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1 Natural Language Understanding

This chapter describes the grammar-based natural language understanding (NLU)
component of the OVIS system. The NLU component receives its input from

the speech recognizer and passes the result of linguistic analysis on to the prag-

matic interpretation component. The output of the speech recognizer is a word
graph, which represents all different hypotheses for the spoken input from the

user. Linguistic analysis of such a structure is more complicated than analy-

sis for a single input sentence (cf. linguistic analysis for written input), as we

will show later. The interface between the NLU component and the Dialogue

Manager is defined by a special interface language, called the Update Language,

described elsewhere.

In the design of the NLU component, the following problems must be ad-
dressed.

Firstly, a NLU component will be faced with ambiguity. The combination of
lexical and structural ambiguities often leads to an enormous amount of possible
readings for an input utterance. In OVIS this problem is even more acute because
of the use of word graphs. Techniques must be available to be able to deal with
large numbers of analyses, and to be able to choose the most appropriate reading
from such a set of candidate analyses.

While the system must somehow deal with large numbers of analyses, many
of which may eventually turn out to be useless, another requirement is that the
system should be robust, i.e. it should do something useful even if something
happens that the system didn’t expect, or if something goes wrong. For example,
the input utterance may contain disfluencies or ungrammaticalities. Or the
speech recognition component may have failed to recognize part of the user
utterance. In such cases, a linguistic analysis component might proceed by
computing a partial analysis of the input.

NLU needs to be robust for three reasons. Firstly, it is quite difficult to
anticipate in the grammar all linguistic constructions that might occur. This
is one of the traditional problems for grammar-based NLU. Secondly, spoken
language is full of hesitations, corrections, false starts etc. which are not always
easy to detect. The third reason is that the utterance that was actually spoken
is not guaranteed to be a path in the word graph, due to limitations of state-of-
the-art speech recognition, as well as external factors such as background noise,
etc.



These observations indicate that robustness and disambiguation are two very
important problems to be solved in the NLU component. Given the nature of
the proposed application, it will be clear that the system is supposed to run
in real-time, i.e. it is not supposed to leave the user waiting for the requested
information. Therefore a requirement of efficiency provides a further challenge
for the NLU component.

2 Grammar-based NLU

In order to meet the requirements the grammar-based NLU component consists
of a number of modules. Firstly, a computational grammar of Dutch is defined.
This grammar (described in section 3) defines the relation between sequences of
words in the input and meaning representations in the output. The grammar is
fully declarative, and therefore it has been possible to implement a number of
different parsing algorithms (section 4). Such parsing algorithms compute for
a given sequence of words the corresponding meaning representation according
to the rules of the grammar. The parsers have been extended to accept word
graphs as their input.

The meaning representations defined by the grammar are translated into
update expressions by means of a translation component which is tailored to the
application (section 5).

These components provide input for the robustness and disambiguation com-
ponent. This component is responsible for determining the most likely analysis
of the input, or parts of the input; the component is described in section 6.

3 A computational grammar for Dutch

In developing the grammar we combined the short-term goal of developing a
grammar which meets the requirements imposed by the application (i.e. robust
analysis of the output of the speech recogniser, extensive coverage of locative
phrases and temporal expressions, and the construction of semantic representa-
tions) with the long-term goal of developing a general, computational, grammar
which covers the major constructions of Dutch.

The design and organisation of the grammar, as well as many aspects of the
particular grammatical analyses we propose, are based on Head-driven Phrase
Structure Grammar [21]. We depart from this formalism mostly for computa-
tional reasons. As is explained below, the grammar is compiled into a restricted
kind of definite clause grammar for which efficient analysis is feasible. The se-
mantic component follows the approach to monotonic semantic interpretation
using simplified quasi-logical forms presented originally in Alshawi [1].

The grammar covers the majority of verbal subcategorisation types (intran-
sitives, transitives, verbs selecting a PP, and modal and auxiliary verbs), Np-
syntax (including pre- and post-nominal modification, with the exception of rel-
ative clauses), PP-syntax, the distribution of vP-modifiers, various clausal types
(declaratives, yes/no and WH-questions, and subordinate clauses), all temporal
expressions and locative phrases relevant to the domain, and various typical
spoken-language constructs. Due to restrictions imposed by the speech recog-
niser, the lexicon is relatively small (4000 word forms, many of which are names



of stations and cities).

3.1 Formalism

The grammar for OVIS contains the grammatical knowledge required to analyse
a word graph and to determine what the meaning of the utterance corresponding
to the word graph is.

The ovis-grammar formalism is essentially equivalent to Definite Clause
Grammar (DCG) [19]. The choice for DCG is motivated by the fact that this
formalism provides a balance between computational efficiency and linguistic
expressiveness, and the fact that it is closely related to constraint-based gram-
mar formalisms, such as HPSG, Categorial Unification Grammar, and Lexical
Functional Grammar. Another important reason to choose DCG instead of a
more restricted formalism such as context-free grammar, is the fact that pca
allows the integration of syntax and semantics that is standard in constraint-
based formalisms such as HPSG.

Grammar rules consist of a context-free skeleton to which feature-constraints
are added. The context-free skeleton is important, as it ensures a reasonable
level of processing efficiency and facilitates experimentation with different pars-
ing techniques.

The central formal operation in constraint-based grammar formalisms is uni-
fication of (typed or untyped) feature-structures [25]. The ovis-formalism em-
ploys typed feature-structures in the definition of rules as well as lexical entries.
During the construction of the parser, feature-structures are translated into Pro-
log terms. Because of this translation step, parsing can make use of Prolog’s
built-in term-unification, instead of the more expensive feature-unification. Sim-
ilar formalisms have been successfully used a number of times before (7, 1, 4, 22]

The grammar consists of a set of grammar rules, and a set of lexical entries.
In both cases, we make use of inheritance of constraints to express generaliza-
tions.

Grammar rules. A grammar rule is defined by a ternary predicate, rule/3.
The first argument of this predicate is a ground Prolog term indicating the rule
identifier. The second argument of the rule is the mother category. Categories
are non-variable Prolog terms. The third argument of the rule is a (possibly
empty) list of categories. Note that we require that the length of the list is
given, and that none of the categories appearing in the list is a variable. An
example of a grammar rule is provided:

rule(vp_vpnp, vp(Subj,Agr,Sem),
[v(Subj,Agr,trans,1(Arg,Sem)) ,np(_,Arg)]).

