
Wide Coverage Parsing with Stochastic
Attribute Value Grammars

Gertjan van Noord∗ Robert Malouf†
University of Groningen San Diego State University

Stochastic Attribute Value Grammars (SAVGs) provide an attractive framework for syntactic
analysis, because they allow the combination of linguistic sophistication with a principled treat-
ment of ambiguity. The paper introduces a wide-coverage SAVG for Dutch, known as Alpino,
and we show how this SAVG can be efficiently applied, using a beam search algorithm to recover
parses from a shared parse forest. Unlike previous approaches, this algorithm does not place strict
locality restrictions on disambiguation. Experimental results for a number of different corpora
suggest that the SAVG framework is applicable for realistically sized grammars and corpora.

1. Introduction

Alpino is a wide-coverage computational analyzer of Dutch which aims at full accurate
parsing of unrestricted text, with coverage and accuracy comparable to state-of-the-art
parsers for English. The SAVG framework is employed, because it allows linguistic so-
phistication in combination with a principled treatment of pervasive ambiguity. Build-
ing on models proposed by Abney (1997), Johnson et al. (1999), Osborne (2000), Riezler
et al. (2002), among others, we show that the SAVG framework can be applied to realis-
tically sized grammars and corpora.

A fundamental problem facing developers of natural language processing systems
is that the grammatical constraints created by linguists admit structures in language
which no human would recognize. For example, a sentence like The tourist saw museums
sounds simple enough, but most NLP systems will recognize not only the intended
meaning, but also the meaning in which saw is a noun, and the entire string is parsed
as a determiner the followed by a compound noun tourist saw museums. This reading is
nonsensical, but cannot be ruled out on purely structural grounds without also ruling
out the parallel structure in the circular saw blades.

A typical architecture for disambiguation uses a probabilistic context free rule sys-
tem, where estimates of rule probabilities are derived from the frequency with which
rules have been encountered in collections of parses which have been disambiguated
by hand. With a sufficient quantity of annotated training data and careful selection of
stochastic features, such systems perform adequately enough on structural disambigua-
tion tasks to support simple applications.

More sophisticated applications such as open-domain question answering or dialog
systems, however, require more sophisticated grammar formalisms like Head-Driven
Phrase Structure Grammar (Pollard and Sag, 1994). Furthermore, as grammars become
more comprehensive, parsers will find an ever larger number of potential readings for
a sentence and effective disambiguation becomes even more important. Since these
formalisms involve a more complex flow of information than simple context-free gram-
mars, more complex statistical methods are required to capture the subtle dependencies

∗ Alfa-informatica PO Box 716 9700AS Groningen Netherlands
† Department of Linguistics and Oriental Languages, San Diego, CA 92182-7727 USA

c© Association for Computational Linguistics

Computational Linguistics Volume ?, Number ?

among grammatical structures.
As Abney (1997) shows, the simple rule frequency methods applied to disambiguat-

ing context free parses cannot be used for disambiguating constraint grammar parses,
since these methods rely crucially on the statistical independence of context-free rule
applications. One solution is provided by Maximum Entropy models (variously also
known as Gibbs, logistic, exponential, log-linear models, and multinomial logit mod-
els). Maximum entropy models (Berger, Della Pietra, and Della Pietra, 1996; Della
Pietra, Della Pietra, and Lafferty, 1997) provide a general purpose machine learning
technique for classification and prediction which has been successfully applied to fields
as diverse as computer vision and econometrics. In natural language processing, recent
years have seen these techniques used for sentence boundary detection, part of speech
tagging, to name just a few applications, and they have proven particularly success-
ful as a foundation for Stochastic Attribute Value Grammar formalisms (Abney, 1997;
Johnson et al., 1999; Riezler et al., 2002).

A leading advantage of Maximum Entropy models is their flexibility: they allow
stochastic rule systems to be augmented with additional syntactic, semantic, and prag-
matic features. Suppose we want to construct a probability distribution p over a set
of parses x ∈ X , which in turn are characterized by features fi(x). In the context of a
stochastic context-free grammar (SCFG), for example, features fi(x) might represent the
number of times rule i was applied in the derivation of parse x. For SAVGs, the features
may be more general, and include in addition information about dependency relations
and part of speech tags (see section 4).

Suppose further that we have access to a collection of annotated parses which gives
us an empirical distribution p̃(x) Our task is to construct a model for p which satisfies
the constraints imposed by the training data, in the sense that:

Ep[f] = Eq[f] (1)

where Ep[f] is the expected value of the feature vector under the distribution p:

Ep[f] =
∑

x∈X

p(x)f(x)

In general, this problem is ill posed: a wide range of models will fit the constraints
in (1). As a guide to selecting one that is most appropriate, we can call on Jaynes’ (1957)
Principle of Maximum Entropy: “In the absence of additional information, we should
assume that all events have equal probability.” In other words, we should assign the
highest prior probability to distributions which maximize the entropy.

H(p) = −
∑

x∈X

p(x) log p(x) (2)

The entropy (2) is a measure of the average surprise or uncertainty in the random vari-
able X given the distribution p. The intuition behind Jaynes’ use of entropy is simple:
suppose we have two distributions p1 and p2 over X which both satisfy the constraints
in (1), and H(p1) < H(p2). That means that the uncertainty in X under p1 is less than
under p2, so p1 must embody some information about X which is not contained in p2.
However, by hypothesis, both distributions satisfy the constraints and so include all the
information in the training data. Any ‘extra’ information in p1 must have come from
somewhere other than the training data, and thus p1 must reflect some additional a pri-
ori assumptions. The Principle of Maximum Entropy is a way of enforcing Occam’s
Razor, in that it will prefer models which include the fewest constraints which are not
directly imposed by the training data.

