detailed account of this lexical rule is given in the section on nonlocal

dependencies. As an example, assume the stem arriveer (to arrive) is defined as

an intransitive:

entry(arriveer,Sign):-

intransitive(arriveren,Sign).

(12)

Such a definition will give rise to a number of lexical entries. One of these will be

the third person singular finite form:

lex(arriveert,





















v
lex basic
vform fin
sc 〈〉

subj

〈[

np
nform norm
agr sg ∧ thi

]〉

vslash 〈〉





















).(13)

2.5 Syntactic Coverage

Below, we describe the syntactic coverage of the grammar. The grammar is not

intended as a general, wide-coverage, grammar for Dutch. This implies not only
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that coverage in the lexical domain is limited, but also that several grammatical

constructions are not taken into consideration (e.g. passives) or accounted for only

to a certain extent (e.g. the grammar of Dutch verb clusters). The coverage of

the grammar is quite satisfactory for the OVIS application, however. For instance,

when evaluating the grammar on a corpus of 1000 transcribed test-sentences, we

obtained a semantic concept accuracy of 95% (see section 4.2 for discussion).

2.5.1 Noun phrases

The four types which are relevant in the syntax of noun phrases are np (noun

phrase), det (determiner), a (adjective) and n (noun). Each type has the attributes

agr and sem. Furthermore, det and n have an attribute sc. The np type has three

further attributes: case, nform and pform. Finally, a is also specified for mod.

The features agr (agreement), case, and nform (noun form) are used to en-

code agreement properties (encoded as a boolean combination of person, number,

determiner and definiteness), the case value and the form of an item. Their pos-

sible values are listed in (14). Note that agr contains the information needed for

subject-verb agreement, as well as for np-internal agreement (between determiner,

adjective, and noun). The agreement types de and het (the two forms of the def-

inite article) distinguish between neuter and nonneuter nouns. Case and nform

are relevant for full nps only.

Agr (fir ∨ sec ∨ thi) ∧ (sg ∨ plu) ∧ (de ∨ het) ∧ (def ∨ indef)
Case nom ∨ acc
Nform norm ∨ loc ∨ temp ∨ num

(14)

Full nps never take complements, so they do not have a feature sc. Adjectives

may modify a noun, therefore the feature mod is defined for type a.

The two rules we presented in (6) and (7) (section 2.3) are used to form nps

consisting of a determiner and a (possibly complex) noun, and ns consisting of

an adjective followed by a (possibly complex) noun. The derivation of the np de

volgende intercity (the next intercity) is shown in figure 4.

2.5.2 Prepositional phrases

Prepositional phrases are of type pp and are headed by prepositions, i.e. elements of

type p. Prepositions subcategorize (usually) for an np, so the value of sc on p will

be a list of length one, containing the np-complement. The feature pform takes

as value the specific form of the preposition heading the pp (i.e. van, op, naar,

. . . ). This information can be used to let a verb select a pp headed by a specific

preposition.

Full pps can modify nouns or verb phrases. Therefore, pp has a feature mod.

mod has to be present on p as well, as the relation between the semantics of the

preposition and the element it modifies is encoded as part of the lexical entry of a
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





np
agr 1 sg ∧ thi ∧ de ∧ def
nform norm
sem de(volgende(intercity))













det
agr 1

sc 2

sem de(volgende(intercity))







de

2

[

n
agr 1

sem volgende(intercity)

]







a
agr 1

sem volgende(intercity)

mod 〈intercity〉







volgende

[

n
agr 1

sem intercity

]

intercity

Fig. 4. de volgende intercity (the next intercity)

preposition. Here, we give the rule which forms pps and the rule which lets a pp

combine as a modifier with a noun.

pp p np:







pp
pform 1

sem 2

mod 3







→









p
pform 1

sc 〈 4 〉
sem 2

mod 3









4 np(15)

n n pp:







n
sc 1

agr 2

sem 3







→







n
sc 1

agr 2

sem 4







[

pp
sem 3

mod 〈 4 〉

]

(16)

Using these rules, we can derive the phrase intercity uit Goes (intercity from Goes)

as illustrated in figure 5.

It should be noted that since adjectives precede the nouns they modify and pps

follow them, an expression such as volgende intercity uit Groningen (next intercity

from Groningen) will receive two parses. This appears to be a case of spurious

ambiguity. There are intensional adjectives, such as zogenaamde (alleged), which

need to be able to take scope over a complex noun, but it seems that modifying

pps never need to take scope over a adjective + noun combination. It is not easy

to rule out the latter type of derivation, however, without introducing additional

features.
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[

n
agr 1 sg ∧ thi ∧ de
sem intercity(x) ∧ uit(goes,x)

]







n
agr 1

sc 2

sem intercity(x)







intercity

2







pp
pform uit
sem intercity(x) ∧ uit(goes,x)

mod 1

〈

intercity(x)
〉













p
pform uit
sem intercity(x) ∧ uit(goes,x)
mod 1







uit

[

np
sem goes

]

goes

Fig. 5. intercity uit Goes (intercity from Goes)

2.5.3 Verb phrases

Both verbs and verb phrases are of type v:























v
lex ylex ∨ nlex
null null ∨ nonnull
vform fin ∨ inf ∨ te ∨ psp
sc listof(Sign)
subj listof(Sign)
sem Qlf
slash listof(Sign)
vslash Vslash























(17)

The features lex, null, and vform are specific for v. The feature vform is

used to distinguish finite, infinitive, te-infinitive and past participle verbs (and verb

phrases headed by such verbs). The feature lex is used to distinguish lexical verbs

(ylex) from verbal phrases that are not lexical (nlex). The feature ylex subsumes

two further subtypes basic ∨ complex, to distinguish basic and complex lexical

verbs. The latter are combinations of a verb and a separable prefix (aan+komen,

arrive) or combinations of a modal verb and a main verb (wil vertrekken, want

to leave). The feature null is used to distinguish verbal traces (i.e. verbal signs

without phonological content) from other verbal signs. The features subj, slash,

and vslash and null are discussed in the section below on sentential syntax.

There are a number of similar rules for combining a verb or a verbal projection

with one of its complements. One rule combines a noun phrase complement with a

verbal head (een kaartje kopen, buy a ticket):

vp np v:













v
lex nlex
sc 1

vform 2

slash 3

vslash 4













→ 6 np











v

sc
〈

6 | 1
〉

vform 2

slash 3

vslash 4











(18)
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Since pps may either precede or follow the head (vanuit Leiden vertrekken, vertrekken

vanuit Leiden, depart from Leiden), there are two rules to combine such a pp and a

verbal head. Finally, there is a rule which combines a verbal head with a te-infinitive

(weigeren naar Groningen te komen, refuse to come to Groningen). The result of

combining a verb (or verbal projection) with its complement is a phrase (i.e. the

value of lex on the mother is nlex).

A verbal modifier can be either an adverb, a pp, or a temporal np. There are

unary rules rewriting signs of type modifier into each of these categories. One such

rule is the following:

mod adv:

[

modifier

mod 1 〈 〉

]

→

[

adv
mod 1

]

(19)

At the moment, we allow all modifiers to precede or follow the verb (ik moet

morgen in Assen zijn/ in Assen zijn morgen/ morgen zijn in Assen, I must be in

Assen tomorrow, ik moet tien uur in Assen zijn/?in Assen zijn tien uur, I must

be in Assen at ten o’clock). Therefore, there are two similar rules, vp v mod and

vp mod v, in which a verb combines with a modifier. The first is illustrated here:

vp mod v:













v
lex nlex
sc 1

vform 2

slash 3

vslash 4













→

[

modifier

mod 〈 5 〉

]













v
sc 1

vform 2

slash 3

vslash 4

sem 5













(20)

A special type modifier (with sem and mod as only attributes) in combination

with three unary rules is used to introduce the various types of verbal modifier. A

sample derivation is given in figure 6 (the value of the features slash and vslash

is not shown, but is 〈 〉 on all verbal signs in this derivation).

Finally, there are two vp-rules that give rise to ‘complex’ lexical expressions,

instead of phrases. Firstly, consider the v v v rule:

v v v:

















v
lex complex
sc 1

vform 2

slash 3

vslash 4

sem 5

















→

















v
lex basic

sc
〈

6 | 1

〉

vform 2

slash 3

vslash 4

sem 5

















6

[

v
lex ylex
vslash 〈〉

]

(21)

The v v v rule is used to derive phrases in which a modal verb precedes its infinitival

complement ((dat ik om tien uur) wil vertrekken, that I want to leave at ten o’clock).

We adopt an analysis of such constructions in which modals inherit the arguments

on sc of the infinitival verb with which they combine. This is illustrated for the

root wil (want) in (1).