Terminal symbols cannot be introduced in rules directly, but are introduced by
means of lexical entries.

Lexical entries. The lexicon is defined by the predicate 1lex/2. As an exam-
ple, the lexical entry ‘sleeps’ could be encoded as:

lex(sleeps,v(np,agr(3,sg),intrans,1(X,sleep(X)))).



The first argument is the terminal symbol (the word) introduced by this lexical
category. The second argument is the category associated with this word. In
cases where a lexical entry introduces a sequence of terminal symbols (multi-
word unit) the first argument is also allowed to be a (non-empty) list of atoms.

Top category. The top category for the grammar (or start symbol) is defined
by the unary predicate top_category. Its argument is a category.

Feature constraints. Almost all work in computational grammar writing
uses ‘feature-structures’ of some sort. It is fairly standard to compile (descrip-
tions of) such features-structures into first-order terms (see [22] for a recent
overview). We use the HDRUG development platform [34], which contains a li-
brary for compiling feature constraints into Prolog terms, and various predicates
to visualise such Prolog terms as feature structures in matrix notation.

The most important operators provided by the HDRUG library are the type
assignment operator (’=>’), the path equality operator ('<=>’), and the path
operator (’:’). The categories that are used in the grammar are all defined
through these operators. A small grammar fragment employing those operators
is:

rule(1,S, [Np,Vpl) :-
S => s, np(Np), vp(Vp),
Vp:vform => finite,
subj_agreement (Vp,Np) .

np(Np) :- Np => np, Np:lex => -.
vp(Vp) :- Vp => v, Vp:lex => -.
subj_agreement (Vp,Np) :- Vp:agr <=> Np:agr.

In this rule, the constraint Np:lex => - indicates that the value of the lex
attribute of Np is of type -. The constraint Vp:agr <=> Np:agr indicates that
the value of the agr attribute of Vp is identical to the value of the agr attribute of
Np. Internally, such a rule could be represented as follows (the actual result of the
compilation depends on what attributes are allowed for what types; declarations
of this sort are part of the grammar):

rule(l,S, [np(Agr,_) ,V(Agr:_’finite:_,_)]) .
To the grammar writer, such rules are displayed in matrix notation, as follows:

v

np
agr
rule(l,s, (| agr | ®

vform finite

The feature library also supports boolean combinations of atomic values;
these are compiled into Prolog terms using a technique described in [15] (who
attributes it to Colmerauer) and [22]. Thus, we may specify agr values such as
sg A (sec V thi), denoting an agreement value which is singular and either
second or third person.

We have also found it useful to provide the predicates unify_ifdef/3 and
ifdef/4. The predicate unify_ifdef (C1,C2,Att) can be used to require that



if both C1 and C2 can have the attribute Att (i.e. C1, C2 are of a type for which
Att is a possible feature), then the values C1:Att and C2:Att must be identical.
The predicate ifdef (Att,Cat,Val,Otherwise) is used to require that Cat:Att
is identical to Val if Att is an appropriate feature for Cat. Otherwise Val is
identical to Otherwise.

These predicates allow very compact and simple data-structures. For in-
stance, whereas in HPSG the head-feature principle is defined by refering to a
special feature HEAD, we define a variant of the head-feature principle which
lists the features that are required to percolate between heads directly:

head_feature_principle(Head,Mother) :-
unify_ifdef (Head,Mother,vform),
unify_ifdef (Head,Mother,agr),
unify_ifdef (Head,Mother,case),

This has the advantage that categories which do not have a particular feature
can simply do without that feature. Moreover, no distinct ‘head’ attribute needs
to be defined in feature-structures. The ifdef/4 constraint can be used in a
similar way. The valence principle (defined below) needs to ensure that, in a
rule, the subcat list of the mother is the concatenation of the subcat list of
the head and the daughters. Rather than providing all categories with such a
subcat feature, instead the principle assumes that if the feature is not defined
for a given category, its value is assumed to be the empty list. As a consequence,
only a few categories specify a subcat feature, whereas the valence principle still
applies globally.

3.2 Signs

Each word or phrase in the grammar is associated with a feature-structure,
in which syntactic and semantic information is bundled. Within Head-driven
Phrase Structure Grammar (HPSG), such feature-structures are called signs,
a terminology which we will follow here. The grammar makes use of some
15 different types of sign, where each type roughly corresponds to a different
category in traditional linguistic terminology. For each type of sign, a number
of features are defined. For example, for the type NP, the features AGR, NFORM,
CASE, and SEM are defined. These features are used to encode the agreement
properties of an NP, (morphological) form, case and semantics, respectively.

There are a number of features which occur in most types of sign, and which
play a special role in the grammar. The feature SC (SUBCATEGORISATION)
(present on signs of type v, sbar, det, a, n and p), for instance, is a feature
whose value is a list of signs. It represents the subcategorisation properties of a
given sign.

The feature SLASH is present on v, ques and sbar. Its value is a list of
signs. It is used to implement a (restricted) version of the account of non-
local dependencies proposed in [21] and [23]. The value of SLASH is the list of
signs which are ‘missing’ from a given constituent. Such a ‘missing’ element is
typically connected to a preposed element in a topicalisation sentence or WH-
question. The same mechanism can also be used for relative clauses.

The feature VSLASH is similar to SLASH in that it records the presence of a
missing element, a verb in this case. It is used to analyse Dutch main clauses,



based on the idea that main clauses are structurally similar to subordinate
clauses, except for the fact that the finite verb occurs as first or second con-
stituent within the clause and the clause-final position where finite verbs occur
in subordinate clauses is occupied by an empty verbal sign (i.e. an element
which is not visible in the phonological or orthographic representation of the
sentence). This analysis has the advantage that all other rules for verb phrases
need not distinguish between main clauses and subordinate clauses.