2

Wide Coverage Parsing with SAVGs van Noord and Malouf

Finding a distribution which satisfies the Principle of Maximum Entropy is effec-
tively a problem in constrained optimization: we want to find a distribution p which
maximizes (2) while satisfying the constraints imposed by (1). It can be straightfor-
wardly shown that the maximum entropy distribution has the parametric form:

p(x; θ) =
exp (

∑
i θifi(x))∑

y∈X exp (
∑

i θifi(y))
(3)

where θ is a d-dimensional parameter vector.
One complication which makes models of this form difficult to apply to problems in

natural language processing is that the event space X is often very large or even infinite,
making the denominator in (3) impossible to compute. One modification we can make
to avoid this problem is to consider conditional probability distributions instead (Berger,
Della Pietra, and Della Pietra, 1996; Johnson et al., 1999). Suppose now that in addition
to the event space X and the feature functions fi, we have also a set of contexts W and
a function Y which partitions the members of X . In our SCFG example, W might be
the set of possible strings of words, and Y (w) the set of trees whose yield is w ∈ W .
Computing the conditional probability p(x|w; θ) of an event x in context w as

p(x|w; θ) =
exp (

∑
i θifi(x))∑

y∈Y (w) exp (
∑

i θifi(y))
(4)

now involves evaluating a much more tractable sum in the denominator.
The value of fi(x) reflects the frequency of the ith feature in a given parse x. The

parameters θi (which provide a weight for each feature) can be estimated efficiently by
maximizing the pseudo-likelihood of a training corpus (Johnson et al., 1999):

L(θ) =
∑

w

p̃(w)
∑

x∈Y (w)

p̃(x|w) log p(x|w; θ) (5)

The empirical probabilities p̃(w) and p̃(x|w) are derived from the training data.
Given the parametric form of an maximum entropy model in (4), fitting an ME

model to a collection of training data entails finding values for the parameter vector θ

which minimize the Kullback-Leibler divergence between the model p(x|w; θ) and the
empirical distribution p̃(x|w):

D(p̃||p) =
∑

w,x

p̃(x, w) log
p̃(x|w)

p(x|w; θ)

or, equivalently, which maximize the log likelihood (5). The gradient of the log likeli-
hood function, or the vector of its first derivatives with respect to the parameter θ is:

G(θ) =
∑

x,y

p̃(x, y)f(y)−
∑

x,y

p̃(x)p(y|x; θ)f(y)

Since the likelihood function (5) is concave over the parameter space, it has a global
maximum where the gradient is zero. Unfortunately, simply setting G(θ) = 0 and solv-
ing for θ does not yield a closed form solution, so we proceed iteratively. At each step,
we adjust an estimate of the parameters θ(k) to a new estimate θ(k+1) based on the diver-
gence between the estimated probability distribution p(k) and the empirical distribution
p̃. We continue until successive improvements fail to yield a sufficiently large decrease
in the divergence.

3

Computational Linguistics Volume ?, Number ?

As a basis for our implementation, we have used PETSc (the “Portable, Extensible
Toolkit for Scientific Computation”), a software library designed to ease development
of programs which solve large systems of partial differential equations (Balay et al.,
2002). PETSc offers data structures and routines for parallel and sequential storage,
manipulation, and visualization of very large sparse matrices.

To solve the non-linear optimization required to maximize (5), we used TAO (the
“Toolkit for Advanced Optimization”), a library layered on top of the foundation of
PETSc for solving non-linear optimization problems (Benson et al., 2002). TAO offers
the building blocks for writing optimization programs (such as line searches and con-
vergence tests) as well as high-quality implementations of standard optimization algo-
rithms (including the limited memory variable metric method which we use here).

For parameter estimation, the most expensive operation is computing the probabil-
ity distribution q and the expectations Ep[f] for each iteration. In order to make use of
the facilities provided by PETSc, we store the training data as a (sparse) matrix F , with
rows corresponding to events and columns to features. Then given a parameter vector
θ, the unnormalized log probabilities are the matrix-vector product Fθ and the feature
expectations are the transposed matrix-vector product F T p. By expressing these com-
putations as matrix-vector operations, we can take advantage of the high performance
sparse matrix primitives of PETSc.

A potential drawback of maximum entropy models is that equation 5 requires ac-
cess to all parses of a given corpus sentence, which is inefficient because a sentence can
have an exponential number of parses. Two types of solution for this problem have
been proposed. On the one hand, Geman and Johnson (2002); Miyao and Tsujii (2002)
present approaches where training data consists of parse forests (or feature forests),
rather than sets of parses. Such approaches enforce strong locality requirements on fea-
tures, whereas in our case features can be arbitrary properties of parses. Geman and
Johnson (2002) suggest that it is always possible to localize such arbitrary features in an
attribute-value grammar. For some of the features used in Alpino this would dramati-
cally complicate the grammar, and have severe impacts on parsing efficiency. Another
type of solution, on which our work is based, is presented in Osborne (2000). Osborne
shows that it suffices to provide training with a representative sample of Y (w).

A remaining issue is how the model, once it has been learned from the training
data, can be applied efficiently. In the approaches of Geman and Johnson (2002); Miyao
and Tsujii (2002) features are localized, and therefore an efficient dynamic programming
algorithm can be used to extract the best parse from a parse forest. Below, we define a
beam-search generalization of such an algorithm, and we show that the algorithm can
be used efficiently to recover the best parse even in the presence of non-local features.