(1) wil 7→













v
lex basic

sc

〈







v
lex ylex
sc 1

vform inf







| 1

〉












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











v
lex nlex
sc 〈〉
subj 4

vform fin
sem 1 missen(e,subj,trein) ∧ in(goes,e)













[

modifier
sem 1

mod 〈 2 〉

]







pp
pform in
sem 1

mod 〈 2 〉







in Goes













v
lex nlex
sc 〈〉
subj 4

vform fin
sem 2 missen(e,subj,trein)













3









np
agr sg ∧ ...
case acc
nform norm
sem trein









de trein













v
lex basic

sc 〈 3 〉
subj 4

vform fin
sem 2













mist

Fig. 6. (dat Rob) in Goes de trein mist (that Rob misses the train in Goes)

This allows us to derive phrases such as (dat ik) een kaartje wil kopen (that I want

to buy a ticket) where the finite modal verb combines with the infinitival verb

before combining with the object of kopen (figure 7). Note that it is essential that

the modal verb selects a [lex ylex] argument in this case, as this excludes the

derivation of ungrammatical expressions such as (dat ik) wil een kaartje kopen. The

result of combining a modal with an infinitival verb is [lex complex] (i.e. subsumed

by [lex ylex]). This implies that such combinations can be selected by another

modal verb (i.e. (dat ik) een kaartje zou willen kopen, that I would like to buy a

ticket).

Next, consider the v part v rule:

v part v:

















v
lex complex
sc 1

vform 2

slash 3

vslash 4

sem 5

















→ 6 part

















v
lex ylex

sc
〈

6 | 1

〉

vform 2

slash 3

vslash 4

sem 5

















(22)

The rule v part v is used to account for constructions such as (dat ik voor tien uur)

aan wil komen (that I want to arrive before ten o’clock). The prefix (or particle)

aan of the verb aankomen (arrive) is separated from the root komen in this case. As

the root komen specifies that it selects such a particle on its sc-list, the modal verb

inherits this specification. The rule v part v allows us to combine a verb or verbal

complex with a particle. There are two reasons for not using an analogue of the

vp np v-rule in this case. First, modifiers may not appear in between a particle and
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











v
lex nlex
sc 〈〉
subj 4

vform fin
sem 1 willen(subj,kopen(subj,kaartje))













2

[

np
sem kaartje

]

een kaartje













v
lex complex
sc 〈 2 〉
subj 4

vform fin
sem 1

























v
lex basic
sc 〈 3 , 2 〉
subj 4

vform fin
sem 1













wil

3









v
lex basic

sc 〈 2 〉
vform inf
sem kopen(subj,kaartje)









kopen

Fig. 7. (dat ik) een kaartje wil kopen (that I want to buy a ticket)

the verbal complex selecting this particle (∗ (dat ik) aan om tien uur wil komen).

This is accounted for by requiring that the head in the rule for particles must be

[lex ylex] (and combinations of a modifier and a verbal head are always [lex nlex]).

Second, particles may appear ‘inside’ a verb cluster ((dat ik voor tien uur) zou aan

willen komen, that I would like to arrive before ten o’clock). This implies that the

result of combining a particle with a verb cluster must be [lex ylex], instead of

[lex nlex] as specified on the vp np v-rule.

It should be obvious that these two rules, and the limited form of argument

inheritance we allow (i.e. structure sharing of sc-lists only, and no concatenation

of sc-lists), is not sufficient to account for the full range of verb clustering data

in Dutch. For one thing, the grammar as it stands cannot handle ‘inverted’ word

orders ((dat ik de trein) halen moet, that I must catch the train), where the infinitive

precedes the modal verb. It is rather straightforward to include rules for inverted

word orders. A potentially more problematic omission is the fact that perception

verbs (horen, zien) and causative laten, which also introduce verb clusters ((dat

ik) Rob een kaartje laat kopen, that I let Rob buy a ticket), cannot be accounted

for. The analysis of this construction in van Noord and Bouma (1997a) is based

on the notion ‘argument inheritance’. This presupposes the possibility of recursive

constraints in syntax (to concatenate sc-lists) as well as rules with an indefinite

number of daughters. Both are excluded within the present formalism.
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2.5.4 Subordinate clauses

Subordinate clauses containing a vp headed by a finite verb are of type sbar (the

name sbar stems from X-bar grammar, where clauses introduced by a complemen-

tizer are (barred) projections of s). As finite subordinate clauses are always intro-

duced by a complementizer, we assume that this complementizer is the head of the

clause and that it subcategorises for a subject np and a (finite) vp. The lexical

entry for the complementizer dat (that), for instance, is:

(2) dat 7→





























comp

sc

〈

1

[

np
case nom

]

,













v
vform fin
sc 〈〉
subj 〈 1 〉
sem 2

slash 3













〉

sem 2

mod 〈〉
slash 3





























The complementizer unifies the np on its sc with the subject of the vp. This implies

that the np is interpreted as subject of the vp. Furthermore, the complementizer

has no independent semantics, but simply passes on the semantics of the vp. Since

dat clauses cannot be modifiers, its mod feature is empty. Other complementizers

such as omdat (because) will have a non-empty value for this attribute to indicate

that subordinate sentences headed by such complementizers can occur as modifier.

The rule constructing subordinate clauses is defined as follows:2







sbar
slash 1

sem 2

mod 3







→









comp

sc 〈 4 , 5 〉
slash 1

sem 2

mod 3









4

[

np
case nom

]

5













v
sc 〈〉

subj 〈 4 〉
vform fin
slash 1

vslash 〈〉













(23)

A sample derivation is given in figure 8.

2.5.5 Main clauses

Main clauses with a finite verb in initial position (as in yes/no-questions) are of

type ques. Main clauses in which the finite verb appears in second position (as in

declarative sentences or wh-questions) are of type root. The attributes associated

with these types are:






ques
subj listof(Sign)
sem Qlf
slash listof(Sign)







[

root
sem Qlf

]

(24)

2 There is an additional rule, for constructing subordinate clauses with a missing (‘ex-
tracted’) subject. This rule (sbar2) could be used in an account of nonlocal dependencies
which allows for extraction out of subordinate clauses as well.
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[

sbar
sem 1 gaan(e,markjan) ∧ naar(amsterdam,e)
mod 〈〉

]







comp
sc 〈 2 , 3 〉
sem 1

mod 〈〉







dat

2





np
agr sg ∧ ...
case nom
sem markjan





Mark-Jan

3









s
sc 〈〉
subj 〈 2 〉
vform fin
sem 1









naar Amsterdam gaat

Fig. 8. dat Mark-Jan naar Amsterdam gaat (that Mark-Jan is going to Amsterdam)

Dutch main clauses differ from subordinate clauses in that the finite verb in main

clauses appears in first or second position. There is a tradition, both in transforma-

tional and non-transformational grammar, to account for this fact by postulating

a dependency between the finite verb and the position where finite verbs occur in

subordinate clauses. The advantage of postulating such a dependency is that the

grammar rules used for subordinate clauses are also applicable in main clauses. In

transformational grammar, a dependency of this type can be established by means

of a head-movement operation which moves the verb from its final position to a

position at the beginning of the sentence.

Within the framework of hpsg (Netter1992; Frank1994) we can obtain a similar

dependency by postulating a verbal trace, i.e. a verbal sign without phonological

content, at the end of the clause. Using this verbal trace as the head, we can use

the vp rules discussed above to build up a vp as usual.

The rule for introducing such a verbal trace is given in figure 9. Note that the sign

for verbal traces differs from that of an ordinary verb in that its subcategorisation

list in not instantiated, but made reentrant with vslash:vsc. Similarly, the seman-

tics of the verbal gap is reentrant with vslash:vsem. Furthermore, a verbal gap

is a basic (i.e. non-complex) lexical verb, with no phonological content (i.e. [null

null]). We can also safely assume that verbal traces are finite, as main clauses are

always headed by a finite verb. The value of subj is the empty list, as vps headed

by a verbal trace never combine with a subject directly (as will be shown below).

Finally, slash also can be assumed to be empty.3

There are two rules which combine a finite verb with a vp containing a verbal

trace, and which also introduce a subject (figure 10). Both rules are highly similar

(they are therefore both instances of a main-clause-struct). The only differ-

ence is the category of the mother, and the order of the daughters. The vfirst-rule

introduces phrases of the type ques, i.e. instances of verb-first clauses, in which

3 The lexical rule which moves complements from sc to slash does not apply to verbal
traces. Instead, it can be applied to the finite verb which ‘binds’ the trace. Also, if a
verbal gap combines with a complement having a non-empty slash, the relevant passing
on of the slash value is handled by the finite verb which binds the trace. This is possible
because the sc-list of the verbal trace and the binder will be shared.