The feature SEM is present on all signs. It is used to encode the semantics of a
word or phrase. Such a semantic representation is a simplified quasi logical form
[1], called predicate form. A predicate form consists of a predicate name (an
arbitrary first-order term), a list of predicate forms representing the arguments
of the predicate, and a list of semantic representations representing the modifiers
of the predicate. For instance, the sentence

(1) ik wil om tien  uur naar assen
I want at ten o’clock to assen
I want to go to assen at ten

is assigned the predicate form:
i pred willen

pred ik i
args < args <> >
adjs ()

pred om

pred hour(10)
args < args <> > ,
L adjs <>

L adjs <>
adjs < ) >
pred naar

pred place(town(assen))
args < args () >
adjs <>

adjs <>

An important restriction imposed by the formalism is that each rule must
specify the category of its mother and daughters. A consequence of this require-
ment is that general rule-schemata as in HPSG cannot be used. A rule which
specifies that a head daughter may combine with a complement daughter, if
this complement unifies with the first element on SC of the head cannot be
implemented directly, as it leaves the categories of the daughters and mother
unspecified. Nevertheless, generalisations of this type do play a role in the
grammar. We adopt an architecture for grammar rules similar to that of HPSG,
in which individual rules are classified in various structures, which are in turn
defined in terms of general principles.

Rules normally introduce a structure in which one of the daughters can be
identified as the head. The head daughter either subcategorises for the other
(complement) daughters or else is modified by the other (modifier) daughters.

The two most common structures are the head-complement and head-modifier
structure. In figure 1 we list the definition for the head-complement structure



hd_comp_struct (Head,Complements,Mother) :-
hd_struct (Head,Complements,Head,Mother) .

hd_struct (Head,Complements,SemanticHead,Mother) :-
head_feature_principle (Head,Mother),
valence_principle(Head,Complements,Mother),
filler_principle(Head, [],Mother),
SemanticHead:sem <=> Mother:sem.

valence_principle (Head,Complements,Mother) :-
ifdef (sc,Head,HeadSc,[]), ifdef(sc,Mother,MotherSc,[]),
append (Complements,MotherSc,HeadSc)

Figure 1: Structures and Principles

and the principles it refers to, except for the filler principle, which is presented
later.

The head-complement structure is an instance of a headed structure. The def-
inition of headed structure refers to the HEAD-FEATURE, VALENCE, and FILLER
principles, and furthermore fixes the semantic head of a phrase. Note that the
definition of hd-struct has a number of parameters. The idea is that a headed
structure will generally consist of a head daughter, and furthermore of zero or
more complement daughters and possibly a modifier.

The structures defined in figure 1 are used in the definition of grammar rules.
The np-det-n rule introduces a head-complement structure in which (following
traditional semantic analysis) the determiner is the head, and the noun the
complement:

rule(np_det_n, NP, [Det, N]) :-
NP => np, Det => det, N => n,
NP:nform => norm, hd_comp_struct(Det, [N],NP).

The n-adj-n rules introduces a head-modifier structure where the adjective is
the modifier:

rule(n_adj_n, N1, [AdjP, NO]) :-
N1 => n, AdjP => a, NO => n,
AdjP:agr <=> NO:agr, hd_mod_struct(NO,AdjP,N1).

The classification of rules into structures, which are in turn defined in terms
of principles, allows us to state complicated rules succinctly and to express a
number of generalizations straightforwardly.

3.3 The lexicon

The lexicon is a list of clauses, associating a word (or sequence of words) with
a specific sign. Constraint-based grammars tend to store lots of grammatical
information in the lexicon. A lexical entry for a transitive verb, for instance,
not only contains information about the morphological form of this verb, but
also contains the features SC and sUBJ for which quite detailed constraints may



intransitive(Pred,Sign) :- iv(Sign), iv_sem(Sign,Pred).
transitive(Pred,Sign) :- tv(Sign), tv_sem(Sign,Pred).

v(V) :- V => v, V:lex => basic,
V:vslash => [], V:subj <=> [Subj],
Subj => np, Subj:nform => norm.

iv(V) := v(V), V:sc <=> [].

tv(V) - v(V), Visc <=> [0bj],
0bj => np, Obj:nform => norm, Obj:case => acc.

Figure 2: Fragment of the lexical hierarchy

be defined. Furthermore, for all lexical signs it is the case that their semantics
is represented by means of a feature-structure. This structure can also be quite
complex. To avoid massive reduplication of identical information in the lexicon,
the use of inheritance is therefore essential.

In figure 2, we illustrate the use of inheritance in the lexicon. All lexical
entries for verbs have a number of properties in common, such as the fact that
they are of type v, and take a normal (non-locative and non-temporal) NP as
subject. This is expressed by the predicate v(V). Intransitive verbs (iv(V))
can now be characterised syntactically as verbs which do not subcategorise
for any (non-subject) complements. Transitive verbs (tv(V)) subcategorise for
an NP with accusative case. The templates intransitive(Pred,Sign) and
transitive(Pred,Sign), finally, combine the syntactic and semantic proper-
ties of intransitive and transitive verbs. The variable Pred is used in the se-
mantics to fix the value of the predicate defined by a particular verb. A limited
form of non-monotonic inheritance is supported.

An extended description of the coverage of the grammar is given in [36].

4 Parsing

We first describe the complications which arise in order to generalise parsing
strategies to allow word graphs as input. A more extended version of this mate-
rial is presented elsewhere [29]. We then continue to describe in somewhat more
detail the actual parsing strategy used in the system; again a more elaborated
presentation is available elsewhere [31].

4.1 Parsing Word Graphs

Pause-transition Elimination The input to the parser consists of word
graphs produced by the speech recogniser ([17]). A word graph is a compact
representation for all sequences of words that the speech recogniser hypothesises
for a spoken utterance. The states of the graph represent points in time, and
a transition between two states represents a word that may have been uttered
between the corresponding points in time. Each transition is associated with



an acoustic score representing a measure of confidence that the word perceived
there was actually uttered. These scores are typically derived from negative
logarithms of probabilities and therefore require addition as opposed to multi-
plication in order to combine two scores.

A word graph is a weighted connected directed acyclic graph G = (X, V, v,, T, F)
where ¥ is a set of words, V' is a set of states (vertices), vs € V is the start state,
T is a set of transitions and F' is a set of final states. Transitions are tuples
trans(v;, vj, w, a) for a transition from v; to v; (v;,v; € V) with label w € ¥
and acoustic score a. Finals are tuples final(v;, a) where v; € V indicating that
v; 18 a final state with associated acoustic score a.