In section 2 we introduce the Alpino grammar, and describe how dependency rela-
tions are used for evaluation. Section 3 reviews the approach of Osborne, and describes
how it has been adapted for the Alpino grammar and corpora. Section 4 describes which
features are defined for disambiguation. Section 5 presents the beam search algorithm
to recover the best parse from a parse forest. In section 6 a detailed evaluation of the
beam search algorithm and the full parsing system is presented.

2. Alpino Grammar

The Alpino grammar is a wide-coverage computational HPSG for Dutch. The grammar
takes a ‘constructional’ approach, with rich lexical representations and a large number
of detailed, construction specific rules (about 500). Both the lexicon and the rule com-
ponent are organized in a multiple-inheritance hierarchy. By relating rules to each other
and to more general structures and principles via multiple inheritance, a rule compo-

4

Wide Coverage Parsing with SAVGs van Noord and Malouf

top
smain

su
noun

Cathy0

hd
verb
zie1

obj1
1

noun
hen2

vc
inf

su
1

mod
adv

wild3

hd
verb

zwaai4

〈zie su Cathy〉
〈zie obj1 hen 〉
〈zie vc zwaai〉
〈zwaai mod wild 〉
〈zwaai su hen 〉

Figure 1
Example of CGN dependency structure for the sentence Cathy zag hen wild zwaaien (Cathy saw
them wave wildly), with the associated set of dependencies used for evaluation.

nent can be defined which contains a potentially large number of specific rules, while
at the same time the relevant generalizations about these rules are still expressed only
once. Beyond considerations of linguistic theory, an important argument in favor of
such an implementation is the fact that parsing using a grammar with specific rules
appears to be more efficient that parsing on the basis of general rule schemata.

There is a large lexicon (about 100,000 entries, with a number of additional lexical
rules to recognize dates, temporal expressions and similar named entities) derived in
part from existing lexical resources (Bouma, 2001), stored as a perfect hash finite au-
tomaton.1

For words which are not in the lexicon, the system applies a number of unknown
word heuristics, which attempt to deal with numbers and number-like expressions, cap-
italized words, words with missing diacritics, words with ‘too many’ diacritics, com-
pounds, and proper names. If such heuristics still fail to provide an analysis, then the
system attempts to guess a category based on the word’s morphological form. If this
still does not provide an analysis, then it is assumed that the word is a noun. Finally,
lexical ambiguity is reduced by applying a HMM-filter described in Prins and van No-
ord (2004).

Dependency Structures and Evaluation. The grammar has been augmented to represent
dependency structure, based on the guidelines of CGN (Corpus of Spoken Dutch) (Oost-
dijk, 2000). An example is given in figure 1. The example illustrates the use of co-
indexing to represent control relations.

The output of the parser is evaluated by comparing the generated dependency
structure for a corpus sentence to the dependency structure in a treebank annotated
with a compatible CGN dependency structure. For this comparison, we represent the
dependency structure as a set of dependency relations. Comparing these sets, we count
the number of relations that are identical in the generated parse and the stored struc-
ture. This approach is very similar in spirit to the evaluation methodology advocated
in Briscoe et al. (2002), although there are differences with respect to the actual depen-
dencies (which we inherit from the CGN guidelines).

Briscoe et al. compute precision and recall on the basis of sets of dependencies, and
f-score can be used to combine both metrics in a single score. Because f-score underesti-
mates the importance of missing dependencies, we prefer to express similarity between
dependency structures by concept accuracy (generalizing the word accuracy measure used

1Using Jan Daciuk’s FSA tools: http://www.eti.pg.gda.pl/˜jandac/fsa.html

5

Computational Linguistics Volume ?, Number ?

in speech recognition (Boros et al., 1996)) :

CAi = 1−
Di

f

max(Di
g , D

i
p)

Di
p is the number of relations produced by the parser for sentence i, Dg is the number of

relations in the treebank parse, and Df is the number of incorrect and missing relations
produced by the parser.

To compute the accuracy of the parser on a corpus, we can compute mean CAi.
Given that shorter sentences are typically much easier, a more informative measure is
the total CA score:

CA = 1−

∑
i Di

f

max(
∑

i Di
g,

∑
i Di

p)

To emphasize the performance of the stochastic parse selection component, we also
define error reduction:

CAκ =
CA− baseline CA

best CA− baseline CA
The lower bound baseline CA is the CA obtained by a model which selects a random
parse from the set of parses. The upper bound best CA is the CA of an ideal model that
always picks the best possible parse. For most of the experiments below, we present
total CA, error reduction, and the more traditional f-score.

3. Training the model

The Alpino treebank2 contains dependency structures of all 7,100 sentences (about 145,000
words) of the newspaper (cdbl) part of the Eindhoven corpus (Uit den Boogaard 1975).

While the treebank contains correct dependency structures for the sentences in the
corpus, these structures deliberately abstract away from syntactic details. If we want
our disambiguation model to be sensitive to arbitrary aspects of a parse, then the train-
ing data should contain the full parse of each sentence as produced by the grammar. To
construct these full parses, we use the grammar to parse a given sentence of the training
corpus, and then select the parse(s) with the correct dependency structure.

This solution faces two problems. First, the parser might not in all cases be able to
produce a parse with the correct dependency structure. Figure 2 illustrates this for the
Alpino grammar and treebank. For longer sentences, a considerable proportion cannot
be parsed fully correctly. The second problem is that, for longer sentences, it might take
too long to find the correct parse even if it exists. This is illustrated in figure 3. For
sentences with more than 20 tokens, it becomes unfeasible to enumerate all parses.