20 van Noord et al.

vgap:





























v
lex basic
null null
vform fin
sc 1

subj 〈〉
slash 〈〉

vslash

[

vslash
vsc 1

vsem 2

]

sem 2





























→ ε

Fig. 9. Verbal Gap

[

ques
slash 1

sem 2

]

→



















v
sc 3

subj 〈 4 〉
vform fin
lex basic
slash 1

vslash 〈〉
sem 5



















4

[

np
case nom

]























v
sc 〈〉
subj 〈〉
vform fin
slash 〈〉

vslash

[

vslash
vsc 3

vsem 5

]

sem 2























[

root
sem 2

]

→ 4

[

np
case nom

]



















v
sc 3

subj 〈 4 〉
vform fin
lex basic
slash 〈〉
vslash 〈〉
sem 5









































v
sc 〈〉
subj 〈〉
vform fin
slash 〈〉

vslash

[

vslash
vsc 3

vsem 5

]

sem 2























Fig. 10. Rules for verb-first and subject first main clauses (y/n questions and simple
declarative sentences)

the subject follows the main verb. The subject-first-rule introduces phrases of type

root, in which the subject is first, and the main verb follows the subject. The con-

straints imply, among others, that the vp must contain a verbal trace, that the

sc-information of the main verb is reentrant with vslash:vsc of the vp (and thus,

indirectly, with the sc-value of the verbal trace), and that the semantics of main

verb is shared with the value of vslash:vsem on the vp (and thus, indirectly, with

the semantics of the verbal trace). Note also that the vp acts as semantic head

of the construction. This is necessary in order to ensure that the effect of verbal

modifiers within the vp is properly taken into account. An example derivation of a

subject first main clause is given in figure 11.
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[

root
sem 1 kopen(e,rob,geen-kaartje)

]

2





np
agr sg ∧ ...
case nom
sem rob





Rob













v
lex basic
vform fin
sc 3

subj 〈 2 〉
sem 1













koopt























v
lex nlex
vform fin
sc 〈〉
subj 〈〉

vslash

[

vslash
vsc 3

vsem 5

]

sem 1























4

[

np
case acc
sem geen-kaartje

]

geen kaartje



























v
lex basic
vform fin
null null
sc 3 〈 4 〉
subj 〈〉

vslash

[

vslash
vsc 3

vsem 1

]

sem 1



























epsilon

Fig. 11. Rob koopt geen kaartje (Rob does not buy a ticket)

2.5.6 Wh-questions and topicalisation

In the previous section, we have introduced a rule for verb-initial and subject-initial

main clauses. The first phrase in a main clause can also be a (non-subject) com-

plement or a modifier. This is typically the case for (non-subject) wh-questions.

Sentences with a ‘fronted’ complement are treated as instances of a non-local de-

pendency construction (where the dependency is mediated through slash). In sen-

tences with a fronted modifier, it is assumed that the first element modifies the

remainder of the clause, and thus a local treatment can be given.

Examples of sentences with a fronted complement are given in (3).

(3) a. Naar welk station wilt u reizen?

To which station do you want to travel

b. De laatste trein kunt u nog halen.

The last train, you can still catch

These examples are handled by means of a lexical complement-extraction

rule applicable to verbs, and a syntactic head-filler-rule for combining the fronted

element with a ques-phrase containing a non-empty slash-value. The complement-

extraction rule can apply in two ways: First, it can take a complement from sc

and put it on slash (4a). This implies that this complement will not be found

locally, but that it will be unified with an element in ‘fronted’ position. Second, it
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root

1 np

de laatste trein

[

ques

slash 2 〈 1 〉

]

[

v
sc 3

slash 2

]

kunt

np

u

[

v

vslash [vsc 3 ]

]

[

v
sc 3 〈 4 〉

vslash [vsc 3 ]

]

ε

4

[

v
sc 〈〉
slash 2 〈 1 〉

]

halen

Fig. 12. De laatste trein kunt u halen

can make the slash value of a verb reentrant with the slash value of one of its

complements (4b). This implies that true non-local dependencies are possible, as

the head of a phrase can pass on information about missing elements from one of

its dependents. If the complement-extraction rule does not apply, the slash value

of the verb, as well as the slash value of all its complements, is set to 〈〉 (the empty

list).

(4) a.













v

sc 〈 1 pp〉
subj 2

vform 3

...













→















v
sc 〈〉
slash 1

subj 2

vform 3

...















b.













v

sc 〈v〉
subj 2

vform 3

...













→





















v

sc

〈[

v
slash 1

]〉

slash 1

subj 2

vform 3

...





















An example of a derivation involving slash is given in figure 12. The comple-

ment extraction rule has applied to halen (to catch) to produce a verbal sign

with an empty sc-list and an np on slash. A verbal trace contains a reentrancy

between its sc-list and its vslash:vsc-list. When the verbal trace combines with

halen, the information that halen has an np on slash will therefore also be instan-

tiated on vslash:vsc. This information is passed up to the resulting verb phrase.

The complement extraction rule also applies to the finite verb kunt (can), but in this

case it establishes a reentrancy between the slash value of the verb on the sc-list

of kunt and the slash-value of kunt itself. The vfirst rule unifies the sc-list of kunt

with the vslash:vsc-list of the verb phrase halen ε, and thus, slash (of the verb

on sc of kunt, and thus on kunt itself) is instantiated as 〈np〉. This information is
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passed on to the resulting ques phrase, which can then be combined with the initial

np using the topicalisation rule in 25.

[

root
sem 1

]

→ 2

[

ques
slash 2

sem 1

]

(25)

It should be noted that our account of non-local dependencies differs from ear-

lier slash-based accounts, such as those in Gazdar et al. (1985) and Pollard and

Sag (1994) in that it does not make use of a foot feature principle. Instead,

we adopt the approach of Sag (1997), who imposes the canonical constraint that

the slash-value of a head is the set-union of the slash-values of its daughters. An

extraction lexical rule can be used to remove an element from sc (comps) and to

add this element to the set of elements on slash. In our implementation, we have

made several simplifying assumptions. First, slash is not a set, but a list. Second,

this list can contain at most one element. This assumption (which has the effect of

restricting the number of ‘missing’ elements from a phrase to at most one) is too

restrictive for a highly limited number of cases in English, but appears to be valid

for Dutch. Third, instead of imposing a general constraint that slash must be the

concatenation on the slash values of all elements on sc, we allow the complement

extraction rule to unify the value of slash with one specific element on sc. We

have to make this assumption, as the more general alternative requires the use of

delayed evaluation, something which we wish to avoid in this grammar, or difference

lists. While the latter alternative is possible within the present formalism, it also

introduces a number of complications which are avoided in the present implemen-

tation. The fourth and final simplification is that complement extraction and

slash feature passing is only possible for verbs. This is certainly too restrictive,

as extraction out of subordinate clauses of type sbar (welke trein zegt Gertjan dat

Rob gemist heeft?, which train does Gertjan say that Rob has missed) and out of

pps (Waar gaat deze trein naar toe?, Where does this train go to), and a number

of other types of phrase is possible as well.

Sentences where the first phrase is a modifier are dealt with without appealing

to slash. Instead, it is assumed that in sentences such as (5), the fronted elements

modify the following ques phrase. This requires an additional (mod-topic) rule,

given in (26).

(5) a. Hoe laat gaat de volgende trein naar Zwolle?

When does the next train to Zwolle leave?

b. Woensdag moet ik om tien uur in Zwolle zijn.

Wednesday, I must be in Zwolle by ten o’clock.

[

root
sem 1

]

→

[

modifier
sem 1

mod 〈 2 〉

] [

ques
slash 〈〉
sem 2

]

(26)

Of course, this account rests on the assumption that modifiers of embedded verbs

or phrases cannot be fronted, an assumption which is almost certainly false in

general (see Hukari and Levine (1995), for instance), but which appears to be

rather unproblematic for present purposes.
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2.5.7 Special grammar rules

The domain which has been selected for OVIS (information dialogues concerning

public transportation) and the fact that OVIS deals with spoken language, imply

that it is crucial that a number of grammatical phenomena are described in a

robust manner. In particular, temporal expressions, locative expressions (names of

cities and stations), and a number of typical spoken language constructions, such

as greetings, occur frequently in such dialogues.

The grammar rules and lexical entries for these phenomena make use of the

OVIS2 grammar formalism, but are not organised according to the linguistic prin-

ciples discussed above. This is true not only for the syntax, but also for semantics.

The reason for dealing with these phenomena by means of a set of more or less

ad hoc rules and lexical entries is that the constructions discussed below are of-

ten extremely idiosyncratic. At the same time, describing the regularities that can

be observed does not seem to require the overhead of the grammar architecture

we assume for the rest of the grammar. The most economical and robust solution

seemed therefore to encapsulate the grammar for these constructions in relatively

independent grammar modules.

2.6 Semantics

The output of the grammatical analysis is a semantic, linguistically motivated and

domain-independent, representation of the utterance, in the form of a Quasi Log-

ical Form (qlf). The qlf formalism was developed in the framework of the Core

Language Engine (cle, (Alshawi1992; Alshawi and Crouch1992)). Since then, the

formalism was used and further developed in projects such as the Spoken Language

Translator (Agnäs et al.1994), Clare (Alshawi et al.1992), in the Fracas-project

(Cooper et al.1994) and in Trace & Unification Grammar (Block1994). In ovis the

qlf is translated into a domain-specific update expression, which is passed on to

the pragmatic interpretation module and dialogue manager for further processing.