At an early stage, so-called pause transitions are eliminited from the word-
graph. Such transitions represent periods of time for which the speech recogniser
hypothesises that no words are uttered. Depending on the details of the gram-
mar, filled pause transitions and noise transitions can be treated as pauses as
well. The motivation for pause transition elimination is that the grammar will
not anticipate such transitions. The elimination might also result in graphs
with a smaller number of states (but typically with a larger number of transi-
tions). Finally, pause transition eliminiation turns out to be more efficient than
extending lexical lookup in a way which would extend lexical entries to include
any neighbouring pause transitions. Pause-transition elimination is similar to
e-removal for weighted finite automata.

For a given input word graph G = (X, Vv, T, F) and a set of pause labels
Y pause, Pause transition elimination is the word graph G’ = (XX, 4use, V, vs, T, F')
such that:

1. T" = {trans(v;, vg, w, a + pause(v;, v;))|trans(v;, vi, w, a) € T'}
2. F' = {final(v, a + pause(v;, vy))| final(vy,a) € F}

For each two states v;,v; € V the function pause(v;,v;) is the score of
the best path from v; to v; using pause transitions only. The computation of
this function reduces to a well-known problem for graphs, namely the all-pairs
shortest path problem for directed acyclic graphs (the graph made up of all
pause transitions).

Note that the resulting word graph could contain non-start states without
any incoming transitions. These states can be removed (as well as any transi-
tions leaving these states). From now on, we will assume word graphs are pause
eliminated. After pause transition elimination, the word graph contains exactly
one start state and one or more final states, associated with a score, representing
a measure of confidence that the utterance ends at that point.

Parsing as Intersection. Ordinarily, the input for parsing is a sequence of
symbols (words). In the case of word graphs the input is a compact represen-
tation of a finite number of such sequences of words.! Thus a naive solution
would be to parse each of these sequences in turn. Such an approach, however,
is impracticable because the number of paths in a given word graph can be
enormous. It turns out that it is possible to generalize parsing algorithms in
such a way that the compact word graph representation can be used directly
as input. The generalization is very similar to algorithms which compute the
intersection of context-free grammars (CFG) and finite state automata (FSA).

1For the moment we ignore the complication introduced by the acoustic scores.



It can be shown that the computation of the intersection of a FSA and a CFG
requires only a minimal generalization of existing parsing algorithms. We simply
replace the usual string positions with the names of the states in the finite state
automaton (this is explained in more detail below). It is also straightforward
to show that the complexity of this process is cubic in the number of states of
the finite state automaton (in the case of ordinary parsing the number of states
equals n + 1 where n is the number of words of the input sentence) ([13, 3]).

Let a finite-state machine M be specified by a tuple (Q, X, 5, Q°, QF') where
Q is a finite set of states, ¥ is a finite alphabet, ¢ is a function Q x ¥ — 29,
Furthermore, Q° C @ is the set of start states, and Q¥ C @ is the set of final
states. 2 The language defined by such an automaton is defined in the normal
way (e.g. as in [10]).

Following [2], a CFG defining the intersection of a given CFG and a FSA
is constructed by keeping track of the state names in the non-terminal cate-
gory symbols in the new CFG. For each rule Xy — X;...X, there are rules
(X0q09) — (X19091){(X2q1G2) . . . {Xngn-14q), for all ¢ € Q. Furthermore for each
qr € 6(¢;,0) we have a rule (og;qr) — o. Finally, there are rules rewriting the
start symbol S into tuples (S ¢s gf) for each ¢; € Qs,qf € QF. The intersec-
tion grammar not only defines exactly the strings in the intersection, but it also
defines the same parse-trees for each of these sentences (ignoring the position
markers in the category names).

Although this construction shows that the intersection of a FSA and a CFG is
itself a CFG, it is not of practical interest. The reason is that this construction
typically yields an enormous amount of rules with useless symbols ([10]), i.e.
symbols which are not derivable from the start state, and/or from which no
sequence of terminal symbols is derivable. In fact the (possibly enormously
large) parse forest grammar might define an empty language (if the intersection
was empty). Luckily ‘ordinary’ parsers for CFG can be generalized to construct
this intersection yielding (in typical cases) a much smaller grammar. Pure
bottom-up parsers ensure that the symbols in the parse forest grammar do
indeed derive a number of terminal symbols; pure top-down parsers ensure that
the symbols in the parse forest grammar are derivable from the start symbol.
For some parsers (e.g. a straightforward generalization of the parser described
in [9]) it can be shown that the parse forest grammar will never contain useless
symbols. Checking whether the intersection is empty or not then reduces to the
question whether the parse forest grammar contains rules or not.

As an example, consider in figure 3 the simple bottom-up inactive chart
parser presented abstractly in the style of [26] and [28]. The parser maintains
items of the form [p;, X, p;] indicating that a category X has been shown to exist
between position p; and p;. The inference rules indicate how new items can be
constructed from existing items. Side-effects are attached to these inference rules
which assert the existence of rules in the parse forest grammar. The intersection
is non-empty if and only if the parse forest grammar contains a rule rewriting
the start symbol.

In figure 4 this parser is generalized to take a FSA as its input. Instead of
string positions, the items now keep track of the state names of the FSA. Other
parsing algorithms can be generalized in the same manner.

2For simplicitly we do not allow e-moves in the finite state automaton, although the con-
struction could easily be extended to treat those.
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Scan

[pi7 w, pi+1]
condition: w is the ¢ + 1th word of the string
side-effect: (w pi pit1) — w

[plﬁxlapk’][pk’aX??pk”] s [p’m’alepm]

Complete
P [pkn X07 pm}
condition: XQ — Xl, X2 e Xl
side—effect: <X0 Pk pm> — <X1 Pk pk/><X2 Pk’ pk//> - <Xl Pm/’ pm>
Finish [po, S, pn]
condition: n is the length of the string
side-effect: S —(S0n)

Figure 3: Specification of a simple bottom-up inactive chart parser. The parse
forest grammar is constructed as a side-effect. It contains derivations if and
only if a rule rewriting the start symbol has been constructed.