Both problems are addressed in Osborne (2000). Osborne suggests mapping the
accuracy of a given parse to the probability p̃(x|w) of that parse in the training data.
Thus, rather than adding a parse if its corresponding dependency structure is correct,
and ignoring a parse otherwise, we add a parse to the training data with an associated
probability that is determined by the quality of that parse, where the quality of a parse
is given by the concept accuracy of its dependency structure. Thus, if a parse has a CA
of 85%, we add the parse to the training data marked with a weight of 0.85. Next, each
sentence is assigned a weight proportional to the sum of the weights of its parses. This
gives sentences with higher quality parses more weight than those for which the parser
was unable to find a parse. Finally, these parse and sentence weights are renormalized
so that p̃(w) and p̃(x|w) are proper distributions, and the parameters of the model are
then selected to maximize the pseudo-likelihood (5).

2http://www.let.rug.nl/˜vannoord/trees/

6

Wide Coverage Parsing with SAVGs van Noord and Malouf

5 10 15 20

80
85

90
95

10
0

Sentence length (words)

C
ov

er
ag

e
(%

)

Figure 2
Proportion of sentences for which the parser finds (among all its parses) a fully correct
dependency structure, per sentence length.

5 10 15 20

0
10

00
30

00

Sentence length (words)

R
ea

di
ng

s

Figure 3
Mean number of parses per sentence length.

7

Computational Linguistics Volume ?, Number ?

0 50 100 150 200 250

68
70

72
74

76
78

Maximum number of parses per sentence

Er
ro

r
re

du
ct

io
n

(%
)

Random
Best
No quality

Figure 4
Error reduction versus the maximum number of parses per sentence used for training. Results
obtained using ten-fold cross-validation on Alpino treebank.

Secondly, Osborne suggests that we need not have access to all parses for a given
sentence, but that an “informative sample” is sufficient. The feature weights chosen by
maximizing (5) depend only on the expected values of the features in the training data.
So, any sub-sample of the parses in the training data which yields unbiased estimates
of the feature expectations should result in as accurate a model as the complete set of
parses. In initial experiments, we simply used the first n parses for a given sentence
(we typically used n = 250, to fit within the constraints of a 2Gb core memory system).
Since the order of parses is not randomized, somewhat better results can be obtained if
we collect m >> n sentences (say m = 1000), from which we then take a random sample
of size n. Due to memory problems, three sentences had to be removed from this corpus.
In total, 3,270,554 parses were found for 7,136 sentences. For 2,614 sentences, the system
found the maximum number of 1,000 parses. The lower bound baseline CA for this set
is 58.52%, and the upper bound is 88.29%. Note that the upper bound depends strongly
on the maximum number of parses.

In figure 4 the relative performance of models is shown for different values of n.
The models all use the same features, feature frequency cutoff, and penalty; details are
described below. The result of Osborne is confirmed that concentrating on the best
parses (results labeled ‘best’) only hurts performance. The results labeled ‘no quality’
are obtained if all best parses are assigned a score of 1, and a random selection of other
parses is assigned a score of 0.

4. Feature Selection

Feature Templates. In this section, we describe the features that the disambiguation model
uses to distinguish between parses. These features are organized by means of feature
templates. The templates are listed in table 1.

Template r1 signals the application of a particular grammar rule, given by the rule
identifier Rule. The r2 template indicates that the Int’th daughter of a node constructed
by rule RuleM is constructed by rule RuleD. In template mf, Cat1 and Cat2 are atomic
identifiers for major categories. For noun phrases, the identifiers represent case marking
and whether the NP is headed by a proper noun, pronoun, or common noun. An mf
feature indicates that Cat1 precedes Cat2 in the mittelfeld, i.e., left of the head in a verb-
phrase. This feature is useful, for instance, to learn that, for common noun phrases, the

8

Wide Coverage Parsing with SAVGs van Noord and Malouf

Table 1
Feature templates and the number of features instantiating this template, for the final model.

r1(Rule) 324
r2(RuleM,Int,RuleD) 2679
mf(Cat1,Cat2) 727
f1(Pos) 451
f2(Word,Pos) 2553
dep23(ArgPos,Rel,Pos) 478
dep34(ArgWord,ArgPos,Rel,Pos) 6241
dep35(ArgWord,ArgPos,Rel,Word,Pos) 6880
h1(Ident) 44
misc boolean features 12

indirect object tends to precede the direct object.
The template f1(Pos) represents a word in the derivation with POS-tag Pos. Tem-

plate f2 represents the fact that Word was assigned POS-tag Pos. The dep23, dep34 and
dep35 templates refer to the dependency structure, where Pos, ArgPos are simplified
POS-tags, Rel is a dependency relation (subject, object, determiner, modifier, . . .), and
Word, ArgWord are base forms of words. There are about 20 different simplified POS-
tags such as noun, verb, prep, etc. dep23 indicates that a word with POS-tag Pos has a
dependent of type Rel, headed by a word with POS-tag ArgPos. Such a feature makes
it possible to learn that, typically, verbs have nouns as objects. The dep34 template ex-
plicitly includes the base form of the head word of the argument. Such features make
it possible to learn that, typically, prepositional phrases headed by ’of’ are attached to
nouns. In the dep35 template the head word itself is part of the feature too.

The h1 template indicates that the analysis contains a word with a POS-tag pro-
posed by a particular unknown word heuristic. In addition, there are a number of
boolean features. One such feature indicates whether or not, in a coordinated struc-
ture, the conjuncts are parallel. The heuristic used to determine parallelism simply is:
conjunction is parallel if each conjunct is constructed by the same rule or if each conjunct
is a lexical entry. Another feature indicates whether a temporal noun is used adverbially
or nominally. Three other boolean features are used to indicate whether in an extrac-
tion construction (wh-question, topicalization, relative clause), the subject is extracted
or not, and whether such an extraction is local or not. Another boolean feature indicates
whether an extraposed relative clause modifies the closest NP to the left, or not.