The dialogue manager maintains an information state to keep track of the infor-

mation provided by the user. An update expression is an instruction for updating

the information state (Veldhuijzen van Zanten1996). Below, we motivate our choice

for qlfs as semantic representation language and we discuss how these qlfs are

translated into updates.

2.6.1 The semantic representation language

Predicate logic, (sometimes extended with for example generalised quantifiers or

discourse markers), is often used to represent the meaning of sentences. Due to its

long tradition in describing semantics of natural languages it is now a well estab-

lished and well understood technique. The main advantage of artificial languages

like predicate logic is that they are unambiguous. An ambiguous natural language

utterance will therefore correspond to more than one expression in predicate logic,

one for each reading of the utterance. The disadvantage of this approach is that for

very ambiguous inputs, expensive computations must be carried out to compute
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all readings. The alternative adopted in formalisms based on the idea of mono-

tonic semantic interpretation ((Cooper et al.1994), see also (Nerbonne1992) and

(Pinkal1995)) is to represent ambiguity by means of under-specification and to

postpone the computation of individual readings as long as possible.

Representing ambiguity by under-specification, and postponing the computation

of individual readings, has at least two computational advantages. First, parsing

can benefit significantly from the fact that ambiguities which are only semantic (i.e.

do not have a syntactic counterpart) are represented by a single derivation. Second,

ambiguity resolution can often proceed without enumerating all possible readings

of an input separately. A striking example of the latter situation is the translation

of qlf’s that are ambiguous with respect to quantifier-scope into a domain-specific

meaning representation as it is used by the dialogue manager of the ovis-system.

The utterance in (6a), for instance, gives rise to a single qlf (6b), which could

be resolved (ignoring the existential quantification over events and the fact that

it is a question) to either (6c) or (6d). The domain-specific reading of (6a) (which

corresponds to (6c)) is computed on the basis of (6b) directly, and thus never needs

to consider the two different readings of this qlf.

(6) a. Gaat er niet een latere (trein)?

Is there not a later train?

b.











pred not

args

〈







pred leave

args

〈

[index e1],

[

index 3

res λ 4 .later train( 4 )
q exist

]〉







〉











c. not(∃x (later train(x) ∧ leave(e1, x)))

d. ∃x (later train(x) ∧ not(leave(e1, x)))

2.6.2 Quasi logical form

In figure 13 we give a qlf as it is produced by the ovis-grammar. It is a typed

feature-structure, whose main components are predicative forms (p form), repre-

senting relations (which may also be higher order, such as not and and), and terms.

Generalised quantifiers are represented by term expressions (t expr). The example in

(13) contains two generalised quantifiers, corresponding to the (existentially quanti-

fied) event-variables introduced by the two verbal predicates (Davidson1967). Note

that these quantifiers appear as arguments of the predicates, and thus are unscoped

with respect to each other.

Our implementation of qlf in the ovis grammar follows roughly the presentation

in (Cooper et al.1994), although some of the apparatus supplied for contextual

resolution in that work has been omitted. As the ovis-grammar uses typed feature-

structures, qlf’s are represented as feature-structures below.

A qlf is either a qlf-term or a qlf-formula. A qlf-term is one of the following:
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





















p form
pred want

args

〈

[

t expr
index e1

]

, 3 i,















p form
pred and

args

〈







p form
pred leave

args

〈[

t expr
index e2

]

, 3

〉







,





p form
pred at

args
〈

5 , hour(4)
〉





〉















〉























Fig. 13. qlf for ’Ik wil om ongeveer vier uur vertrekken’ (I want to leave at about four
o’clock)

• a term index,4

• a constant term,

• an term-expression of type t expr and containing the features index, restr

and quant5 (see (13)), where index is a variable, restr is an expression of

predicate logic (possibly with lambda-abstraction) and quant is a generalised

quantifier.

A qlf formula is one of the following:6

• a predicate-argument formula of type p form, and with features pred and

args (see (13)). Predicates may be higher order, arguments may be formulas

or terms,

• a formula of type v form with features var and form representing a formula

with lambda-abstraction (see(14b)). This is an auxiliary level of represen-

tation, introduced to facilitate the interaction between grammar-rules and

lexical entries,

• a formula of type s form (see(14b)), with features scope and form. The

value of scope is either a variable or a list of indices indicating the relative

scope of term expressions (generalised quantifiers) (see (14c)).

The definitions can best be illustrated with a simple example in which we compare

a qlf expression with its corresponding formula in predicate logic. In figure 14 the

sentence Everybody speaks two languages is given both a translation in qlf and in

predicate logic. In the qlf-translation of the full sentence the scope order ( 5 ) of the

two quantifiers is left unspecified. Resolving scope order amounts to instantiating
5 to [ 1 , 3 ] (for everybody there are two languages that s/he speaks) or to [ 3 , 1 ]

(there are two languages that everybody speaks).

4 In the original formalism indices and variables are distinguished. An index uniquely
identifies a term expression. At this moment indices and variables have the same function
in our implementation. We may need to distinguish between them later.

5 In chapter 5 of (Cooper et al.1994) term expressions also contain a slot cat for specifying
information about the lexical form and syntactic/semantic type of an expression (e.g.
quantifier, pronoun, etc.) and a slot ref for specifying the (contextual) referent of
an expression. We do use cat, but have omitted it from the presentation below. We
currently do not use ref.

6 In chapter 5 of (Cooper et al.1994) two more formula constructs are introduced. These
are not used in the current implementation.
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a. Everybody two languages

qlf





t expr
index 1

restr λ 2 .person( 2 )
quant every









t expr
index 3

restr λ 4 .language( 4 )
quant two





pl ∀x.(person(x) → ....) two y.(language(y) → ....)

b. speaks

qlf















v form
var e1

form









s form
scope 5

form

[

p form
pred speak
args 〈e1, 6 , 7 〉

]























pl speak(e1, ..., ...)

c. Everybody here speaks two languages

qlf



















s form
scope 5

form











p form
pred speak

args

〈

e1,





t expr
index 1

restr λ 2 .person( 2 )
quant every



,





t expr
index 3

restr λ 4 .language( 4 )
quant two





〉





























pl ∀x.(person(x) → (twoy.language(y)∧ speak(e1, x, y)))
twoy.(language(y)∧ ∀x.(person(x) → speak(e1, x, y)))

Fig. 14. The relation between an expression in qlf and a fomula of predicate logic

2.6.3 Construction of qlf’s

During grammatical analysis qlfs are constructed compositionally (see also (Al-

shawi and Crouch1992)). In head complement structures the head daughter is the

syntactic as well as the semantic head of the structure. This means that the seman-

tic content of the complement constituents is combined with the semantic content

of the head. The value of the sem feature of the head is passed up to the mother

(see figure 1).

In head modifier structures the modifier is the semantic head. The semantics of

the syntactic head of the structure is plugged into the mod feature of the modifier.

Below we will show how the semantics of the modifier is combined with the seman-

tics of the constituent it modifies. The value of the sem feature of the modifier is

passed up to the mother.

We now discuss the semantics of various linguistic categories. Determiners sub-

categorise for a noun (see Figure 15(a.)). The semantics of the noun is unified with

restriction of the determiner. Nouns introduce a v form (fig. 15(b.)) Note that it

is also assumed that quantifiers may scope at this point. Adjectives are modifiers

(fig.15(c.)). They operate on structures whose semantic content is of type v form.

The lambda variables of the two formulas are unified and the semantic content

of the structure is the conjunction of the logical formula of the adjective and the

logical formula of the structure it modifies.
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a. lex(alle,











sc

〈

[

n
sem 1

]

〉

sem

[

t expr
restr 1

quant all

]











).

b. lex(trein,

















n

sem













v form
var 1

form







s form

form

[

p form
pred train
args 〈 1 〉

]



































).

c. lex(eerste,











































a

sem























v form
var 1

form















s form
scope 2

form









p form
pred and

args

〈[

p form
pred first
args 〈 1 〉

]

, 3

〉













































mod

〈









v form
var 1

form

[

s form
scope 2

form 3

]









〉











































).

Fig. 15. Examples showing the semantics of determiners, nouns, and adjectives.

The semantics of verbs corresponds with a v form (see fig. 16a). The value of

var is reentrant with the index of the event introduced by the verb. The seman-

tics of the subject is unified with the second element of the argument list of the

verb. Intransitive verbs have two semantic arguments, corresponding to the event

and subject, respectively. Transitive verbs have three arguments, where the third

argument is unified with the semantics of the single element on sc.

Modal verb are subject-control verbs. This means that the subject of the vp-

complement is controlled by the subject of the modal verb. Semantically, this means

that the index of the subject must be unified with the semantics of the subject

of the vp-complement. Note also that we assume that assume that the sc-list of

a modal verb may contain complements introduced by the vp-complement (as ex-

plained in section 2.5.3). These are not relevant for the semantics of the modal

verb.