Admittedly, some differences between parsing of strings and parsing of FSA
are ignored because of the abstract presentation chosen here. For instance, the
parser in figure 3 can be implemented under a left-to-right processing regime
in such a way that for each item i that is constructed it is only neccessary to
consider the completion inference rule using ¢ as the right-most antecedent item
(such a simplication is possible if the grammar does not contain e productions).
In constrast, for the parser in figure 4 an item 4 could trigger the completion
inference rule as any one of the antencedent items.

The same generalization applies to existing parsers for (off-line parsable)
Definite Clause Grammars. In [30, 29] we showed that the intersection of off-
line parsable DCG and FSA is undecidable. However, in the case of word-
graphs, it is easy to verify that the question whether the intersection of an
acyclic FSA and an off-line parsable DCG is empty or not is decidable since
it reduces to checking whether the DCG derives any one of a finite number of
strings. A practical implementation will not use this method, but instead will
use a generalized DCG parser along the lines of the generalizations discussed
here.

4.2 Efficient Parsing

Although we have chosen to illustrate the generalization required to parse word
graphs as opposed to strings using an item-based presentation in the tradition
of [28, 26], the actual parser that is employed in the current version of the ovIs
system is a left /head-corner parser in the logic programming tradition, heavily
influenced by [14, 18, 12, 27]. Such a parser can be seen as a bottom-up parser
with top-down filtering. This parser is described in full detail elsewhere [31].
Careful evaluations on actual word graphs have shown that this left/head-
corner parser performs much better than any of the chart-based implementa-
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Scan

[Qi7 w, qj]

condition: qj € 6(qi,w)
side-effect: (w g qj) = w

Complete [qr, X1, qrr]lawrs X2, ] - - - (@, Xis Gm]

[qk7 X07 qm}

condition: Xo — X1, X2... X
side-effect: (Xo @k gm) — (X1 @ @) (X2 @ qrrr) - (X1 Gmr Gm)

Finish [q57 57 qf]
condition: qr € QF7 qs € QS
side-effect: S — (S qs q5)

Figure 4: Specification of a simple bottom-up inactive chart parser, generalized
to compute the intersection of a FSA and a CFG. As before, the parse forest
grammar is constructed as a side-effect and it contains derivations if and only
if a rule rewriting the start symbol has been constructed.

tions.?> These competing implementations included active and inactive chart

parsers, and LR parsers. The implementations are described in full detail in
[37], [35], [16].
The characteristics of the left /head-corner parsers are described as follows.

Selective Memoization. In a chart parser for context free grammars, each
computation step is performed only once. Moreover the administration involved
in adding categories to the chart, and looking up categories in the chart is
guaranteed to be efficient, because categories are atomic (and hence simple
hashing techniques are applicable to ensure that chart items can be consulted
in constant time). In feature-based formalisms, categories can be very complex.
Searching whether a particular category already exists in the chart therefore is
computationally expensive. For this reason, we have found it more practical
to allow during parsing that certain computations are performed repeatedly.
Thus, a selective use is made of memoization in such a way that only relatively
large chunks of computation are memoized (i.e. performed only once). The
computation of each such chunk does involve a depth-first backtracking search
(because is readily available in a Prolog environment, and does not require much
memory).

In our implementation of the head-corner parser, each non-head daughter
in a rule relates to a parse goal. Each such non-head parse goal is memoized.
Assuming traditional syntactic structures, this has the effect that only maximal
projections such as np, pp, s are added to the chart; whereas non-maximal
projections such as unsaturated verb phrases are not. As a result, the costs
associated with the adminstration of the chart are reduced considerably.

3For the current version of the grammar, it hardly makes a differences whether we use the
left-corner variant or the head-corner variant.

12



Goal Weakening. Another important technique which is applied for effi-
ciency reasons is goal weakening (or abstraction [11]; or restriction [24]). Al-
though top-down filtering in a bottom-up parser is crucial for efficiency, it
can also have an undesirable effect: the same parse goal might have to be
re-computed simply because the top-down expectations are slightly different.
For instance, a rule might have been applied which expects an accusative noun-
phrase to occur at some position p. Later, another rule might be applied which
expects a nominative noun-phrase to occur at p. Yet, most noun-phrases can be
analysed both as nominative and accusative. Instead of searching for a noun-
phrase at position p twice, it might be better to ignore the case requirements
temporarily and only search for a generic noun-phrase at p once.

The idea of goal-weakening is that before a parse goal is attempted, a filter
is applied. This filter generalizes the parse goal somewhat. As a consequence,
all solutions for this more general parse goal are collected and end up in the
chart. Only those solutions that match the original goal are then passed on as
solutions of the original goal. A later goal which is only slightly different will
typically generalize to the same weakened goal. As a consequence it can simply
use those results in the chart which match this later goal.

Compact Representation of Parse Trees Often a distinction is made be-
tween recognition and parsing. Recognition checks whether a given sentence can
be generated by a grammar. Usually recognizers can be adapted to be able to
recover the possible parse trees of that sentence (if any).

In the context of Definite-clause Grammar this distinction is often blurred
because it is possible to build up the parse tree as part of the complex non-
terminal symbols. Thus the parse tree of a sentence may be constructed as a
side-effect of the recognition phase. If we are interested in logical forms rather
than in parse trees a similar trick may be used. The result of this however is that
already during recognition ambiguities will result in a (possibly exponential)
increase of processing time.

For this reason we will assume that parse trees are not built by the grammar,
but rather are the responsibility of the parser. This allows the use of efficient
packing techniques. The result of the parser will be a parse forest: a compact
representation of all possible parse trees rather than an enumeration of all parse
trees.

The structure of the ‘parse-forest’ in the head-corner parser is rather unusual,
and therefore we will take some time to explain it. Because the head-corner
parser uses selective memoization, conventional approaches to construct parse
forests [3] are not applicable. The head-corner parser maintains a table of partial
derivation-trees which each represent a successful path from a lexical head (or
gap) up to a goal category. The table consisting of such partial parse trees is
called the history table; its items are history-items.