Frequency cutoff. The templates generate a potentially huge number of features, which
we reduce by deleting features whose frequency falls below a cutoff point c. A feature
f is relevant for a sentence w in the training data, if there are two parses y1, y2 ∈ Y (w)
such that f(y1) 6= f(y2) (the frequency of that feature must be different for at least one
pair of parses). We take a feature into account if it is relevant for more than c sentences.
The effects of various cutoffs are given in Table 2. As can be observed, using a small
subset of all available features does not hurt performance very much. In the remaining
experiments, we have used a frequency cutoff of 2.

Penalty for feature weights. Ratnaparkhi (1998) suggests that frequency cutoff might im-
prove models by reducing over-fitting. However, a more effective countermeasure
against over-fitting is the use of a penalized likelihood function for parameter estima-

9

Computational Linguistics Volume ?, Number ?

Table 2
The effect of removing infrequent features.

The first column indicates the cutoff threshold. These models use a Gaussian penalty with
σ

2
= 1000. Results obtained using ten-fold cross-validation on Alpino treebank.

cutoff # features F-score CA% CAκ%

- 285,497 78.80 77.69 78.75
1 35,850 78.70 77.59 78.35
2 20,391 78.65 77.53 78.14
3 15,546 78.60 77.49 77.97
5 9,619 78.58 77.47 77.90

10 5,748 78.53 77.40 77.65
20 3,658 78.33 77.21 76.92
50 2,120 78.05 76.94 75.88

Table 3
The effect of Gaussian penalty.

These models use frequency cutoff of 2. Results obtained using ten-fold cross-validation on
Alpino treebank.

σ2 F-score CA% CAκ% iterations

1 73.41 72.07 57.46 5
10 76.48 75.26 69.52 12

100 78.01 76.89 75.65 30
1000 78.65 77.53 78.14 80

10000 78.42 77.32 77.34 160
100000 77.81 76.72 75.05 250

none 77.52 76.43 73.97 275

tion (Chen and Rosenfeld, 1999; Johnson et al., 1999). Rather than maximizing the like-
lihood (5) to estimate the parameters θi, we instead maximize a penalized likelihood:

L′(θ) = L(θ)−
1

2σ2

∑

i

θ2
i

This Gaussian regularization term penalizes extreme parameter values, which reduces
the ‘effective degrees of freedom’ of the model and in turn tends to reduce over-fitting
(Hastie, Tibshirani, and Friedman, 2001). The variance σ2 is a smoothing parameter
which sets the relative influence of the likelihood and the regularization term: larger
values of σ2 results in less smoothing of the parameters θi. The results of using a Gaus-
sian penalty are given in Table 3. The penalty can improve accuracy and in addition
often makes training converge faster. In further experiments, a value of σ2 = 1000 is
assumed.

In summary, a Gaussian penalty is used for more accurate models, and a feature
frequency cutoff is used for more compact models.

Comparison. The disambiguation model solves more than 78% of the disambiguation
problem (by ten-fold cross-validation on the Alpino treebank). It is hard to directly

10

Wide Coverage Parsing with SAVGs van Noord and Malouf

r1: s→ np vp r2: vp→ vp pp r3: np→ n
r4: np→ det n r5: np→ np pp r6: pp→ p np
r7: vp→ v np

l1: a→ ”I” l2: v→ ”see” l3: det→ ”a”
l4: n→ ”man” l5: p→ ”at” l6: n→ ”home”

Figure 5
Sample grammar

compare these results with others, due to differences in language, grammar, training
data and test data. Riezler et al. (2002) report error reductions between 32% and 36%.
Osborne (2000) evaluates the model rather crudely by comparing how often the model
picks out the best possible parse (ignoring the quality of that parse itself, and ignoring
the number of parses).

5. Recovery of best parse

The construction of a dependency structure on the basis of some input proceeds in a
number of steps. After lexical analysis, a parse forest is constructed using a left-corner
parser. If no single analysis of the input is possible, the parser constructs a parse forest
for a sequence of analyses (van Noord, 1997).

From the parse forest, the best parse must be selected, based on the disambiguation
model described in the previous section. In order to select the best parse from a parse
forest, we assume a parse evaluation function which assigns a score to each parse. The
parse evaluation function simply applies the disambiguation model described in previ-
ous sections, by counting the frequency of each of the features. The frequency of each
feature is then multiplied with the corresponding weight, and finally these products are
then all summed to arrive at a number indicating the (relative) quality of the parse.

A naive algorithm constructs all possible parses, assigns each one a score, and then
selects the best one. In the approach we take here, a parse is selected from the parse
forest by a best-first search. This requires the parse evaluation function to be extended
to partial parses.

The left-corner parser constructs a parse forest, using the technique explained in
detail in section 4 of van Noord (1997). In this approach, the parse forest is a tree substi-
tution grammar, which derives exactly all derivation trees of the input sentence. Each
tree in the tree substitution grammar is a left-corner spine. An example should clarify
this.

Example. Consider the simple grammar and lexicon presented in figure 5, where termi-
nals are written within double quotes, and each rule is prefixed by a rule identifier. We
use a context-free grammar for ease of exposition, but since we are actually construct-
ing derivation trees, rather than parse trees, the technique immediately generalizes for
attribute-value grammars.