The semantics of adverbial phrases resembles that of adjectives. In figure (17) the

semantics of prepositions heading a pp which acts as a verbal modifier is given. Pp-

modifiers introduce a conjunction, with the verbal semantics as first argument, and

the prepositional semantics as second. The index of the vp is the first argument of
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Fig. 16. Verbal semantics.

the predicate introduced by the preposition, the semantics of the np-object of the

preposition corresponds to the second argument.

In Dutch, temporal np’s can act as verbal modifiers:

(7) a Ik wil zondag vertrekken

I want to leave on Sunday

b Ik wil drie januari naar Amsterdam

I want to go to Amsterdam on the third of January

c Ik wil er uiterlijk drie uur zijn

I want to arrive at the latest at three o’clock

As nps normally do not have a modifier semantics, there is a unary rule that

transforms temporal nps into modifiers (figure 18). The structure that is modified

is specified in the mod feature. The semantic content of the modifier is constructed

as if it was a pp with p form om (at). The semantic content of the (temporal) np

daughter is plugged into the second position of the argument list of the preposition.



30 van Noord et al.

lex(op,



















































p

sc

〈[

np
sem 1

]〉

sem





















v form
var 2

form













s form
scope 3

pred and

args

〈

4 ,

[

p form
pred on

args 〈 2 , 1 〉

]〉

































mod

〈









v form
var 2

form

[

s form
scope 3

form 4

]









〉



















































Fig. 17. Adverbial semantics for prepositions.















































modifier

sem

























v form
var 1

form

















s form
scope 2

form









p form
pred and

args

〈

3 ,

[

p form
pred at

args 〈 1 , 4 〉

]〉

















































mod

〈









v form
var 1

form

[

s form
scope 2

form 3

]









〉















































→

[

np
nform temp
sem 4

]

Fig. 18. Rule mod np to treat temporal noun phrases as modifiers.

2.7 Constructing updates from qlfs

The dialogue manager keeps track of the information provided by the user by main-

taining an information state or form (Veldhuijzen van Zanten1996). This form is a

hierarchical structure, with slots and values for the origin and destination of a con-

nection, for the time at which the user wants to arrive or depart, etc. An example

is given in (8a). Each user utterance leads to an update of the information state.

An update is an instruction for updating the information in an information state.

Updating can mean that new information is added or that given information is

confirmed, retracted or corrected. For example, given the information state in (8a),

the update in (8b) (which might be the translation of No, I do not want to travel to

Leiden but to Abcoude!) leads to the information state in (8c). The # -operator in

(8b) indicates that the information within its scope (indicated by square brackets)

is to be retracted, and the ’ !’-operator indicates a correction.
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The result of parsing is a qlf, a linguistically motivated and domain-independent

representation of the meaning of a sentence. The translation of a qlf into a domain-

specific update is done by applying translation-rules to the individual parts of a qlf.

These translation rules may be context-sensitive. In particular, some parts of the

qlf provide the context which determines how other parts are to be translated. For

example, the qlf in (9) (corresponding to the phrase leave at four o’clock contains

two p forms, one for the predicate leave and one for four o’clock. The second gives

rise to an update expression moment.at.time.clock hour.4. The first provides

the contextual information that the moment referred to is a departure-time. The

translation can therefore be extended to origin.moment.at.time.clock hour.4.

There is no linguistic information which indicates that a special update-operator

has to be used. In such cases, it is assumed that the information is new, and thus the

assert-operator (’=’) can be used, giving rise to the translation for the full phrase:

origin.moment.at.[= time.clock hour.4].
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Contextual translation is a powerful technique. For instance, the utterance Gronin-

gen Amsterdam gives rise to a conjunctive qlf, containing two term expressions for

locations. Translating each of the conjuncts individually would make it impossible

to decide whether an origin or destination location is being specified. By translating

the conjunction in one step (and assuming that the order of conjuncts corresponds

to the order in the utterance), we can resolve the first locative to origin and the

second to destination. As another example, the adverb graag is ignored in the trans-

lation from qlf to update if it occurs as part of a full sentence (ik wil graag naar

Amsterdam, ‘I would like to go to Amsterdam’), but is translated as ‘yes’ (i.e. a

confirmation of information provided by the system) if it occurs in isolation. Such

a translation is motivated by dialogues of the following type:

(10) [system:] Dus U wilt van Amsterdam naar Groningen reizen?

So you want to travel from Amsterdam to Groningen?

[user:] Graag.

Please.

Similarly, the translation of the negations nee (no) and niet (not) depends on

context. If the two occur in isolation, they indicate a denial of information provided
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by the system. However, if nee is followed by another phrase, say a locative, it signals

a correction (11a), whereas if niet is followed by another phrase, it signals a denial

(11b).

(11) a. ’Nee, naar Assen’ (No, to Assen)

destination.[!place.assen]

b. ’Niet naar Assen’ (Not to Assen)

destination.[#place.assen]

It should be noted that the translation of qlf’s to updates uses primarily the

information provided by np’s, pp’s and adverbs. Verbs typically provide the con-

text for translating other parts of the qlf. Also, as quantification plays no role in

updates, the scope of generalised quantifiers can be largely ignored. Thus, we are

able to translate qlf’s into domain-specific meanings without resolving quantifier

scope.

3 Robust parsing of word-graphs

3.1 Word-graphs

The input to the NLP module consists of word-graphs produced by the speech

recogniser (Oerder and Ney1993). A word-graph is a compact representation for all

sequences of words that the speech recogniser hypothesises for a spoken utterance.

The states of the graph represent points in time, and a transition between two states

represents a word that may have been uttered between the corresponding points in

time. Each transition is associated with an acoustic score representing a measure

of confidence that the word perceived there was actually uttered. These scores are

negative logarithms of probabilities and therefore require addition as opposed to

multiplication when two scores are combined. An example of a typical word-graph

is given as the first graph in figure 19.

At an early stage, the word-graph is normalised to eliminate the pause transi-

tions. Such transitions represent periods of time for which the speech recogniser

hypothesises that no words are uttered. After this optimisation, the word-graph

contains exactly one start state and one or more final states, associated with a

score, representing a measure of confidence that the utterance ends at that point.

The word-graphs in figure 19 provide an example.

From now on, we will assume word-graphs are normalised in this sense. Below,

we refer to transitions in the word-graph using the notation trans(vi, vj , w, a) for a

transition from state vi to vj with symbol w and acoustic score a. Let final(vi, a)

refer to a final state vi with acoustic score a.

3.2 Parsing word-graphs

The normalized word-graph is parsed by an appropriate parser. Parsing algorithms

for strings can be generalized to parse such word-graphs (for some examples cf. van

Noord (1995)). In the ideal case, the parser will find a path in the word-graph that
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first graph indicates a pause transition. These transitions are eliminated in the second graph.
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can be assigned an analysis according to the grammar, such that the path covers

the complete time span of the utterance, i.e. the path leads from the start state to

a final state. The analysis gives rise to an update of the dialogue state, which is

then passed on to the dialogue manager.

However, often no such paths can be found in the word-graph, due to:

• errors made by the speech recognizer,

• linguistic constructions not covered in the grammar, and

• irregularities in the spoken utterance.

Even if no full analysis of the word-graph is possible, it is usually the case that

useful information can be extracted from the word-graph. Consider for example the

utterance:

(12) Ik wil van van Assen naar Amsterdam

I want from from Assen to Amsterdam

The grammar will not assign an analysis to this utterance due to the repeated

preposition. However, it would be useful if the parser would discover the prepo-

sitional phrases van Assen and naar Amsterdam since in that case the important

information contained in the utterance can still be recovered. Thus, in cases where

no full analysis is possible we would like to fall back on an approach reminiscent of

concept spotting. The following proposal implements this idea.

Firstly, the grammar is defined in such a way that each maximal projection such

as s, np, pp, etc., can be analysed as a top category. This is well-motivated because

utterances very often consist of a single np or pp (section 3.3).

Often, the task of the parser is to discover all instances of the top category from

the start state of the word-graph to a final state. But in our case, we require that the

parser discovers all instances of the top category anywhere in the word-graph, i.e.

for all partial paths in the word-graph. This has the desired effect for example (12):

both pps will be found by the parser.

Thus we require that the parser finds all major categories anywhere in the word-

graph. If a bottom-up chart parser is used, then we might use the inactive chart

items for this purpose. However, since we do not want to be forced to a particular

parsing strategy, we have chosen to adopt a different approach. In section 3.4 we

show that in a logic programming setting the use of underspecification of the state

names associated with the top-most goal obtains the desired effect, without loss of

efficiency.