More specifically, each history-item is a triple consisting of a result-item
reference, a rule name and a list of triples. The rule name is always the name
of a rule without daughters (i.e. a lexical entry or a gap): the (lexical) head.
Each triple in the list of triples represents a local tree. It consists of the rule
name, and two lists of result-item references (representing the list of daughters
left of the head in reverse, and the list of daughters right of the head).

The history table is a lexicalized tree substitution grammar, in which all
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nodes (except substitution nodes) are associated with a rule identifier (of the
original grammar). This grammar derives exactly all derivation trees of the
input. The tree substitution grammar is lexicalized in the sense that each of
the trees has an associated anchor, which is a pointer to either a lexical entry
or a gap.

Because we use chunks of parse trees less packing is possible than in their
approach. Correspondingly, the theoretical worst-case space requirements are
worse too.

We already argued above that parse trees should not be explicitly defined
in the grammar. Logical forms often implicitly represent the derivational his-
tory of a category. Therefore, the common use of logical forms as part of the
categories will imply that you will hardly ever find two different analyses for a
single category, because two different analyses will also have two different log-
ical forms. Therefore, no packing is possible and the recognizer will behave as
if it is enumerating all parse trees. The solution to this problem is to delay
the evaluation of semantic constraints. During the first phase all constraints
referring to logical forms are ignored. Only if a parse tree is recovered from the
parse-forest we add the logical form constraints. This is similar to the approach
worked out in CLE [1].

5 'Translation into Updates

The grammar assigns a predicate form, a domain-independent semantic repre-
sentation to a given utterance. In OVIS this predicate form is translated into a
domain-specific update expression, which is passed on to the dialogue manager
for further processing.

The dialogue manager keeps track of the information provided by the user
by maintaining an information state or form [39]. This form is a hierarchical
structure, with slots and values for the origin and destination of a connection, for
the time at which the user wants to arrive or depart, etc. Each user utterance
leads to an wupdate of the information state. An update is an instruction for
updating the information in an information state. Updating can mean that
new information is added or that given information is confirmed, retracted or
corrected. For example, given the information state:

. place town groningen ]
origin .
travel moment at [tlme [clock-hour 3] } }
destination [ place [ town leiden
the update

travel.destination. ([# place.town.leiden]; [! place.town.abcoude])

the translation of No, I do not want to travel to Leiden but to Abcoude) leads
to the information state:

. place [ town groningen ]
origin ”
travel moment [ at [ time [ clock_hour 3 ] } }
destination place town abcoude

The # -operator indicates that the information within its scope (indicated
by square brackets) is to be retracted, and the ’!’-operator indicates a correction.
These operators are called ‘communicative function’ below.
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The translation of a list of predicate forms into an update is done by applying
translation-rules. Such a list of predicate forms correspond to the list of cate-
gories found by the robustness component, discussed below. These translation
rules, expressed by a set of definite clauses, recursively define a corresponding
update for a given predicate form.

A first set of such rules applies certain application-specific simplication rules.
For example, the sentence

(2)  nee naar assen

no to assen
no to assen

is assigned two separate predicate forms (one for ‘nee’ and one for ‘naar as-
sen’). A simplication rule is defined which combines the two predicate forms
into a new single predicate form headed by the predicate ‘correction’. Another
application-specific simplification rule is a rule which simplifies a predicate form
with predicate ‘graag’ and empty lists of arguments and adjuncts into a predi-
cate form with predicate ‘confirmation’.

A second set of rules translates each of the predicate forms in the list in turn,
and combines the result by conjunction. Such rules generally take the form

pred_to_u(Pred,Args,Adjs,Update,CF,FrameStrNode)

where Pred is the name of the predicate, Args is the list of argument predicate
forms, Adjs is the list of modifier predicate forms, Update will be bound to
the resulting update, CF is the communicative function (such as ‘assignment’,
‘correction’, ‘confirmation’ etc). FrameStrNode is the name of a node in the
frame structure; this is used to ensure that the resulting update is constructed
in accordance with the frame structure.

As an example consider the following (simplified) rule that might be used to
translate example (1).

pred_to_u(place(town(A)),[1,[],U,CF,NO):-
ftrs_assignment (U,CF, [town,S],NO).

pred_to_u(willen, [User],Adjs,U,CF,NO) :-
user (User),
ftrs_to_update([user,wants],_,UpdateHole,Hole,NO,N1),
adjs_to_updates(Adjs,CF,U0,N1),
if_nil(U0,U,UpdateHole,Hole) .

if_nil(nil,nil,_,_ ).
if_nil(nonnil(Hole),U,U,Hole).

The rule for willen can be understood as follows. The first goal in the
pred_to_u clause checks that the first argument is the predicate form associated
with expressions such as ‘ik’ (I) and ‘we’ (we). The second goal creates a partial
update starting with ‘user.wants’ and a hole. In this hole we will fill in the
updates associated with the adjuncts. However, in case the adjuncts are trans-
lated to a special ‘nil’ update (indicating the empty update), then the resulting
update for this rule will be the empty update too.
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The first rule is used to translate city names. It uses a generic predicate
ftrs_assignment which creates an update with an assignment operator (deter-
mined by CF).

Note that the updates in these rules are Prolog terms. A simple definite
clause grammar is used both for parsing and formatting updates as sequences
of terminal symbols. These terminal symbols themselves are defined by a small
Elex script. Elex is a scanner generator for multiple languages including Prolog
output [20, 33].

6 Robustness

In this section we describe the robustness component of the grammar-based
linguistic analysis component. The robustness component is described in more
detail in [36, 29].

6.1 Introduction

In the ideal case, the parser will find a path in the word graph that can be
assigned an analysis according to the grammar, such that the path covers the
complete time span of the utterance, i.e. the path leads from the start state to
a final state. The analysis gives rise to a semantic representation which is then
passed on to the next processing component.

However, often no such paths can be found in the word graph, due to:

e errors made by the speech recognizer,
e linguistic constructions not covered in the grammar, and
e irregularities in the spoken utterance.