The sentence I see a man at home has the two parse trees and corresponding deriva-
tion trees given in figure 6. The left-corner parser constructs the parse forest given in
figure 7. Such a parse forest consists of a set of pairs, where each pair is an index and a
set of partial derivation trees (left-corner spines). Each left-corner spine is a tree, where
all non-terminal nodes as well as the left-most terminal node are rule names, and where
all other terminal nodes are indexes. Full derivation trees can be constructed by com-
posing the partial derivation trees together, with the condition that a node labeled by an

11

Computational Linguistics Volume ?, Number ?

s

np

n

I

vp

v

see

np

np

det

a

n

man

pp

p

at

np

n

home

s

np

n

I

vp

vp

v

see

np

det

a

n

man

pp

p

at

np

n

home

r1

r3

l1

r7

l2 r5

r4

l3 l4

r6

l5 r3

l6

r1

r3

l1

r2

r7

l2 r4

l3 l4

r6

l5 r3

l6

Figure 6
Two parse trees and corresponding derivation trees for I see a man at home

index should be substituted by a partial derivation tree associated with that index. The
index associated with the start symbol is given (in the example, the start index is nt0).

Parse recovery. An algorithm which recovers a derivation tree for a given index is given
in figure 8. It is closely related to the algorithm presented in Geman and Johnson (2002)
for selecting best parses from LFG packed representations.

The algorithm first topologically sorts the indexes, where an index i precedes j if a
tree associated with i is required in a possible derivation tree for j (line 1). The algorithm
iterates over the indexes in this ordering, constructing larger derivation trees on the
basis of derivation trees created earlier. To create a derivation tree for a specific index
i, the algorithm iterates over all trees associated with i (line 2). In such a tree, there are

nt0 nt1 nt2 nt3 nt4 nt5 nt6
r1

r3

l1

nt1

r2

r7

l2 nt2

nt3

r7

l2 nt4

r4

l3 nt5

r6

l5 nt6

r5

r4

l3 nt5

nt3

l4 r3

l6

Figure 7
The parse forest of I see a man at home.

The parse forest consists of a number of indexes associated with sets of partial derivation trees.
The derivation trees are left-corner spines where all non-terminal nodes and the left-most
terminal node are rule-names. Each of the other terminal nodes is labeled with an index,
indicating that one of the partial derivation trees associated with that index can be plugged in
here.

12

Wide Coverage Parsing with SAVGs van Noord and Malouf

RECOVER(start , indexes)

1 for each i in TOP-SORT(indexes)
2 do for each sub ∈ i .trees

3 do I ← indexes in sub

4 for each j ∈ I

5 do SUBS(j, j .best)
6 if sub is better than i .best

7 then i .best ← sub

8 return start .best

Figure 8
Algorithm RECOVER

RECOVER-WITH-BEAM(start , indexes)

1 for each i in TOP-SORT(indexes)
2 do for each sub ∈ i .trees

3 do I1 . . . Ik ← indexes in sub

4 for each (t1 . . . tk) ∈
I1. best × . . .× Ik. best

5 do for i← 1 to k

6 do SUBS(Ii, ti)
7 ADD(b,best ,sub.best)
8 return best element of start .best

Figure 9
Algorithm RECOVER-WITH-BEAM

a number of nodes labeled with an index. For each of these, the corresponding best
derivation tree (discovered in a previous iteration) is substituted at the corresponding
node (line 5). Then, a score is computed for the resulting tree. This involves mapping the
derivation tree to a full parse tree, counting the occurrences of all features, multiplying
these counts with the corresponding feature weights, and summing the results. If the
new tree has a higher score than the best tree associated with i so far, then the tree is
stored. Finally, the algorithm returns the best parse associated with the start node.

In order to be able to guarantee that this search procedure indeed finds the best parse,
a monotonicity requirement should apply to the parse evaluation function. However,
instead of relying on such a requirement (some non-local features discussed in the pre-
vious section would indeed violate this requirement), we implemented a variant of a
best-first search algorithm in such a way that for each state in the search space, we
maintain the b best candidates, where b is a small integer (the beam). If the beam is de-
creased, then we run a larger risk of missing the best parse (but the result will typically
still be a relatively ‘good’ parse); if the beam is increased, then the amount of computa-
tion increases as well. The definition is presented in figure 9.

The algorithm works in a similar fashion as before, but instead of keeping track of
the single best parse for each index, we maintain at most b best parses for each index.
Because an index is associated with a set of trees, the algorithm iterates over all com-
binations of sub-trees (line 4), and then substitutes each one of those sub-trees (line 5).
The procedure ADD will add a given tree t to a set of trees T if either there are less than

13

Computational Linguistics Volume ?, Number ?

b trees in T , or t is better than at least one of the trees in T . In the latter case, the worst
scoring tree is removed from T .

Comparison. Rather than computing the parse-forest first, and then compute the best
parse from this forest, one might attempt to apply the disambiguation component im-
mediately during parsing. First note, though, that a naive application of this idea is
problematic for attribute-value grammars. Even if a particular component of a parse
has a very low score, it might be that attribute value constraints, enforced by the context
of that component parse, will rule out all competing, better scoring parses. Therefore,
we should only eliminate a candidate component parse, if there are better parses with
the same span and the same attribute-value structure. But if the parser builds a parse-forest,
and uses packing, then it will in such cases continue parsing with a single parse anyway.

In Nederhof (2003) two types of algorithm are discussed to find the best parse. The
first type of algorithm is closely related to Dijkstra’s algorithm to find the shortest path
in a directed graph; its application to probabilistic context-free grammars is known as
Knuth’s algorithm. It consists of an agenda-driven, chart parsing algorithm in which the
agenda is ordered in such a way that promising items are processed before others. This
type of algorithm is applicable provided the scores are superior. This roughly implies
that:

• the score of a parse is equal or lower than the score of each of its components

• if a component c1 has a higher score than c2, then it should be the case that
all parses which contain c1 have a higher score than all corresponding parses
which have c2 instead of c1.