Therefore, after the parser has finished, we have a word-graph annotated with a

number of instances of top categories. For each of these categories we are interested

in the word-graph state where this category starts (vi), the word-graph state where

this category ends (vj), the sequence of symbols associated with this category (x),

the accumulated acoustic score (a), and the qlf (q). Let parsed(vi, vj , x, a, q) refer

to such categories.

We are interested in paths from the start state to the final state consisting of

a number of categories and transitions in the word-graph (the latter are called

skips). The problem consists in finding the optimal path, according to a number
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of criteria. This problem is formalized by defining the annotated word-graph as a

directed acyclic graph (section 3.5). The vertices of this graph are the states of

the word-graph; the edges are the transitions of the word-graph and the categories

found by the parser.

The criteria which are used to favor some paths over other paths are expressed

as a weight function on the edges of the graph. The criteria we might take into

account are discussed in section 3.6. For instance, a typical criterion will favor

paths consisting of a small number of categories, and a small number of skips. The

case in which the parser found a full analysis from the start state of the word-graph

to a final state then reduces to a special case: the analysis solely consisting of that

category will be favored over sequences of partial analyses.

Obviously, it is not a good idea to generate all possible sequences of categories and

skips, and then to select the best path from this set: in typical word-graphs there are

simply too many different paths. If a certain uniformity requirement on weights is

met, however, then efficient graph search algorithms are applicable. The particular

algorithm implemented in OVIS2, namely a variant of the dag-shortest-path

algorithm (Cormen, Leiserson, and Rivest1990) is discussed in section 3.7.

The criteria used to determine the best path may also include Ngram statistics.

It turns out that in those cases some complications arise in the definition of the

annotated word-graph. This is explained in section 3.8.

In a previous implementation (Nederhof et al.1997) we used a version of Dijkstra’s

algorithm. A comparison is presented in section 3.9. Finally, section 3.10 discusses

methods in which the parser is applied only to a single path of the word-graph.

3.3 Grammar

We require that grammatical analysis finds all maximal projections anywhere in

the input word-graph. This implies that the top category of the grammar should

be defined in such a way that it derives each of these maximal projections. For this

reason, the grammar contains the declaration:

top_category(X) :- X => start.(27)

Furthermore, there are unary rules rewriting this start category into each of the

relevant maximal projections. One such rule is:

rule(start_np,Start,[Np]) :-

Start => start, Np => np,

Start:sem <=> Np:sem.

(28)

Similar rules are defined for pp, sbar, root, advp, etc.

3.4 Parser

Five different parsing algorithms were implemented and compared (a bottom-up

Earley parser, an inactive chart parser, an LR parser, a left-corner parser and a

head-corner parser). The most efficient parser (both in terms of CPU-time and
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memory usage) for this application turned out to be a head-corner parser imple-

mented with goal-weakening and selective memoization. The head-corner parser is

presented in detail in van Noord (1997a).

In order to apply this (or any of the other) parser(s) for robust processing, we

use underspecification of the state names for the input parse goal in order to parse

the start category anywhere in the word-graph. Normally the parser will be called

using a goal such as the following:

?- parse(start(Sem),q0,q16).(29)

indicating that we want to find a path from state q0 to q16 which can be analysed

as a category start(Sem) (a sentence with a semantic representation that is yet to

be discovered). If we want to recognize top categories at all positions in the input,

then we can simply generalize the parse goal to:

?- parse(start(Sem),_,_).(30)

Now it may seem that such an underspecified goal will dramatically slow down

the parser, but this turns out to be a false expectation, at least for the head-corner

and left-corner parsers. In fact we have experienced no such decrease in efficiency.

This can only be understood in the light of the use of memoization: even though

we now have a much more general goal, the number of different goals that we need

to solve is much smaller.

3.5 Annotated word-graph

An annotated word-graph is a word-graph annotated with the results of the parser.

Such an annotated word-graph is defined with respect to an input word-graph (given

by the functions trans and final) and with respect to the results of parsing (given

by the function parsed).

The annotated word-graph is a directed acyclic graph (V, E) where

• V is the set of vertices consisting of the states of the word-graph v0 . . . vn,

and a new vertex vn+1. v0 is the start state. vn+1 is the final state.

• E is the set of edges consisting of:

1. skip edges. For all trans(vi, vj , w, a) there are edges (vi, vj , w, a, ε).

2. category edges. For all parsed (vi, vj , x, a, q) there are edges (vi, vj , x, a, q).

3. stopping edges. For all final(vi, a) there are edges (vi, vn+1, ε, a, ε).

3.6 Weights

The weights that are associated with the edges of the graph can be sensitive to the

following factors.

• Acoustic score. Obviously, the acoustic score present in the word-graph is an

important factor. The acoustic scores are derived from probabilities by taking

the negative logarithm. For this reason we aim to minimize this score. If edges

are combined, then we have to sum the corresponding acoustic scores.
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• Number of ‘skips’. We want to minimize the number of skips, in order to

obtain a preference for the maximal projections found by the parser. Each

time we select a skip edge, the number of skips is increased by 1.

• Number of maximal projections. We want to minimize the number of such

maximal projections, in order to obtain a preference for more extended lin-

guistic analyses over a series of smaller ones. Each time we select a category

edge, this number is increased by 1.

• Quality of the qlf in relation to the context. We are experimenting with

evaluating the quality of a given qlf in relation to the dialogue context, in

particular the question previously asked by the system (Koeling1997).

• Ngram statistics. We have experimented with bigrams and trigrams. Ngram

scores are expressed as negative logarithms of probabilities. This implies that

combining Ngram scores requires addition, and that lower scores imply higher

probability.

The only requirement we make to ensure that efficient graph searching algorithms

are applicable is that weights are uniform. This means that a weight for an edge

leaving a vertex vi is independent of how state vi was reached.

In order to be able to compute with such multidimensional weights, we express

weights as tuples 〈c1, . . . , ck〉. For each cost component ci we specify an initial

weight, and we need to specify for each edge the weight of each cost component.

To specify how weights are updated if a path is extended, we use the function uw

that maps a pair of a multidimensional weight and an edge a to multidimensional

weight. 7 Moreover, we need to define an ordering on such tuples. In order to

experiment with different implementations of this idea we refer to such a collection

of specifications as a method. Summarizing, such a weight method is a triple W =

〈ini , uw ,≺〉 where

1. ini is the initial weight;

2. uw is the update weight function;

3. ≺ is an ordering on weights

Example: speech method. As a trivial example of such a method, consider the prob-

lem of finding the best path through the word-graph ignoring all aspects but the

acoustic scores present in the word-graph. In order to implement a method W speech

to solve this problem, we define weights using a unary tuple 〈c〉. The initial weight

is ini = 〈0〉 and uw is defined as follows:

uw(〈c〉, (vi, vj , w, a, q)) =







〈c + a〉 for skip edges

〈∞〉 for category edges

〈c + a〉 for stopping edges

(31)

7 We do not define a weight function on edges, but we specify how weights are updated
if a path is extended, for generality. This approach allows e.g. for the possibility that
different cost components employ different operations for combining weights. For ex-
ample, some cost components may use addition (e.g. for weights which are expressed
as negative logarithms derived from probabilities), whereas other cost components may
require multiplication (e.g. for probabilities).
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Note that we specify an infinite weight for category edges because we want to

ignore such edges for this simple method (i.e. we are simply ignoring the results

of the parser). We define an ordering ≺ on such tuples, simply by stating that

〈w〉 ≺ 〈w′〉 iff w < w′.

Example: nlp speech method. A more interesting example is provided by the follow-

ing method which not only takes into account acoustic scores, but also the number

of skip edges and category edges. Weights are expressed as 〈c1, c2, c3〉, where c1 is

the number of skips, c2 is the number of categories, and c3 is the acoustic score.

We define ini = 〈0, 0, 0〉 and uw is defined as follows.

uw(〈c1, c2, c3〉, (vi, vj , w, a, q)) :







〈c1 + 1, c2, c3 + a〉 for skip edges

〈c1, c2 + 1, c3 + a〉 for category edges

〈c1, c2, c3 + a〉 for stopping edges

(32)

Finally, we define the ordering on such tuples:

〈c1, c2, c3〉 ≺ 〈c′1, c
′

2, c
′

3〉 iff :







c1 < c′1 or

c1 = c′1 and c2 < c′2 or

c1 = c′1 and c2 = c′2 and c3 < c′3

(33)

3.7 Search algorithm

The robustness component can be characterised as a search in the annotated word-

graph. The goal of the search is the best path from v0 to vn+1. This search reduces

to a well-known graph search problem, namely the problem of finding the shortest

path in a directed acyclic graph with uniform weights.

We use a variant of the dag-shortest-path algorithm (Cormen, Leiserson, and

Rivest1990). This algorithm finds shortest paths for uniformly weighted directed

acyclic graphs. The first step of the algorithm is a topological sort of the vertices of

the graph. It turns out that the state names of the word-graph that we obtain from

the speech recogniser are already topologically sorted: state names are integers, and

edges always connect to larger integers. The second step of the algorithm maintains

an array A which records for each state vk the weight associated with the best

path known from v0 to vk. A similar array, P , is used to represent for each state

the history of this best path, as a sequence of qlfs (since that is what we want to

obtain eventually).