Even if no full analysis of the word graph is possible, it is often the case that
useful information can be extracted from the word graph. Consider for example
the utterance:

(3) Ik reizen van Assen naar Amsterdam
I travel from Assen to  Amsterdam
I want to travel from Assen to Amsterdam

The grammar might not assign an analysis to this utterance due to the
missing finite verb. However, it would be useful if the parser discovered the
prepositional phrases van Assen and naar Amsterdam since in that case the
important information contained in the utterance can still be recovered. Thus,
in cases where no full analysis is possible we would like to fall back on an
approach reminiscent of concept spotting. The following proposal implements
this idea.

Firstly, the grammar is defined in such a way that each maximal projection
such as s, NP, PP, etc., can be analysed as a top category. This is well-motivated
because utterances very often consist of a single NP or PP anyway.

Secondly, the parser is required to discover all instances of the top category
anywhere in the word graph, i.e. for all partial paths in the word graph. This

16



has the desired effect for the example (3): both pps will be found by the parser
(as well as the noun phrases “Ik”, “Assen” and “Amsterdam”.

Thirdly, an appropriate search algorithm will find a non-overlapping se-
quence of such top categories connected by uncovered words in the word-graph.
For the example on page 16 this results for instance in the sequences:

(NP reizen van NP naar NP)
(NP reizen van NP PP)

(NP reizen PP naar NP)
(NP reizen PP PP)

Using appropriate heuristics, including a heuristic to minimize the number of
uncovered words, we are then able to pick out the last path as the best path in
this particular case.

Thus, we are interested in paths from the start state to the final state con-
sisting of a number of categories and transitions in the word graph (the latter are
called skips). The problem is to find the optimal path, according to a number
of criteria. This problem is formalized by defining the annotated word graph as
a directed acyclic graph. The vertices of this graph are the states of the word
graph; the edges are the transitions of the word graph and the categories found
by the parser.

The criteria which are used to favor some paths over other paths are ex-
pressed as a weight function on the edges of the graph. The criteria we might
take into account are discussed in below. For instance, a typical criterion will
favor paths consisting of a small number of categories, and a small number of
skips. The case in which the parser found a full analysis from the start state of
the word graph to a final state then reduces to a special case: the analysis solely
consisting of that category will be favored over sequences of partial analyses.

Obviously, it is not a good idea to generate all possible sequences of categories
and skips, and then to select the best path from this set: in typical word graphs
there are simply too many different paths. If a certain uniformity requirement
on weights is met, however, then efficient graph search algorithms are applicable.
The particular algorithm implemented is a variant of the DAG-SHORTEST-PATH
algorithm [8]. The implementation is discussed in detail in [36], [29].

6.2 Criteria

The robustness search algorithm combines the following criteria.

e Acoustic score. Obviously, the acoustic score present in the word graph
is an important factor. The acoustic scores are derived from probabilities
by taking the negative logarithm. For this reason we aim to minimize
this score. If edges are combined, then we have to sum the corresponding
acoustic scores.

e Number of ‘skips’. We want to minimize the number of skips, in order
to obtain a preference for the maximal projections found by the parser.
Each time we select a skip edge, the number of skips is increased by 1.

e Number of maximal projections. We want to minimize the number of such
maximal projections, in order to obtain a preference for more extended
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linguistic analyses over a series of smaller ones. Each time we select a
category edge, this number is increased by 1.

e Ngram statistics. We have experimented with bigrams and trigrams.
Ngram scores are expressed as negative logarithms of probabilities. This
implies that combining Ngram scores requires addition, and that lower
scores are to be preferred.

The only requirement we make to ensure that efficient graph searching al-
gorithms are applicable is that weights are uniform. This means that a weight
for an edge leaving a vertex v; is independent of how state v; was reached.
We have experimented with a variety of different methods. For example, the
nlp_speech_trigram method mentioned takes into account trigram statistics as
well as the acoustic scores and the number of skips and maximal projects.

6.3 Filtering Word Graphs

The method which involves a full parse of the word graph, is impracticable
for large word graphs: both CPU-time and memory requirements become too
demanding. For the test set described later, we were only able to apply this
method for word graphs of up to about 150 transitions.

For this reason we have experimented with methods in which the word graph
is filtered before it is passed on to the parser. Thus we make two passes in the
word graph. In the first pass the best P paths are computed using Ngram
statistics and acoustic scores. Transitions not taking part in any of these paths
are removed from the word graph. In the second pass the nlp_speech_trigram
method is applied to the filtered word graph. We refer to these methods as B-P
and T-P, for various values of P:

B-P In the first pass this method selects the P best paths using bigram statis-
tics. The second pass applies the nilp_speech_trigram method.

T-P In the first pass this method selects the P best paths using trigram statis-
tics. The second pass applies the nip_speech_trigram method.

6.4 A More Efficient Approximation

It turns out that the filtering methods discussed in the previous section still
require unattractive processing times for larger word graphs. Therefore, this
section introduces an efficient approximation technique. This variant is not
sound, since it does not always yield the best path possible. In practice, however,
it turns out (as we will show in a later section) that the resulting implementation
almost always produces the same results, using only a fraction of the processing
time required by the sound method.

The approximation is very similar to beam search techniques in that a con-
stant b (the “beam”) is assumed which indicates the maximum number of paths
associated with a given vertex. We maintain for each vertex the best b paths to
that vertex. But in case Ngrams are added to the weight function, we cannot
guarantee that we find the best path, because weights are not uniform anymore.
It may be possible that a path ending in some vertex v; is discarded by the al-
gorithm, whereas the last sequence of words of that path would ensure that
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extending that path yields a very good score and in fact even better than any of
the scores that result from extending any of the paths ending in v; which were
maintained by the algorithm.

Larger values for b entail more chance of obtaining the best path (therefore
it makes sense to talk about approximation here); and for every word graph
there will be some b such that the best path is produced.

Note that the complexity of the search algorithm is linearly dependent on b.
Finally, b is always at least as great as P, i.e. the number of solutions we want
to obtain.

We write M,b for a method M with beam b. For example, the method
B-4,10 is the method which filters the word-graph in the first phase using the
approximation search with a beam b = 10 to select the best 4 paths using
bigram statistics (and acoustic scores). The second phase, as always, consists
of the (sound) application of the nlp_speech_trigram method.