Both conditions are not applicable. The first condition is violated because the maxent
feature weights are logits rather than log probabilities, and so can be either positive or
negative. The second condition is violated, in general, since we allow various non-local
features.

The second type of algorithm discussed by Nederhof is closely related to the Viterbi
algorithm, and to the DAG-SHORTEST-PATHS algorithm as described in Cormen, Leiser-
son, and Rivest (1990), as well as to the algorithm for finding the best parse in a parse
forest presented in Geman and Johnson (2002). This type of algorithm works provided
the second condition above applies. Our algorithm can be described as a generalization
of the second type. The generalization consists in allowing the b best candidates for
each component, to compensate for the effect of global features which violate condition
2 above.

6. Experimental Results

Beam Search. In table 4 the effect of various values for b is presented for a number of
different treebanks. In the first columns, we list the results on a random sample of
sentences from the treebank of up to fifteen words. In the next few columns, we list the
result on a random sample of sentences from the treebank of up to thirty words. In the
final columns, a random sample of the treebank is used without a restriction on sentence
length. Per column, we list the F-score, concept accuracy, CPU requirements, and the
number of sentences for which the parser could not find an analysis due to memory
limitations (in such cases the accuracy obviously is dropped too, since no correct result
is constructed). As can be seen from the table, increasing the beam size slightly improves
results, but for larger values memory problems cause a severe drop of accuracy. Also,
the beam can remain rather small. This is probably due to the fact that most of our

14

Wide Coverage Parsing with SAVGs van Noord and Malouf

Table 4
Effect of beam-size on accuracy and efficiency of parse selection.

Sentences from random 10% of Alpino Treebank. The left part of the table displays results for
sentences up to 15 words; the central part for sentences up to 30 words; and the right part for all
sentences. We normalize the parse selection times with respect to the variant with b = ∞

(CPU=1), ignoring sentences for which the algorithm ran out of memory.

beam ≤ 15 ≤ 30 all

CA% CPU out CA% CPU out CA% CPU out

1 90.33 0.66 0 86.69 0.23 0 84.82 0.14 0
2 90.62 0.72 0 87.08 0.28 0 85.18 0.18 0
4 90.71 0.79 0 87.19 0.37 0 85.36 0.28 0
8 90.85 0.87 0 87.32 0.50 0 85.49 0.39 0

16 90.85 0.98 0 87.37 0.70 0 85.60 0.56 0
32 90.85 1.17 0 87.11 1.04 1 84.87 0.90 4
∞ 90.85 1 0 80.16 1 32 69.59 1 74

features are rather local in nature, as well as to the fact that the basic units of the parse
forest are relatively large in size. Currently, Alpino uses b = 4 by default.

Full System. In table 5, the accuracy of the full system on the Alpino treebank is given
in the first row, using ten-fold cross-validation. The accuracy is much higher than in
tables 2 and 3, because we are not limited anymore to the maximum of 1000 parses
per sentence. Error reduction on the Alpino treebank is lower for the full system than
reported in those earlier tables, because in the full system the POS-tagger of Prins and
van Noord (2004) is employed to reduce lexical ambiguities, which solves many of the
‘easy’ disambiguation decisions.

The Alpino treebank is, strictly speaking, a development set on which we optimized
both the grammar and lexicon somewhat, as well as the various tuning parameters for
training (frequency cut-off, Gaussian penalty, beam size). Therefore, we provide results
on two other test sets as well (using the model trained on the Alpino treebank). To this
end, we annotated the first 500 sentences of the Trouw 2001 newspaper, as found in the
TwNC newspaper corpus.3 Another test set consists of all the Dutch questions from the
CLEF Question Answering competition. As can be seen in the table, the results on these
test sets are even better. A potential explanation is the fact that these sets are easier
because of shorter mean sentence length.

Note that in these experiments, all sentences receive at least one analysis (except for
one sentence of the Alpino set, for which the parser ran out of memory), because if no
single analysis of the input is possible, a sequence of partial analyses will be constructed.

Wide coverage parsing is understood here in the sense that not only the parser
should produce some parse for arbitrary, free, input text, but moreover should produce
the correct or mostly correct parse. We suggest our results warrant the conclusion that
the SAVG framework is applicable for wide-coverage parsing in this sense. Recently,
Alpino has indeed been used for wide-coverage parsing in the context of question an-
swering, word-sense disambiguation, pronoun resolution, preparation of training mate-
rial for enhanced POS-tagging and corpus linguistics (Villada Moirón, 2004; Prins, 2004;
Bouma, 2003; Bouma, 2004).

3http://wwwhome.cs.utwente.nl/˜druid/TwNC/TwNC-main.html

15

Computational Linguistics Volume ?, Number ?

Table 5
Accuracy on development set and test sets for full system.

The table lists the number of sentences, mean sentence length, F-score, CA and error reduction.

corpus sents length F-sc CA% CAκ%

Alpino 7136 19.7 85.78 84.66 72.30
CLEF 446 11.3 90.99 88.68 74.04

Trouw 500 17.0 88.94 87.86 80.51

16

Wide Coverage Parsing with SAVGs van Noord and Malouf

Acknowledgments

This research was supported by the PIONIER
project Algorithms for Linguistic Processing funded
by Nederlandse Organisatie voor Wetenschappelijk
Onderzoek (NWO). Helpful remarks from Miles
Osborne and Gosse Bouma gratefully acknowl-
edged.