The first step of the algorithm initialises these arrays such that for each state

vi(i 6= 0)A[vi] = ∞, and P [vi] = NIL. For v0 we specify A[v0] = ini and P [v0] =

ε. After this initialisation phase the algorithm treats each edge of the graph in

topologically sorted order of the source vertex, as follows:

foreach state vi (in topologically sorted order)

do

foreach edge (vi, vj , w, a, q)

do

relax (vi, vj , w, a, q)

(34)
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The function relax is defined on edges and updates the arrays if a better path

to a vertex has been found:

function relax (vi, vj , w, a, q)

if uw(A[vi], (vi, vj , w, a, q)) ≺ A[vj ]

then A[vj ] =: uw(A[vi], (vi, vj , w, a, q))

P [vj ] =: P [vi].q

(35)

When the algorithm finishes, P [vn+1] constitutes the sequence of qlfs associated

with the best path found. The weight of this path is given by A[vn+1]. This algo-

rithm is efficient. Its running time is O(V + E), where V is the number of vertices

and E is the number of edges. Therefore, it can be expected that this part of pro-

cessing should not decrease parsing efficiency too much, since the number of edges

is O(V 2).8 For a more detailed account of the correctness and complexity of this

algorithm, see Cormen, Leiserson, and Rivest (1990). 9

A simple generalisation of the algorithm has been implemented in order to obtain

the N best solutions. In this case we maintain in the algorithm for each vertex the N

best paths found so far. Such a generalisation increases the worst-case complexity

by only a constant factor, and is very useful for development work.

3.8 Complications for Ngrams

In this section we want to extend the nlp speech method to take into account Ngram

probabilities. Obviously, we can extend the weight tuple with a further argument

which expresses the accumulated weight according to the Ngram probabilities. How-

ever, a potential problem arises. If we extend a given path by using the transition

labeled w, then we want to take into account the probability of reading this word

w given the previous N − 1 words. However note that in the definition of the an-

notated word-graph given above these words are not readily available. Even if we

make sure that each path is associated with the last words seen so far, we must be

careful that weights remain uniform.

The solution to this problem is to alter the definition of the graph, in such a way

that the relevant N−1 words are part of the vertex. If we want to take into account

Ngram probabilities (N = 2, 3, . . .), then the vertices of the graph will be tuples

(v, w1 . . . wN−1) where v is a state of the word-graph as before, and w1 . . . wN−1 are

the previous N −1 words. For example, in the case of bigrams (N = 2), vertices are

pairs consisting of a word-graph state and a word (the previous word). A number

of special symbols yN−1 . . . y1 is introduced as beginning-of-sentence markers. The

start vertex is now (v0, yN−1 . . . y1). The notation x : k is used to refer to the last

k elements of x.

8 This compares well with the O(V 3) complexity which can be obtained for most parsers.
9 Note that the algorithm is different from the Viterbi algorithm. The latter algorithm

finds the best path through a possibly cyclic weighted graph, for a given sequence of
observed outputs. In the current application we require an algorithm to find the best
path in an acyclic weighted graph (without an additional observed output sequence).
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The annotated word-graph for Ngrams is a weighted graph (V, E) and some fixed

N , such that:

• V is a set of pairs (v, w1 . . . wN−1) where v is a word-graph state and wi are

labels in the word-graph. The start vertex is (v0, yN−1 . . . y1); the final vertex

is (vn+1, ε).

• E is the set of edges consisting of:

1. skip edges. For all trans(vi, vj , w, a), and all vertices Vi = (vi, x) and Vj =

(vj , xw : N − 1), there are edges (Vi, Vj , w, a, ε).

2. category edges. For all parsed(vi, vj , x2, a, q), and for all vertices Vi =

(vi, x1) and Vj = (vj , x1x2 : N − 1), there are edges (Vi, Vj , x2, a, q).

3. stopping edges. For all final(vi, a) and for all vertices Vi = (vi, x) there are

edges (Vi, (vn+1, ε), ε, a, ε).

Example: nlp speech trigram method. The start state of the graph search now is

the vertex (v0, y2y1). Weights are expressed as 4-tuples by extending the triples

of the nlp speech method with a fourth component expressing trigram weights.

These trigram weights are expressed using negative logarithms of (estimates of)

probabilities. Let tri be the function which returns for a given sequence of three

words this number. Moreover, the definition of this function is extended for longer

sequences of words in the obvious way by defining tri(w0w1w2x) = tri(w0w1w2) +

tri(w1w2x).

The initial weight is defined as ini = 〈0, 0, 0, 0〉. Weights are updated as follows:

uw(〈c1, c2, c3, c4〉, ((vi, w0w1), (vj , y), x, a, q)) =






〈c1 + 1, c2, c3 + a, c4 + tri(w0w1x)〉 for skip edges

〈c1, c2 + 1, c3 + a, c4 + tri(w0w1x)〉 for category edges

〈c1, c2, c3 + a, c4〉 for stopping edges

(36)

Finally, we define an ordering on such tuples. The function total is defined on

tuples as follows. Here knlp and kwg are constants.

total(〈c1, c2, c3, c4〉) = c4 + knlp ∗ (c1 + c2) + kwg ∗ c3.(37)

We then define the ordering as:

〈c1, c2, c3, c4〉 ≺ 〈c′1, c
′

2, c
′

3, c
′

4〉 iff total(〈c1, c2, c3, c4〉) < total(〈c′1, c
′

2, c
′

3, c
′

4〉).(38)

3.9 Comparison with Dijkstra’s algorithm

In a previous version of the implementation we used a generalised version of Dijk-

stra’s algorithm (Dijkstra1959), (Nilsson1971), (Cormen, Leiserson, and Rivest1990),

instead of the dag-shortest-path presented above. Dijkstra’s algorithm is more

general in that it is not restricted to acyclic graphs. On the other hand, however,

Dijkstra’s algorithm requires that weights on edges are positive (paths can only get

worse if they are extended). A potential advantage of Dijkstra’s algorithm for our

purposes is that the algorithm often does not have to investigate all edges. If edges



Robust Grammatical Analysis 41

are relatively expensive to compute, then Dijkstra’s algorithm might turn out to

be faster.

For instance, we can obtain a modest increase in efficiency by exploiting Dijkstra’s

algorithm if we delay some of the work the parser has to do for some category q, until

the robustness component actually has a need for that category q. Since Dijkstra’s

algorithm will not visit every q, the amount of work is reduced. We exploited this

in our implementation as follows. The parser works in two phases. In the first phase

(recognition) no semantic constraints are taken into account (in order to pack all

ambiguities). In the second phase semantic constraints are applied. This second

phase can then be delayed for some category q until Dijkstra’s algorithm uses an

edge based on q. For a number of categories, therefore, this second phase can be

skipped completely.

However, we had three reasons for preferring the dag-shortest-path algorithm

given above. Firstly, this algorithm is simpler than Dijkstra’s algorithm. Secondly,

negative weights do show up in a number of circumstances. And thirdly, the ex-

pected efficiency gain was not observed in practice.

An example where negative weights may show up is the following. Suppose we

define a method which takes into account Ngram scores but nothing else, i.e. all

other sources of information such as acoustic scores are ignored. It turns out that

a straightforward implementation of such a method is non-optimal since it will

favour paths in the word-graph consisting of a small number of long words over

paths (of the same duration) consisting of a larger number of smaller words, only

because more scores have to be added. A simple and effective way to eliminate this

effect, is to subtract a constant from each score. However, this subtraction may

yield negative numbers.

3.10 Best-first methods

Rather than integrating parsing and disambiguation of the word-graph as a single

procedure, as we proposed above, it is also possible to try to disambiguate the word-

graph first, and then use the parser to parse the resulting path in the word-graph.

We have implemented two versions of this approach. Both versions use the search

algorithm discussed above, by applying a method which takes into account the

acoustic scores and Ngram scores. One version uses N = 2, the other version

uses N = 3. In section 4 we refer to these two methods as best 1 bigram and

best 1 trigram respectively.

We have experimented with such methods in order to evaluate the contribution of

grammatical analysis to speech recognition. If, for instance, the integrated method

nlp speech trigram performs significantly better than best 1 trigram then we can

conclude that grammatical analysis improves speech recognition. The results below,

however, do not permit this conclusion.
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Table 1. Characterization of test set (1).

graphs transitions words t/w w/g t/g max(t/g)

input 1000 48215 3229 14.9 3.2 48.2 793
normalized 1000 73502 3229 22.8 3.2 73.5 2943

4 Evaluation

We present a number of results to indicate how well the NLP component currently

performs. In the NWO Priority Programme, two alternative natural language pro-

cessing modules are developed in parallel: the ‘grammar-based’ module described

here, and a ‘data-oriented’ (statistical, probabilistic, DOP) module. Both of these

modules fit into the system architecture of OVIS. The DOP approach is docu-

mented in a number of publications (Scha1990; Bonnema, Bod, and Scha1997; Bod

and Scha1997).