7 Evaluation

In order to test the adequacy of the NLP component we have performed a
formal evaluation three years after the start of the Programme. The evaluation
measures string accuracy, semantic accuracy and computational resources. For
comparison we also list the best result of the data-oriented approach. More
details of this evaluation can be found in [38, 6, 32].

A training set of 10K richly annotated word graphs was available. The 10K
training corpus is annotated with the user utterance, a syntactic tree and an
update. This training set was used to train the DOP system. It was also used
by the grammar-based component for reasons of grammar maintenance and
grammar testing.

A further training set of about 90K user utterances was available as well.
It was used for constructing the Ngram models incorporated in the robustness
search algorithm.

The NLP components were evaluated on 1000 unseen user utterances. The
latest version of the speech recogniser produced 1000 word graphs on the basis of
these 1000 user utterances. For these word graphs, annotations consisting of the
actual sentence ('test sentence’), and an update (‘test update’) were assigned
semi-automatically, without taking into account the dialogue context in which
the sentences were uttered. These annotations were unknown to both NLP
groups. The annotation tools are described in Bonnema (1996).

Some indication of the difficulty of the set of 1000 word graphs is presented
in table 1. A further indication of the difficulty of this set of word graphs is
obtained if we look at the word and sentence accuracy obtained by a number of
simple methods. The method speech only takes into account the acoustic scores
found in the word graph. No language model is taken into account. The method
possible assumes that there is an oracle which chooses a path such that it turns
out to be the best possible path. This method can be seen as a natural upper
bound of what can be achieved.

The methods speech_bigram and speech_trigram use a combination of bigram
(resp. trigram) statistics and the speech score. In the latter four cases, a
language model was computed from about 50K utterances (not containing the
utterances from the test set). The results are summarised in table 2.
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graphs | trans | states | words | t/w | max(t) | max(s)
input 1000 | 48215 | 16181 | 3229 | 14.9 793 151
normalised 1000 | 73502 | 11056 3229 | 22.8 2943 128

Table 1: Characterisation of test set (1). This table lists the number of
transitions, the number of states, the number of words of the actual utterances,
the average number of transitions per word, the maximum number of transitions,
and the maximum number of states. The first row provides those statistics for
the input word graph; the second row for the so-called normalised word graph
in which all e-transitions (to model the absence of sound) are removed. The
number of transitions per word is an indication of the extra ambiguity for the
parser introduced by the word graphs in comparison with parsing of an ordinary
string.

method WA SA
speech 69.8 | 56.0
possible 90.5 | 83.7

speech_bigram | 81.1 | 73.6
speech_trigram | 83.9 | 76.2

Table 2: Characterisation of test set (2). Word accuracy and sentence
accuracy based on acoustic score only (speech); using the best possible path
through the word graph, i.e. based on acoustic scores only (possible); and using
a combination of bigram (resp. trigram) scores and acoustic scores.

This section lists the results for word graphs. In table 3 we list the results
in terms of string accuracy, semantic accuracy and the computational resources
required to complete the test.

7.1 Results for Approximation Methods

The second set of experiments compares the sound implementation with the
approximation defined in subsection 6.4. This second set of experiments was
performed later, using better hardware, and using a better N-gram language
model (more dialogues had been collected in the mean time).

In table 4 we compare the results for the approximating filtering methods
for different values of b. The tables also list the results for the sound implemen-
tation. As can be observed, a value of b = 4 yielded for T-1 a concept accuracy

Method | String Acc | Semantic Acc CPU Mem
WA SA total | max max

DOP 76.8 | 69.3 75.5 | 7011 648 619
B-16 83.8 | 76.4 82.6 | 1659 757 60
T-4 84.3 | 76.4 83.0 | 5524 | 2791 177

Table 3: Accuracy and Computational Resources for 1000 word graphs.
String Accuracy and Semantic Accuracy is given as percentages; total and max-
imum CPU-time in seconds, maximum memory requirements in Megabytes.
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Method CPU WA CA
mean max
msec sec % %
T-1,1 26 04 796 781
T-1,2 30 0.6 82.2 80.6
T-1,3 33 0.8 8&83.7 82.1
T-1,4 37 1.0 &4.0 823
T-1,5 40 1.2 84.0 82.3
T-1,10 58 2.7 84.3 824
T-1,20 102 6.5 84.4 K24
T-1 168 22.1 84.5 824
T-3,3 45 1.1 844 83.1
T-3,6 56 1.6 849 83.7
T-3,10 71 2.8 84.9 83.7
T-3,20 118 7.1 85.0 83.6
T-3 449 67.3 85.0 834

Table 4: Results for the full test set. The top rows of the table compare for
T-1 the approximating filtering method (using various beams) with the sound
implementation. Using a beam of b = 4 already obtains results similar to the
sound implementation; the CPU-time requirements are far more modest though.
The lower rows of the table provide a similar comparison for T-3.

which was already close to the sound implementation (82.3% versus 82.4%).
The difference in speed was tremendous though. The difference in maximum
amount of CPU-time is even more dramatic. The second part of the table shows
that for methods in which more than a single result is obtained it hardly makes
a difference to increase b.

Final Remarks

In this chapter we presented the grammar-based linguistic analysis component
of the OVIS system. We shortly described a computational grammar for Dutch,
which defines the relation between spoken utterances and semantic represen-
tations. It was shown how standard parsing algorithms can be generalized for
word graph input, and we described the actual parser employed in the system.

In many cases, the parser will not assign a single analysis to a word graph.
In some cases, the parser will find too many analyses (in case of ambiguity),
whereas in other cases too few analyses result (in case of speech recognition
errors, disfluencies in the input, gaps in the grammar). Therefore, the parser
was extended to find all meaningful phrases anywhere in the word graph. A
shortest path algorithm is used which finds the best sequence of partial parses,
incorporating disambiguation techniques in a multidimensional weight function.
The resulting algorithm is accurate but slow if this weight function takes Ngram
statistics into account. A very efficient approximation is possible by filtering the
word graph using an approximation search; the resulting smaller word graph can
then be analysed accurately and efficiently. The accuracy of the approximation
turns out to be very good in practice.

The resulting system performs well for typical word-graphs: accuracy is
competitive and efficiency is acceptable.
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