References

Abney, Steven P. 1997. Stochastic
attribute-value grammars. Computa-
tional Linguistics, 23:597–618.

Balay, Satish, William D. Gropp, Lois Curf-
man McInnes, and Barry F. Smith.
2002. PETSc users manual. Technical
Report ANL-95/11–Revision 2.1.2, Ar-
gonne National Laboratory.

Benson, Steven J., Lois Curfman McInnes,
Jorge J. Moré, and Jason Sarich. 2002.
TAO users manual. Technical Report
ANL/MCS-TM-242–Revision 1.4, Ar-
gonne National Laboratory.

Berger, Adam, Stephen Della Pietra, and
Vincent Della Pietra. 1996. A maxi-
mum entropy approach to natural lan-
guage processing. Computational Lin-
guistics, 22(1):39–72.

den Boogaart, P. C. Uit. 1975. Wo-
ordfrequenties in geschreven en gespro-
ken Nederlands. Oosthoek, Scheltema
& Holkema, Utrecht. Werkgroep
Frequentie-onderzoek van het Neder-
lands.

Boros, M., W. Eckert, F. Gallwitz, G. Görz,
G. Hanrieder, and H. Niemann. 1996.
Towards understanding spontaneous
speech: Word accuracy vs. concept ac-
curacy. In Proceedings of the Fourth
International Conference on Spoken Lan-
guage Processing (ICSLP 96), Philadel-
phia.

Bouma, Gerlof. 2003. Doing Dutch pro-
nouns automatically in optimality the-
ory. In Proceedings of the EACL work-
shop on the Computational Treatment of
Anaphora, Budapest.

Bouma, Gosse. 2001. Extracting depen-
dency frames from existing lexical re-
sources. In Proceedings of the NAACL
Workshop on WordNet and Other Lexical
Resources: Applications, Extensions and
Customizations, Somerset, NJ. Associa-
tion for Computational Linguistics.

Bouma, Gosse. 2004. Question answer-
ing for Dutch using dependency rela-
tions. Technical report, University of
Groningen.

Briscoe, Ted, John Carroll, Jonathan Gra-
ham, and Ann Copestake. 2002. Re-
lational evaluation schemes. In Pro-
ceedings of the Beyond PARSEVAL Work-
shop at the 3rd International Conference
on Language Resources and Evaluation,
pages 4–8, Las Palmas, Gran Canaria.

Chen, Stanley F. and Ronald Rosenfeld.
1999. A Gaussian prior for smoothing
maximum entropy models. Techni-
cal Report CMU-CS-99-108, Computer
Science Department, Carnegie Mellon
University.

Cormen, Leiserson, and Rivest. 1990. In-
troduction to Algorithms. MIT Press,
Cambridge Mass.

Della Pietra, Stephen, Vincent Della Pietra,
and John Lafferty. 1997. Inducing fea-
tures of random fields. IEEE Transac-
tions on Pattern Analysis and Machine
Intelligence, 19:380–393.

Geman, Stuart and Mark Johnson. 2002.
Dynamic programming for pars-
ing and estimation of stochastic
unification-based grammars. In Pro-
ceedings of the 40th Annual Meeting of
the ACL.

Hastie, Trevor, Robert Tibshirani, and
Jerome Friedman. 2001. The Elements
of Statistical Learning Theory. Springer
Verlag, New York.

Jaynes, E.T. 1957. Information theory and
statistical mechanics. Physical Review,
106,108:620–630.

17

Computational Linguistics Volume ?, Number ?

Johnson, Mark, Stuart Geman, Stephen
Canon, Zhiyi Chi, and Stefan Rie-
zler. 1999. Estimators for stochastic
“unification-based” grammars. In Pro-
ceedings of the 37th Annual Meeting of
the ACL.

Nederhof, Mark-Jan. 2003. Weighted
deductive parsing and Knuth’s al-
gorithm. Computational Linguistics,
29(1):135–143.

van Noord, Gertjan. 1997. An effi-
cient implementation of the head cor-
ner parser. Computational Linguistics,
23(3):425–456.

Oostdijk, Nelleke. 2000. The Spoken
Dutch Corpus: Overview and first
evaluation. In Proceedings of Second In-
ternational Conference on Language Re-
sources and Evaluation (LREC), pages
887–894.

Osborne, Miles. 2000. Estimation of
stochastic attribute-value grammars
using an informative sample. In Pro-
ceedings of the Eighteenth International
Conference on Computational Linguistics
(COLING 2000).

Pollard, Carl and Ivan Sag. 1994. Head-
driven Phrase Structure Grammar. Uni-
versity of Chicago / CSLI.

Prins, Robbert. 2004. Beyond N in Ngram
tagging. Technical report, University
of Groningen.

Prins, Robbert and Gertjan van Noord.
2004. Reinforcing parser preferences
through tagging. Traitement Automa-
tique des Langues. in press.

Ratnaparkhi, Adwait. 1998. Maximum en-
tropy models for natural language ambi-
guity resolution. Ph.D. thesis, Univer-
sity of Pennsylvania.

Riezler, Stefan, Tracy H. King, Ronald M.
Kaplan, Richard Crouch, John T.
Maxwell, and Mark Johnson. 2002.
Parsing the Wall Street Journal using a

Lexical-Functional Grammar and dis-
criminative estimation techniques. In
Proceedings of the 40th Annual Meeting
of the ACL.

Villada Moirón, Begoña. 2004. Discarding
noise in an automatically acquired lex-
icon of support verb constructions. In
LREC 2004.

18