In order to compare both NLP modules, a formal evaluation has been carried

out on 1000 new, unseen, representative word graphs (obtained using the latest

version of the speech recognizer). Full details on the evaluation procedure, and all

evaluation results, are described elsewhere (van Noord1997b; Bonnema, van Noord,

and van Zanten1998). For these word graphs, annotations were provided by our

project partners consisting of the actual sentences (’test sentences’), and updates

(’test updates’).

The Ngram models used by our implementation were constructed on the basis of

a corpus of almost 60K user utterances (almost 200K words).

Some indication of the difficulty of the test-set of 1000 word-graphs is presented

in table 1, both for the input word-graphs and for the normalised word-graphs. The

table lists the number of transitions, the number of words of the actual utterances,

the average number of transitions per word, the average number of words per graph,

the average number of transitions per graph, and finally the maximum number of

transitions per graph. The number of transitions per word in the normalized word-

graph is an indication of the additional ambiguity that the parser encounters in

comparison with parsing of ordinary strings.

A further indication of the difficulty of this set of word-graphs is obtained if we

look at the word and sentence accuracy obtained by a number of simple methods.

The string comparison on which sentence accuracy and word accuracy are based

is defined by the minimal number of substitutions, deletions and insertions that

is required to turn the first string into the second (Levenshtein distance d). Word

accuracy is defined as 1 − d
n

where n is the length of the actual utterance.

The method speech only takes into account the acoustic scores found in the word-

graph. The method possible assumes that there is an oracle which chooses a path

such that it turns out to be the best possible path. This method can be seen as a

natural upper bound on what can be achieved. The methods bigram (trigram) report

on a method which only uses a bigram (trigram) language model. The methods
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Table 2. Characterization of test set (2).

method WA SA

speech 69.8 56.0
possible 90.4 83.7
bigram 69.0 57.4
trigram 73.1 61.8

speech bigram 81.1 73.6
speech trigram 83.9 76.2

speech bigram (speech trigram) use a combination of bigram (trigram) statistics and

the speech score.

4.1 Efficiency

Table 3 reports on the efficiency of the NLP components for the set of 1000 word-

graphs and test utterances. The first two rows present the results for sentences;

the remaining rows provide the results for word-graphs. Listed are respectively the

average number of milliseconds per input; the maximum number of milliseconds;

and the maximum space requirements (per word-graph, in Kbytes).

For most word-graphs we used the nlp speech trigram method as described above.

For large word-graphs (more than 100 transitions), we first selected the best path

in the word-graph based on acoustic scores and N-gram scores only. The resulting

path was then used as input for the parser. In the case of these large word-graphs,

N=2 indicates that bigram scores were used, for N=3 trigram scores were used.

CPU-time includes tokenizing the word-graph, removal of pause transitions, lexi-

cal lookup, parsing, the robustness/disambiguation component, and the production

of an update expression. 10

For word-graphs the average CPU-times are actually quite misleading because

CPU-times vary enormously for different word-graphs. For this reason, we present

in table 4 the proportion of word-graphs (in %) that can be treated by the NLP

component within a given amount of CPU-time (in milliseconds).

4.2 Accuracy

The results for word accuracy given above provide a measure for the extent to

which linguistic processing contributes to speech recognition. However, since the

main task of the linguistic component is to analyze utterances semantically, an

equally important measure is concept accuracy, i.e. the extent to which semantic

10 For the grammar-based methods, CPU-time was measured on a HP 9000/780 machine
running HP-UX 10.20, with SICStus Prolog 3 patch level 3. The statistics for the
data-oriented module were obtained on a Silicon Graphics Indigo with a MIPS R10000
processor, running IRIX 6.2.
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Table 3. Efficiency (1).

input method mean msec max msec max Kbytes

test sentence data-oriented 91 8632 14064
test sentence grammar-based 28 610 524

word graphs data-oriented 7011 648671 619504
word graphs grammar-based N=2 298 15880 7143
word graphs grammar-based N=3 1614 690800 34341

Table 4. Efficiency (2).

method 100 500 1000 5000 10000

data-oriented 52.7 70.8 76.6 90.6 94.2
grammar-based N=2 58.6 87.0 94.6 99.5 99.8
grammar-based N=3 58.5 78.9 87.3 96.7 98.7

analysis corresponds with the meaning of the utterance that was actually produced

by the user.

For determining concept accuracy, we have used a semantically annotated corpus

of 10K user responses. Each user response was annotated with an update repre-

senting the meaning of the utterance that was actually spoken. The annotations

were made by our project partners in Amsterdam, in accordance with the existing

guidelines (Veldhuijzen van Zanten1996).

Updates take the form described in section 2.6. An update is a logical formula

which can be evaluated against an information state and which gives rise to a new,

updated information state. The most straightforward method for evaluating concept

accuracy in this setting is to compare (the normal form of) the update produced by

the grammar with (the normal form of) the annotated update. A major obstacle for

this approach, however, is the fact that very fine-grained semantic distinctions can

be made in the update-language. While these distinctions are relevant semantically

(i.e. in certain cases they may lead to slightly different updates of an information

state), they can often be ignored by a dialogue manager. For instance, the two

updates below are semantically not equivalent, as the ground-focus distinction is

slightly different.

user.wants.destination.place.([# town.leiden];[! town.abcoude])

user.wants.destination.([# place.town.leiden];[! place.town.abcoude])

(39)

However, the dialogue manager will decide in both cases that this is a correction of

the destination town.

Since semantic analysis is the input for the dialogue manager, we have measured

concept accuracy in terms of a simplified version of the update language. Inspired
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Table 5. Accuracy.

Input Method String accuracy Semantic accuracy
WA SA match precision recall CA

test sentence data-oriented N/A N/A 93.0 94.0 92.5 91.6
test sentence grammar-based N/A N/A 95.7 95.7 96.4 95.0

word-graph data-oriented 76.8 69.3 74.9 80.1 78.8 75.5
word-graph grammar-based N=2 82.3 75.8 80.9 83.6 84.8 80.9
word-graph grammar-based N=3 84.2 76.6 82.0 85.0 86.0 82.6

by a similar proposal in Boros et al. (1996), we translate each update into a set

of semantic units, where a unit in our case is a triple 〈CommunicativeFunction,

Slot, Value〉. For instance, the two examples above both translate as

〈 denial, destination town, leiden 〉

〈 correction, destination town, abcoude 〉

Both the updates in the annotated corpus and the updates produced by the system

were translated into semantic units.

Semantic accuracy is given in table 5 according to four different definitions.

Firstly, we list the proportion of utterances for which the corresponding seman-

tic units exactly match the semantic units of the annotation (match). Furthermore

we calculate precision (the number of correct semantic units divided by the number

of semantic units which were produced) and recall (the number of correct semantic

units divided by the number of semantic units of the annotation). Finally, following

Boros et al. (1996), we also present concept accuracy as

CA = 100

(

1−
SUS + SUI + SUD

SU

)

%

where SU is the total number of semantic units in the translated corpus anno-

tation, and SUS, SUI , and SUD are the number of substitutions, insertions, and

deletions that are necessary to make the translated grammar update equivalent to

the translation of the corpus update.

We achieve the results listed in table 5 for the test-set of 1000 word-graphs. String

accuracy is presented in terms of word-accuracy (WA) and sentence accuracy (SA).

Conclusion

The results given above lead to the following conclusions.

• Sophisticated grammatical analysis is fast enough for practical spoken dia-

logue systems.

• Moreover, grammatical analysis is effective for the purposes of the present

application. Almost all user utterances can be analysed correctly. This is

somewhat surprising. Typically, linguistic ambiguities are a major obstacle
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for practical NLP systems. The current application is very simple in the sense

that such linguistic ambiguities do not seem to play a significant role. The

ambiguities introduced by the speech recognizer (as multiple paths in the

word-graph) are a far more important problem.

• Grammatical analysis does not seem to help much to solve the problem of

disambiguating the word-graph. The best method incorporating grammati-

cal analysis performs about as well as a method which solely uses N-gram

statistics and acoustic scores for disambiguation of the word-graph. However,

in the latter case grammatical analysis of the type proposed here is useful in

providing a robust analysis of the best path.

We have argued in this paper that sophisticated grammatical analysis in combi-

nation with a robust parser can be applied successfully as an ingredient of a spoken

dialogue system. Grammatical analysis is thereby shown to be a viable alternative

to techniques such as concept spotting. We showed that for a state-of-the-art appli-

cation (public transport information system) grammatical analysis can be applied

efficiently and effectively. It is expected that the use of sophisticated grammatical

analysis will allow for easier construction of linguistically more complex spoken

dialogue systems.
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